mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-19 15:52:08 +00:00
Fix fmt
Signed-off-by: Adrien Gallouët <angt@huggingface.co>
This commit is contained in:
parent
5367d94f34
commit
809e288b5a
@ -35,9 +35,9 @@ impl FromStr for LlamacppSplitMode {
|
||||
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
||||
match s.to_lowercase().as_str() {
|
||||
"layer" => Ok(LlamacppSplitMode::Layer),
|
||||
"row" => Ok(LlamacppSplitMode::Row),
|
||||
"row" => Ok(LlamacppSplitMode::Row),
|
||||
_ => match s.parse::<usize>() {
|
||||
Ok(n) => Ok(LlamacppSplitMode::GPU(n)),
|
||||
Ok(n) => Ok(LlamacppSplitMode::GPU(n)),
|
||||
Err(_) => Err("Choose a GPU number or `layer` or `row`".to_string()),
|
||||
},
|
||||
}
|
||||
@ -93,37 +93,37 @@ pub enum LlamacppGGMLType {
|
||||
impl LlamacppGGMLType {
|
||||
fn to_ggml_type(&self) -> llamacpp::ggml_type {
|
||||
match self {
|
||||
LlamacppGGMLType::F32 => llamacpp::GGML_TYPE_F32,
|
||||
LlamacppGGMLType::F16 => llamacpp::GGML_TYPE_F16,
|
||||
LlamacppGGMLType::Q4_0 => llamacpp::GGML_TYPE_Q4_0,
|
||||
LlamacppGGMLType::Q4_1 => llamacpp::GGML_TYPE_Q4_1,
|
||||
LlamacppGGMLType::Q5_0 => llamacpp::GGML_TYPE_Q5_0,
|
||||
LlamacppGGMLType::Q5_1 => llamacpp::GGML_TYPE_Q5_1,
|
||||
LlamacppGGMLType::Q8_0 => llamacpp::GGML_TYPE_Q8_0,
|
||||
LlamacppGGMLType::Q8_1 => llamacpp::GGML_TYPE_Q8_1,
|
||||
LlamacppGGMLType::Q2_K => llamacpp::GGML_TYPE_Q2_K,
|
||||
LlamacppGGMLType::Q3_K => llamacpp::GGML_TYPE_Q3_K,
|
||||
LlamacppGGMLType::Q4_K => llamacpp::GGML_TYPE_Q4_K,
|
||||
LlamacppGGMLType::Q5_K => llamacpp::GGML_TYPE_Q5_K,
|
||||
LlamacppGGMLType::Q6_K => llamacpp::GGML_TYPE_Q6_K,
|
||||
LlamacppGGMLType::Q8_K => llamacpp::GGML_TYPE_Q8_K,
|
||||
LlamacppGGMLType::F32 => llamacpp::GGML_TYPE_F32,
|
||||
LlamacppGGMLType::F16 => llamacpp::GGML_TYPE_F16,
|
||||
LlamacppGGMLType::Q4_0 => llamacpp::GGML_TYPE_Q4_0,
|
||||
LlamacppGGMLType::Q4_1 => llamacpp::GGML_TYPE_Q4_1,
|
||||
LlamacppGGMLType::Q5_0 => llamacpp::GGML_TYPE_Q5_0,
|
||||
LlamacppGGMLType::Q5_1 => llamacpp::GGML_TYPE_Q5_1,
|
||||
LlamacppGGMLType::Q8_0 => llamacpp::GGML_TYPE_Q8_0,
|
||||
LlamacppGGMLType::Q8_1 => llamacpp::GGML_TYPE_Q8_1,
|
||||
LlamacppGGMLType::Q2_K => llamacpp::GGML_TYPE_Q2_K,
|
||||
LlamacppGGMLType::Q3_K => llamacpp::GGML_TYPE_Q3_K,
|
||||
LlamacppGGMLType::Q4_K => llamacpp::GGML_TYPE_Q4_K,
|
||||
LlamacppGGMLType::Q5_K => llamacpp::GGML_TYPE_Q5_K,
|
||||
LlamacppGGMLType::Q6_K => llamacpp::GGML_TYPE_Q6_K,
|
||||
LlamacppGGMLType::Q8_K => llamacpp::GGML_TYPE_Q8_K,
|
||||
LlamacppGGMLType::IQ2_XXS => llamacpp::GGML_TYPE_IQ2_XXS,
|
||||
LlamacppGGMLType::IQ2_XS => llamacpp::GGML_TYPE_IQ2_XS,
|
||||
LlamacppGGMLType::IQ2_XS => llamacpp::GGML_TYPE_IQ2_XS,
|
||||
LlamacppGGMLType::IQ3_XXS => llamacpp::GGML_TYPE_IQ3_XXS,
|
||||
LlamacppGGMLType::IQ1_S => llamacpp::GGML_TYPE_IQ1_S,
|
||||
