mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
build in docker
This commit is contained in:
parent
cbb466b4f3
commit
7d793a5b61
@ -113,6 +113,12 @@ RUN make build-flash-attention-v2
|
||||
FROM kernel-builder as exllama-kernels-builder
|
||||
WORKDIR /usr/src
|
||||
COPY server/exllama_kernels/ .
|
||||
|
||||
# Build Transformers exllama kernels
|
||||
FROM kernel-builder as exllama-kernels-builder
|
||||
WORKDIR /usr/src
|
||||
COPY server/exllamav2_kernels/ .
|
||||
|
||||
# Build specific version of transformers
|
||||
RUN TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" python setup.py build
|
||||
|
||||
|
188
server/text_generation_server/utils/gptq/exllamav2.py
Normal file
188
server/text_generation_server/utils/gptq/exllamav2.py
Normal file
@ -0,0 +1,188 @@
|
||||
# Adapted from turboderp exllama: https://github.com/turboderp/exllamav2
|
||||
|
||||
from logging import getLogger
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import math
|
||||
|
||||
logger = getLogger(__name__)
|
||||
|
||||
try:
|
||||
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
|
||||
except ImportError:
|
||||
logger.error('exllamav2_kernels not installed.')
|
||||
raise
|
||||
|
||||
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
|
||||
none_tensor = torch.empty((1, 1), device="meta")
|
||||
|
||||
def _torch_device(idx):
|
||||
if idx == -1: return "cpu"
|
||||
return f"cuda:{idx}"
|
||||
|
||||
def ext_gemm_half_q_half(x, q_handle, q4_width, force_cuda):
|
||||
"""Matrix multiplication, returns x @ q4"""
|
||||
output_shape = x.shape[:-1] + (q4_width,)
|
||||
x = x.view(-1, x.shape[-1])
|
||||
output = torch.empty((x.shape[0], q4_width), dtype = torch.half, device = x.device)
|
||||
gemm_half_q_half(x, q_handle, output, force_cuda)
|
||||
return output.view(output_shape)
|
||||
|
||||
def ext_make_q_matrix(w: dict, temp_dq, key: str = None):
|
||||
"""
|
||||
Create Q matrix
|
||||
"""
|
||||
# EXL2
|
||||
# won't work as the moment because the tensors are not the same.
|
||||
if "q_weight" in w:
|
||||
w["q_scale_max"] /= 256
|
||||
w["q_perm"] = w["q_perm"].short()
|
||||
w["q_invperm"] = w["q_invperm"].short()
|
||||
return make_q_matrix(w["q_weight"],
|
||||
w["q_perm"],
|
||||
w["q_invperm"],
|
||||
w["q_scale"],
|
||||
w["q_scale_max"],
|
||||
w["q_groups"],
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
temp_dq)
|
||||
# GPTQ
|
||||
elif "qweight" in w:
|
||||
if w["scales"].dtype == torch.float:
|
||||
w["scales"] = w["scales"].half()
|
||||
|
||||
# GPTQ with g_idx (act_order)
|
||||
if "g_idx" in w and not (w["g_idx"] == 0).all().item():
|
||||
w["q_perm"] = torch.empty((w["qweight"].shape[0] * 8,), dtype = torch.short, device = w["qweight"].device)
|
||||
w["q_invperm"] = torch.empty_like(w["q_perm"])
|
||||
# make_q4 segfaults if g_idx is not on cpu in the act-order case. In the non act-order case, None needs to be passed for g_idx.
|
||||
return make_q_matrix(w["qweight"],
|
||||
w["q_perm"],
|
||||
w["q_invperm"],
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
w["qzeros"],
|
||||
w["scales"],
|
||||
w["g_idx"].cpu(),
|
||||
temp_dq)
|
||||
# GPTQ without g_idx
|
||||
else:
|
||||
return make_q_matrix(w["qweight"],
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
none_tensor,
|
||||
w["qzeros"],
|
||||
w["scales"],
|
||||
none_tensor,
|
||||
temp_dq)
|
||||
|
||||
class QuantLinear(nn.Module):
|
||||
QUANT_TYPE = "exllamav2"
|
||||
|
||||
"""Linear layer implementation with per-group 4-bit quantization of the weights"""
|
||||
|
||||
def __init__(self, bits, group_size, infeatures, outfeatures, bias, trainable=False, **kwargs):
|
||||
super().__init__()
|
||||
if bits != 4:
|
||||
raise ValueError(
|
||||
f"Exllamav2 kernel supports only bits=4, requested bits={bits}. Something is wrong in the model initialization.")
