fix: load attn weights to align with flash attn

This commit is contained in:
drbh 2024-01-22 21:53:01 +00:00
parent 5db645a19a
commit 8204f23650

View File

@ -128,10 +128,9 @@ class FlashPhiAttention(torch.nn.Module):
# should be 80 = 2560 / 32
self.head_size = self.hidden_size // self.num_heads
# MAYBE (if not static)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
dim=self.num_heads,
base=config.rope_theta,
device=weights.device,
)
@ -150,8 +149,6 @@ class FlashPhiAttention(torch.nn.Module):
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = load_attention(config, prefix, weights)
self.dense = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.dense",
@ -162,6 +159,28 @@ class FlashPhiAttention(torch.nn.Module):
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
self.rotary_emb_dim = 32
# load attention directly from weights
weight = weights.get_tensor(f"{prefix}.q_proj.weight")
bias = weights.get_tensor(f"{prefix}.q_proj.bias")
self.q_proj = nn.Linear(2560, 2560)
self.q_proj.weight = torch.nn.Parameter(weight.contiguous())
self.q_proj.bias = torch.nn.Parameter(bias.contiguous())
self.k_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.k_proj",
weights=weights,
bias=True,
)
self.v_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.v_proj",
weights=weights,
bias=True,
)
def forward(
self,
@ -175,20 +194,28 @@ class FlashPhiAttention(torch.nn.Module):
input_lengths,
max_s,
):
qkv = self.query_key_value(hidden_states)
q_len, _ = hidden_states.size()
query, kv = qkv.split(
[
self.head_size * self.num_heads,
2 * self.head_size * self.num_key_value_heads,
],
dim=1,
)
query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = query.view(q_len, 32, self.head_size)
# Pack key and value together
kv = torch.stack([key.view(q_len, 32, self.head_size), value.view(q_len, 32, self.head_size)], dim=1)
# Apply partial rotary embedding and store the end of the embedding
query_pass = query[:, :, self.rotary_emb_dim:]
key_pass = torch.select(kv, dim=1, index=0)[:, :, self.rotary_emb_dim:]
# Apply in place positional rotary embeddings
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
# Restore the query and key from the partial rotary embedding
kv[:, 0, :, self.rotary_emb_dim:] = key_pass
query[:, :, self.rotary_emb_dim:] = query_pass
# Reshape key and value and cache
paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
)
@ -221,9 +248,7 @@ class FlashPhiAttention(torch.nn.Module):
max_s,
)
return self.dense(attn_output.view(-1, self.num_heads * self.head_size))
return self.dense(attn_output.view(q_len, 32*self.head_size))
class PhiMLP(nn.Module):
def __init__(self, prefix, config, weights):