LlamacppGGMLType::IQ4_NL => llamacpp::GGML_TYPE_IQ4_NL,
|
||||
LlamacppGGMLType::IQ3_S => llamacpp::GGML_TYPE_IQ3_S,
|
||||
LlamacppGGMLType::IQ2_S => llamacpp::GGML_TYPE_IQ2_S,
|
||||
LlamacppGGMLType::IQ4_XS => llamacpp::GGML_TYPE_IQ4_XS,
|
||||
LlamacppGGMLType::I8 => llamacpp::GGML_TYPE_I8,
|
||||
LlamacppGGMLType::I16 => llamacpp::GGML_TYPE_I16,
|
||||
LlamacppGGMLType::I32 => llamacpp::GGML_TYPE_I32,
|
||||
LlamacppGGMLType::I64 => llamacpp::GGML_TYPE_I64,
|
||||
LlamacppGGMLType::F64 => llamacpp::GGML_TYPE_F64,
|
||||
LlamacppGGMLType::IQ1_M => llamacpp::GGML_TYPE_IQ1_M,
|
||||
LlamacppGGMLType::BF16 => llamacpp::GGML_TYPE_BF16,
|
||||
LlamacppGGMLType::TQ1_0 => llamacpp::GGML_TYPE_TQ1_0,
|
||||
LlamacppGGMLType::TQ2_0 => llamacpp::GGML_TYPE_TQ2_0,
|
||||
LlamacppGGMLType::IQ1_S => llamacpp::GGML_TYPE_IQ1_S,
|
||||
LlamacppGGMLType::IQ4_NL => llamacpp::GGML_TYPE_IQ4_NL,
|
||||
LlamacppGGMLType::IQ3_S => llamacpp::GGML_TYPE_IQ3_S,
|
||||
LlamacppGGMLType::IQ2_S => llamacpp::GGML_TYPE_IQ2_S,
|
||||
LlamacppGGMLType::IQ4_XS => llamacpp::GGML_TYPE_IQ4_XS,
|
||||
LlamacppGGMLType::I8 => llamacpp::GGML_TYPE_I8,
|
||||
LlamacppGGMLType::I16 => llamacpp::GGML_TYPE_I16,
|
||||
LlamacppGGMLType::I32 => llamacpp::GGML_TYPE_I32,
|
||||
LlamacppGGMLType::I64 => llamacpp::GGML_TYPE_I64,
|
||||
LlamacppGGMLType::F64 => llamacpp::GGML_TYPE_F64,
|
||||
LlamacppGGMLType::IQ1_M => llamacpp::GGML_TYPE_IQ1_M,
|
||||
LlamacppGGMLType::BF16 => llamacpp::GGML_TYPE_BF16,
|
||||
LlamacppGGMLType::TQ1_0 => llamacpp::GGML_TYPE_TQ1_0,
|
||||
LlamacppGGMLType::TQ2_0 => llamacpp::GGML_TYPE_TQ2_0,
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -177,18 +177,18 @@ impl LlamacppRequest {
|
||||
tx: UnboundedSender<Result<InferStreamResponse, InferError>>,
|
||||
) -> Option<Self> {
|
||||
from.input_ids.as_ref().map(|input_ids| LlamacppRequest {
|
||||
input_ids: input_ids.iter().map(|&x| x as i32).collect(),
|
||||
top_k: from.parameters.top_k as _,
|
||||
top_p: from.parameters.top_p as _,
|
||||
typical_p: from.parameters.typical_p as _,
|
||||
min_keep: 0, // disabled
|
||||
temp: from.parameters.temperature as _,
|
||||
seed: from.parameters.seed as _,
|
||||
penalty_last_n: 64, // 0 = disabled, -1 = context size
|
||||
penalty_repeat: from.parameters.repetition_penalty as _,
|
||||
penalty_freq: from.parameters.frequency_penalty as _,
|
||||
input_ids: input_ids.iter().map(|&x| x as i32).collect(),
|
||||
top_k: from.parameters.top_k as _,
|
||||
top_p: from.parameters.top_p as _,
|
||||
typical_p: from.parameters.typical_p as _,
|
||||
min_keep: 0, // disabled
|
||||
temp: from.parameters.temperature as _,
|
||||
seed: from.parameters.seed as _,
|
||||
penalty_last_n: 64, // 0 = disabled, -1 = context size
|
||||
penalty_repeat: from.parameters.repetition_penalty as _,
|
||||
penalty_freq: from.parameters.frequency_penalty as _,
