Fix the crash issue of Qwen/Qwen3-235B-A22B

Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
yuanwu 2025-06-06 06:14:01 +00:00
parent 1a5ef906ae
commit 7f346a88e3

View File

@ -19,9 +19,12 @@ import torch
from torch import nn
import torch.nn.functional as F
from text_generation_server.layers.attention import (
attention,
paged_attention,
Seqlen,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers import (
TensorParallelEmbedding,
@ -37,40 +40,7 @@ from text_generation_server.layers.layernorm import (
from .flash_qwen2_modeling import Qwen2MLP
from .flash_qwen3_modeling import Qwen3Attention
from transformers.activations import ACT2FN
# import torch
# import torch.nn.functional as F
# from torch import nn
# from ...activations import ACT2FN
# from ...cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
# from ...generation import GenerationMixin
# from ...integrations import use_kernel_forward_from_hub
# from ...modeling_attn_mask_utils import AttentionMaskConverter
# from ...modeling_flash_attention_utils import FlashAttentionKwargs
# from ...modeling_outputs import (
# BaseModelOutputWithPast,
# CausalLMOutputWithPast,
# MoeCausalLMOutputWithPast,
# MoeModelOutputWithPast,
# QuestionAnsweringModelOutput,
# SequenceClassifierOutputWithPast,
# TokenClassifierOutput,
# )
# from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
# from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
# from ...processing_utils import Unpack
# from ...utils import (
# LossKwargs,
# add_code_sample_docstrings,
# add_start_docstrings,
# add_start_docstrings_to_model_forward,
# can_return_tuple,
# is_torch_flex_attn_available,
# logging,
# replace_return_docstrings,
# )
from text_generation_server.layers.rotary import PositionRotaryEmbedding
def rotate_half(x):
@ -107,132 +77,131 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim
class Qwen3MoeAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config, prefix, weights, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads
)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(
query.dtype
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = (
config.num_attention_heads // config.num_key_value_heads
)
attn_weights = nn.functional.dropout(
attn_weights, p=dropout, training=module.training
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = FastLinear.load(
config, f"{prefix}.q_proj", weights, bias=config.attention_bias
)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
self.k_proj = FastLinear.load(
config, f"{prefix}.k_proj", weights, bias=config.attention_bias
)
self.v_proj = FastLinear.load(
config, f"{prefix}.v_proj", weights, bias=config.attention_bias
)
self.o_proj = FastLinear.load(
config, f"{prefix}.o_proj", weights, bias=config.attention_bias
)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_dim,
base=config.rope_theta,
device=weights.device,
)
# class Qwen3MoeAttention(nn.Module):
# """Multi-headed attention from 'Attention Is All You Need' paper"""
self.q_norm = FastRMSNorm.load(
prefix=f"{prefix}.q_norm",
weights=weights,
eps=config.rms_norm_eps,
)
# def __init__(self, config: Qwen3MoeConfig, layer_idx: int):
# super().__init__()
# self.config = config
# self.layer_idx = layer_idx
# self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
# self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
# self.scaling = self.head_dim**-0.5
# self.attention_dropout = config.attention_dropout
# self.is_causal = True
self.k_norm = FastRMSNorm.load(
prefix=f"{prefix}.k_norm",
weights=weights,
eps=config.rms_norm_eps,
)
# self.q_proj = nn.Linear(
# config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
# )
# self.k_proj = nn.Linear(
# config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
# )
# self.v_proj = nn.Linear(
# config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
# )
# self.o_proj = nn.Linear(
# config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
# )
# self.q_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) # unlike olmo, only on the head dim!
# self.k_norm = Qwen3MoeRMSNorm(self.head_dim, eps=config.rms_norm_eps) # thus post q_norm does not need reshape
# self.sliding_window = config.sliding_window
# if not (
# self.config.use_sliding_window
# and getattr(self.config, "sliding_window", None) is not None
# and self.layer_idx >= self.config.max_window_layers
# ):
# self.sliding_window = None
self.max_past = (
config.sliding_window if config.sliding_window is not None else -1
)
# def forward(
# self,
# hidden_states: torch.Tensor,
# position_embeddings: Tuple[torch.Tensor, torch.Tensor],
# attention_mask: Optional[torch.Tensor],
# cache_position: Optional[torch.LongTensor] = None,
# ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# input_shape = hidden_states.shape[:-1]
# hidden_shape = (*input_shape, -1, self.head_dim)
self.kv_scales = get_kv_scales(weights, f"{prefix}")
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_key_value_groups)
# query_states = self.q_norm(self.q_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
# key_states = self.k_norm(self.k_proj(hidden_states).view(hidden_shape)).transpose(1, 2)
# value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
self.sliding_window = config.sliding_window
if not (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
self.sliding_window = None
# cos, sin = position_embeddings
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
slots,
seqlen,
hpu_attention_meta,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
# if past_key_value is not None:
# # sin and cos are specific to RoPE models; cache_position needed for the static cache
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
# key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
query_states, _ = self.q_norm(self.q_proj(hidden_states).view(hidden_shape))
key_states, _ = self.k_norm(self.k_proj(hidden_states).view(hidden_shape))
value_states = self.v_proj(hidden_states).view(hidden_shape)
# attention_interface: Callable = eager_attention_forward
# if self.config._attn_implementation != "eager":
# if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
# logger.warning_once(
# "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
# 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
# )
# else:
# attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
self.rotary_emb(query_states, key_states, cos, sin)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# attn_output, attn_weights = attention_interface(
# self,
# query_states,
# key_states,
# value_states,
# attention_mask,
# dropout=0.0 if not self.training else self.attention_dropout,
# scaling=self.scaling,
# sliding_window=self.sliding_window, # diff with Llama
# **kwargs,
# )
kv_cache.store(
key=key_states,
value=value_states,
slots=slots,
kv_scales=self.kv_scales,
)
# attn_output = attn_output.reshape(*input_shape, -1).contiguous()
# attn_output = self.o_proj(attn_output)
# return attn_output, attn_weights
# Prefill
if cu_seqlen_prefill is not None:
# sdpa
attn_output = attention(
query=query_states,
key=key_states,
value=value_states,
kv_cache=kv_cache,
kv_scales=self.kv_scales,
seqlen=seqlen,
softmax_scale=self.scaling,
window_size_left=self.max_past,
num_key_value_groups=self.num_key_value_groups,
)
# Decode
else:
attn_output = paged_attention(
query_states,
kv_cache,
self.kv_head_mapping,
self.scaling,
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
class Qwen3MoE(nn.Module):
@ -415,9 +384,21 @@ class Qwen3MoeDecoderLayer(nn.Module):
super().__init__()
self.hidden_size = config.hidden_size
if config.num_key_value_heads // weights.process_group.size() > 0:
self.self_attn = Qwen3Attention(
config, prefix=f"{prefix}.self_attn", weights=weights, layer_idx=layer_idx
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
)
else:
self.self_attn = Qwen3MoeAttention(
config,
prefix=f"{prefix}.self_attn",
weights=weights,
layer_idx=layer_idx,
)
moe_layer_cls = (
SparseMoELayer if SparseMoELayer.is_supported(weights) else DenseMoELayer
)