|
||||
if trainable:
|
||||
raise NotImplementedError("Exllamav2 kernel does not support training.")
|
||||
|
||||
self.q_handle = None
|
||||
self.q_tensors = None
|
||||
self.padding = - outfeatures % 32
|
||||
|
||||
self.infeatures = infeatures
|
||||
self.outfeatures = outfeatures + self.padding
|
||||
self.bits = bits
|
||||
self.group_size = group_size if group_size != -1 else infeatures
|
||||
self.trainable = trainable
|
||||
self.maxq = 2 ** self.bits - 1
|
||||
|
||||
assert infeatures % 32 == 0
|
||||
assert infeatures % self.group_size == 0
|
||||
assert outfeatures % 32 == 0
|
||||
|
||||
# I need to register the tensors, otherwise, we won't be able to load them easily using transformers ...
|
||||
self.register_buffer(
|
||||
'qweight',
|
||||
torch.zeros((infeatures // 32 * self.bits, outfeatures), dtype=torch.int32)
|
||||
)
|
||||
self.register_buffer(
|
||||
'qzeros',
|
||||
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures // 32 * self.bits), dtype=torch.int32)
|
||||
)
|
||||
self.register_buffer(
|
||||
'scales',
|
||||
torch.zeros((math.ceil(infeatures / self.group_size), outfeatures), dtype=torch.float16)
|
||||
)
|
||||
self.register_buffer(
|
||||
'g_idx',
|
||||
torch.tensor([i // self.group_size for i in range(infeatures)], dtype=torch.int32)
|
||||
)
|
||||
|
||||
if bias:
|
||||
self.register_buffer('bias', torch.zeros((outfeatures), dtype=torch.float16))
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def post_init(self, temp_dq):
|
||||
assert self.qweight.device.type == "cuda"
|
||||
assert self.qweight.device.index is not None
|
||||
self.q_tensors = {
|
||||
"qweight":self.qweight,
|
||||
"qzeros":self.qzeros,
|
||||
"scales":self.scales,
|
||||
"g_idx":self.g_idx
|
||||
}
|
||||
temp_dq = temp_dq.get_scratch_slice(self.temp_dq_size())
|
||||
self.q_handle = ext_make_q_matrix(
|
||||
self.q_tensors, temp_dq
|
||||
)
|
||||
|
||||
def forward(self, x, force_cuda = False):
|
||||
output = ext_gemm_half_q_half(x, self.q_handle, self.outfeatures, force_cuda)
|
||||
|
||||
if self.bias is not None:
|
||||
output.add_(self.bias)
|
||||
return output
|
||||
|
||||
def temp_dq_size(self):
|
||||
return self.infeatures * self.outfeatures * 2 + 128
|
||||
|
||||
def temp_fwd_size(self, max_input_len, max_batch_size):
|
||||
return self.outfeatures * max_input_len * max_batch_size * 4 + 128
|
||||
|
||||
def scratch_space_fixed(self, max_input_len=2048, max_batch_size=8):
|
||||
return self.temp_dq_size() + self.temp_fwd_size(max_input_len, max_batch_size)
|
||||
|
||||
|
||||
class ExLlamaV2DeviceTensors:
|
||||
|
||||
device_idx: int
|
||||
scratch_bytes: int
|
||||
scratch_idx: int
|
||||
scratch: torch.tensor = None
|
||||
|
||||
def __init__(self, device_idx, scratch_bytes):
|
||||
self.device_idx = device_idx
|
||||
self.scratch_bytes = scratch_bytes
|
||||
|
||||
def prepare(self):
|
||||
self.scratch = torch.empty((self.scratch_bytes // 2,), dtype = torch.half, device = _torch_device(self.device_idx))
|
||||
|
||||
def get_scratch_slice(self, size_bytes):
|
||||
|
||||
if self.scratch is None: self.prepare()
|
||||
|
||||
size_bytes = ((size_bytes + 127) // 128) * 128
|
||||
size_half = size_bytes // 2
|
||||
scratch_slice = self.scratch.narrow(0, 0, size_half)
|
||||
return scratch_slice
|
Loading…
Reference in New Issue
Block a user