|
||||
penalty_present: 0.0, // disabled
|
||||
max_new_tokens: from.stopping_parameters.max_new_tokens as _,
|
||||
max_new_tokens: from.stopping_parameters.max_new_tokens as _,
|
||||
tx,
|
||||
time: Instant::now(),
|
||||
})
|
||||
@ -213,10 +213,10 @@ extern "C" fn llamacpp_log_callback(
|
||||
|
||||
match level {
|
||||
llamacpp::GGML_LOG_LEVEL_DEBUG => debug!(target: "llamacpp", "{}", rmsg),
|
||||
llamacpp::GGML_LOG_LEVEL_INFO => info!(target: "llamacpp", "{}", rmsg),
|
||||
llamacpp::GGML_LOG_LEVEL_WARN => warn!(target: "llamacpp", "{}", rmsg),
|
||||
llamacpp::GGML_LOG_LEVEL_INFO => info!(target: "llamacpp", "{}", rmsg),
|
||||
llamacpp::GGML_LOG_LEVEL_WARN => warn!(target: "llamacpp", "{}", rmsg),
|
||||
llamacpp::GGML_LOG_LEVEL_ERROR => error!(target: "llamacpp", "{}", rmsg),
|
||||
_ => trace!(target: "llamacpp", "{}", rmsg),
|
||||
_ => trace!(target: "llamacpp", "{}", rmsg),
|
||||
}
|
||||
}
|
||||
|
||||
@ -229,14 +229,14 @@ impl Llamacpp {
|
||||
params.n_gpu_layers = conf.n_gpu_layers as _;
|
||||
params.split_mode = match conf.split_mode {
|
||||
LlamacppSplitMode::GPU(_) => llamacpp::LLAMA_SPLIT_MODE_NONE,
|
||||
LlamacppSplitMode::Layer => llamacpp::LLAMA_SPLIT_MODE_LAYER,
|
||||
LlamacppSplitMode::Row => llamacpp::LLAMA_SPLIT_MODE_ROW,
|
||||
LlamacppSplitMode::Layer => llamacpp::LLAMA_SPLIT_MODE_LAYER,
|
||||
LlamacppSplitMode::Row => llamacpp::LLAMA_SPLIT_MODE_ROW,
|
||||
};
|
||||
params.main_gpu = match conf.split_mode {
|
||||
LlamacppSplitMode::GPU(n) => n as _,
|
||||
_ => 0,
|
||||
};
|
||||
params.use_mmap = conf.use_mmap;
|
||||
params.use_mmap = conf.use_mmap;
|
||||
params.use_mlock = conf.use_mlock;
|
||||
llamacpp::model_load_from_file(gguf.as_ptr(), params)
|
||||
};
|
||||
@ -245,32 +245,28 @@ impl Llamacpp {
|
||||
}
|
||||
let ctx = unsafe {
|
||||
let mut params = llamacpp::context_default_params();
|
||||
params.n_ctx = conf.max_batch_total_tokens as _;
|
||||
params.n_batch = conf.max_batch_total_tokens as _;
|
||||
params.n_ubatch = conf.max_physical_batch_total_tokens as _;
|
||||
params.n_seq_max = conf.max_batch_size as _;
|
||||
params.n_threads = conf.n_threads as _;
|
||||
params.n_ctx = conf.max_batch_total_tokens as _;
|
||||
params.n_batch = conf.max_batch_total_tokens as _;
|
||||
params.n_ubatch = conf.max_physical_batch_total_tokens as _;
|
||||
params.n_seq_max = conf.max_batch_size as _;
|
||||
params.n_threads = conf.n_threads as _;
|
||||
params.n_threads_batch = conf.n_threads_batch as _;
|
||||
params.defrag_thold = conf.defrag_threshold;
|
||||
params.offload_kqv = conf.offload_kqv;
|
||||
params.flash_attn = conf.flash_attention;
|
||||
params.type_k = conf.type_k.to_ggml_type();
|
||||
params.type_v = conf.type_v.to_ggml_type();
|
||||
params.no_perf = true;
|
||||
params.defrag_thold = conf.defrag_threshold;
|
||||
params.offload_kqv = conf.offload_kqv;
|
||||
params.flash_attn = conf.flash_attention;
|
||||
params.type_k = conf.type_k.to_ggml_type();
|
||||
params.type_v = conf.type_v.to_ggml_type();
|
||||
params.no_perf = true;
|
||||
llamacpp::init_from_model(model, params)
|
||||
};
|
||||
if ctx.is_null() {
|
||||
return Err(BackendError::Llamacpp("Failed to init context".to_string()));
|
||||
}
|
||||
let vocab = unsafe {
|
||||
llamacpp::model_get_vocab(model)
|
||||
};
|
||||
let vocab = unsafe { llamacpp::model_get_vocab(model) };
|
||||
if vocab.is_null() {
|
||||
return Err(BackendError::Llamacpp("Failed to get vocab".to_string()));
|
||||
}
|
||||
let n_tokens = unsafe {
|
||||
llamacpp::vocab_n_tokens(vocab)
|
||||
};
|
||||
let n_tokens = unsafe { llamacpp::vocab_n_tokens(vocab) };
|
||||
let mut logprobs = Vec::with_capacity(n_tokens as usize);
|
||||
|
||||
for token in 0..n_tokens {
|
||||
@ -280,16 +276,18 @@ impl Llamacpp {
|
||||
p: 0.0,
|
||||
});
|
||||
}
|
||||
let batch = unsafe {
|
||||
llamacpp::batch_init(conf.max_batch_total_tokens as _, 0, 1)
|
||||
};
|
||||
Ok(Llamacpp{model, ctx, vocab, logprobs, batch})
|
||||
let batch = unsafe { llamacpp::batch_init(conf.max_batch_total_tokens as _, 0, 1) };
|
||||
Ok(Llamacpp {
|
||||
model,
|
||||
ctx,
|
||||
vocab,
|
||||
logprobs,
|
||||
batch,
|
||||
})
|
||||
}
|
||||
|
||||
fn decode(&mut self) -> i32 {
|
||||
unsafe {
|
||||
llamacpp::decode(self.ctx, self.batch)
|
||||
}
|
||||
unsafe { llamacpp::decode(self.ctx, self.batch) }
|
||||
}
|
||||
|
||||
fn clear_kv_cache(&mut self, seq_id: llamacpp::llama_seq_id) {
|
||||
@ -344,18 +342,10 @@ impl LlamacppSampler {
|
||||
error!("Failed to init sampler");
|
||||
return None;
|
||||
}
|
||||
let top_k = unsafe {
|
||||
llamacpp::sampler_init_top_k(req.top_k)
|
||||
};
|
||||
let top_p = unsafe {
|
||||
llamacpp::sampler_init_top_p(req.top_p, req.min_keep)
|
||||
};
|
||||
let typical_p = unsafe {
|
||||
llamacpp::sampler_init_typical(req.typical_p, req.min_keep)
|
||||
};
|
||||
let temp = unsafe {
|
||||
llamacpp::sampler_init_temp(req.temp)
|
||||
};
|
||||
let top_k = unsafe { llamacpp::sampler_init_top_k(req.top_k) };
|
||||
let top_p = unsafe { llamacpp::sampler_init_top_p(req.top_p, req.min_keep) };
|
||||
let typical_p = unsafe { llamacpp::sampler_init_typical(req.typical_p, req.min_keep) };
|
||||
let temp = unsafe { llamacpp::sampler_init_temp(req.temp) };
|
||||
let penalties = unsafe {
|
||||
llamacpp::sampler_init_penalties(
|
||||
req.penalty_last_n,
|
||||
@ -364,9 +354,7 @@ impl LlamacppSampler {
|
||||
req.penalty_present,
|
||||
)
|
||||
};
|
||||
let dist = unsafe {
|
||||
llamacpp::sampler_init_dist(req.seed)
|
||||
};
|
||||
let dist = unsafe { llamacpp::sampler_init_dist(req.seed) };
|
||||
let all = &[
|
||||
("top_k", top_k),
|
||||
("top_p", top_p),
|
||||
@ -389,14 +377,12 @@ impl LlamacppSampler {
|
||||
unsafe { llamacpp::sampler_free(chain) };
|
||||
None
|
||||
} else {
|
||||
Some(LlamacppSampler{chain})
|
||||
Some(LlamacppSampler { chain })
|
||||
}
|
||||
}
|
||||
|
||||
fn sample(&self, llamacpp: &mut Llamacpp, idx: usize) -> (llamacpp::llama_token, f32) {
|
||||
let logits = unsafe {
|
||||
llamacpp::get_logits_ith(llamacpp.ctx, idx as _)
|
||||
};
|
||||
let logits = unsafe { llamacpp::get_logits_ith(llamacpp.ctx, idx as _) };
|
||||
for (token, logprob) in llamacpp.logprobs.iter_mut().enumerate() {
|
||||
*logprob = llamacpp::llama_token_data {
|
||||
id: token as _,
|
||||
@ -454,11 +440,11 @@ impl LlamacppBackend {
|
||||
llamacpp::log_set(Some(llamacpp_log_callback), std::ptr::null_mut());
|
||||
llamacpp::backend_init();
|
||||
llamacpp::numa_init(match conf.numa {
|
||||
LlamacppNuma::Disabled => llamacpp::GGML_NUMA_STRATEGY_DISABLED,
|
||||
LlamacppNuma::Disabled => llamacpp::GGML_NUMA_STRATEGY_DISABLED,
|
||||
LlamacppNuma::Distribute => llamacpp::GGML_NUMA_STRATEGY_DISTRIBUTE,
|
||||
LlamacppNuma::Isolate => llamacpp::GGML_NUMA_STRATEGY_ISOLATE,
|
||||
LlamacppNuma::Numactl => llamacpp::GGML_NUMA_STRATEGY_NUMACTL,
|
||||
LlamacppNuma::Mirror => llamacpp::GGML_NUMA_STRATEGY_MIRROR,
|
||||
LlamacppNuma::Isolate => llamacpp::GGML_NUMA_STRATEGY_ISOLATE,
|
||||
LlamacppNuma::Numactl => llamacpp::GGML_NUMA_STRATEGY_NUMACTL,
|
||||
LlamacppNuma::Mirror => llamacpp::GGML_NUMA_STRATEGY_MIRROR,
|
||||
});
|
||||
});
|
||||
|
||||
@ -474,7 +460,8 @@ impl LlamacppBackend {
|
||||
|
||||
let flush = |requests: &mut Vec<_>, n_tokens: &mut usize| {
|
||||
if !requests.is_empty() {
|
||||
let _ = sync_tx.send(replace(requests, Vec::with_capacity(conf.max_batch_size)));
|
||||
let _ =
|
||||
sync_tx.send(replace(requests, Vec::with_capacity(conf.max_batch_size)));
|
||||
*n_tokens = 0;
|
||||
}
|
||||
};
|
||||
@ -538,8 +525,8 @@ impl LlamacppBackend {
|
||||
for (pos, &token_id) in request.input_ids.iter().enumerate() {
|
||||
llamacpp.batch_push(
|
||||
token_id as llamacpp::llama_token,
|
||||
pos as llamacpp::llama_pos,
|
||||
seq_id as llamacpp::llama_seq_id,
|
||||
pos as llamacpp::llama_pos,
|
||||
seq_id as llamacpp::llama_seq_id,
|
||||
pos == last_pos, // check samplers
|
||||
);
|
||||
}
|
||||
@ -559,7 +546,9 @@ impl LlamacppBackend {
|
||||
warn!("llama_decode failed, clearing kv cache");
|
||||
llamacpp.clear_kv_cache(-1);
|
||||
for seq in seqs.iter_mut() {
|
||||
let _ = requests[seq.id].tx.send(Err(InferError::IncompleteGeneration));
|
||||
let _ = requests[seq.id]
|
||||
.tx
|
||||
.send(Err(InferError::IncompleteGeneration));
|
||||
seq.running = false;
|
||||
}
|
||||
break;
|
||||
@ -576,7 +565,9 @@ impl LlamacppBackend {
|
||||
Ok(piece) => piece,
|
||||
Err(e) => {
|
||||
error!("Failed to decode token: {e}");
|
||||
let _ = requests[seq.id].tx.send(Err(InferError::IncompleteGeneration));
|
||||
let _ = requests[seq.id]
|
||||
.tx
|
||||
.send(Err(InferError::IncompleteGeneration));
|
||||
seq.running = false;
|
||||
continue;
|
||||
}
|
||||
@ -617,17 +608,20 @@ impl LlamacppBackend {
|
||||
seq.running = false;
|
||||
continue;
|
||||
}
|
||||
let _ = requests[seq.id].tx.send(Ok(InferStreamResponse::Intermediate {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
}));
|
||||
let _ = requests[seq.id]
|
||||
.tx
|
||||
.send(Ok(InferStreamResponse::Intermediate {
|
||||
token,
|
||||
top_tokens: vec![],
|
||||
}));
|
||||
}
|
||||
// generate a new batch
|
||||
llamacpp.batch.n_tokens = 0;
|
||||
|
||||
for seq in seqs.iter_mut() {
|
||||
if seq.running {
|
||||
seq.batch_pos = llamacpp.batch_push(seq.token, seq.pos, seq.id as _, true);
|
||||
seq.batch_pos =
|
||||
llamacpp.batch_push(seq.token, seq.pos, seq.id as _, true);
|
||||
seq.pos += 1;
|
||||
} else {
|
||||
llamacpp.clear_kv_cache(seq.id as _);
|
||||
@ -636,7 +630,14 @@ impl LlamacppBackend {
|
||||
}
|
||||
}
|
||||
});
|
||||
(Self{tx, status: status_rx}, ok_rx, shutdown_tx)
|
||||
(
|
||||
Self {
|
||||
tx,
|
||||
status: status_rx,
|
||||
},
|
||||
ok_rx,
|
||||
shutdown_tx,
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -222,23 +222,23 @@ async fn main() -> Result<(), RouterError> {
|
||||
|
||||
let (backend, ok, shutdown) = LlamacppBackend::new(
|
||||
LlamacppConfig {
|
||||
model_gguf: args.model_gguf,
|
||||
model_gguf: args.model_gguf,
|
||||
n_threads,
|
||||
n_threads_batch,
|
||||
n_gpu_layers: args.n_gpu_layers,
|
||||
split_mode: args.split_mode,
|
||||
defrag_threshold: args.defrag_threshold,
|
||||
numa: args.numa,
|
||||
use_mmap: args.use_mmap,
|
||||
use_mlock: args.use_mlock,
|
||||
flash_attention: args.flash_attention,
|
||||
type_k: args.type_k,
|
||||
type_v: args.type_v,
|
||||
offload_kqv: args.offload_kqv,
|
||||
n_gpu_layers: args.n_gpu_layers,
|
||||
split_mode: args.split_mode,
|
||||
defrag_threshold: args.defrag_threshold,
|
||||
numa: args.numa,
|
||||
use_mmap: args.use_mmap,
|
||||
use_mlock: args.use_mlock,
|
||||
flash_attention: args.flash_attention,
|
||||
type_k: args.type_k,
|
||||
type_v: args.type_v,
|
||||
offload_kqv: args.offload_kqv,
|
||||
max_batch_total_tokens,
|
||||
max_physical_batch_total_tokens,
|
||||
max_batch_size,
|
||||
batch_timeout: tokio::time::Duration::from_millis(5),
|
||||
batch_timeout: tokio::time::Duration::from_millis(5),
|
||||
},
|
||||
tokenizer,
|
||||
);
|
||||
@ -261,7 +261,7 @@ async fn main() -> Result<(), RouterError> {
|
||||
args.max_input_tokens,
|
||||
args.max_total_tokens,
|
||||
args.validation_workers,
|
||||
None, // api_key
|
||||
None, // api_key
|
||||
args.model_id, // tokenizer_name
|
||||
args.tokenizer_config_path,
|
||||
Some(args.revision),
|
||||
|
Loading…
Reference in New Issue
Block a user