mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-12 04:44:52 +00:00
Merge branch 'main' into gpt_awq_4
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
commit
7c6230c59a
32
.github/workflows/build.yaml
vendored
32
.github/workflows/build.yaml
vendored
@ -21,9 +21,11 @@ jobs:
|
||||
build-and-push:
|
||||
outputs:
|
||||
docker_image: ${{ steps.final.outputs.docker_image }}
|
||||
docker_volume: ${{ steps.final.outputs.docker_volume }}
|
||||
docker_devices: ${{ steps.final.outputs.docker_devices }}
|
||||
runs_on: ${{ steps.final.outputs.runs_on }}
|
||||
label: ${{ steps.final.outputs.label }}
|
||||
extra_pytest: ${{ steps.final.outputs.extra_pytest }}
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-build-and-push-image-${{ inputs.hardware }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
@ -44,32 +46,39 @@ jobs:
|
||||
cuda)
|
||||
export dockerfile="Dockerfile"
|
||||
export label_extension=""
|
||||
export docker_volume="/mnt/cache"
|
||||
export docker_devices=""
|
||||
export runs_on="aws-g6-12xl-plus-priv-cache"
|
||||
export platform=""
|
||||
export extra_pytest=""
|
||||
;;
|
||||
rocm)
|
||||
export dockerfile="Dockerfile_amd"
|
||||
export label_extension="-rocm"
|
||||
export docker_devices="/dev/kfd,/dev/dri"
|
||||
# TODO Re-enable when they pass.
|
||||
# export runs_on="amd-gpu-tgi"
|
||||
export runs_on="ubuntu-latest"
|
||||
export docker_volume="/mnt"
|
||||
export runs_on="amd-gpu-runners"
|
||||
export platform=""
|
||||
export extra_pytest="-k test_flash_gemma_gptq_load"
|
||||
;;
|
||||
intel-xpu)
|
||||
export dockerfile="Dockerfile_intel"
|
||||
export label_extension="-intel-xpu"
|
||||
export docker_devices=""
|
||||
export docker_volume="/mnt/cache"
|
||||
export runs_on="ubuntu-latest"
|
||||
export platform="xpu"
|
||||
export extra_pytest=""
|
||||
;;
|
||||
intel-cpu)
|
||||
export dockerfile="Dockerfile_intel"
|
||||
export label_extension="-intel-cpu"
|
||||
export docker_devices=""
|
||||
export runs_on="ubuntu-latest"
|
||||
export docker_devices="none"
|
||||
export docker_volume="/mnt/cache"
|
||||
# export runs_on="ubuntu-latest"
|
||||
export runs_on="aws-highmemory-32-plus-priv"
|
||||
export platform="cpu"
|
||||
export extra_pytest="-k test_flash_gemma_simple"
|
||||
;;
|
||||
esac
|
||||
echo $dockerfile
|
||||
@ -81,8 +90,10 @@ jobs:
|
||||
echo "DOCKERFILE=${dockerfile}" >> $GITHUB_ENV
|
||||
echo "LABEL=${label_extension}" >> $GITHUB_ENV
|
||||
echo "PLATFORM=${platform}" >> $GITHUB_ENV
|
||||
echo "DOCKER_VOLUME=${docker_volume}" >> $GITHUB_ENV
|
||||
echo "DOCKER_DEVICES=${docker_devices}" >> $GITHUB_ENV
|
||||
echo "RUNS_ON=${runs_on}" >> $GITHUB_ENV
|
||||
echo "EXTRA_PYTEST=${extra_pytest}" >> $GITHUB_ENV
|
||||
echo REGISTRY_MIRROR=$REGISTRY_MIRROR >> $GITHUB_ENV
|
||||
- name: Initialize Docker Buildx
|
||||
uses: docker/setup-buildx-action@v3
|
||||
@ -157,16 +168,18 @@ jobs:
|
||||
run: |
|
||||
echo "docker_image=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
|
||||
echo "docker_devices=${{ env.DOCKER_DEVICES }}" >> "$GITHUB_OUTPUT"
|
||||
echo "docker_volume=${{ env.DOCKER_VOLUME }}" >> "$GITHUB_OUTPUT"
|
||||
echo "runs_on=${{ env.RUNS_ON }}" >> "$GITHUB_OUTPUT"
|
||||
echo "label=${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
|
||||
echo "extra_pytest=${{ env.EXTRA_PYTEST }}" >> "$GITHUB_OUTPUT"
|
||||
integration_tests:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ needs.build-and-push.outputs.label }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
needs: build-and-push
|
||||
if: needs.build-and-push.outputs.runs_on != 'ubuntu-latest'
|
||||
runs-on:
|
||||
group: ${{ needs.build-and-push.outputs.runs_on }}
|
||||
if: needs.build-and-push.outputs.runs_on != 'ubuntu-latest'
|
||||
env:
|
||||
PYTEST_FLAGS: ${{ (startsWith(github.ref, 'refs/tags/') || github.ref == 'refs/heads/main' || inputs.release-tests == true) && '--release' || '--release' }}
|
||||
steps:
|
||||
@ -177,15 +190,16 @@ jobs:
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: "3.10"
|
||||
python-version: "3.11"
|
||||
- name: Install
|
||||
run: |
|
||||
make install-integration-tests
|
||||
- name: Run tests
|
||||
run: |
|
||||
export DOCKER_VOLUME=/mnt/cache
|
||||
export DOCKER_VOLUME=${{ needs.build-and-push.outputs.docker_volume }}
|
||||
export DOCKER_IMAGE=${{ needs.build-and-push.outputs.docker_image }}
|
||||
export DOCKER_DEVICES=${{ needs.build-and-push.outputs.docker_devices }}
|
||||
export EXTRA_PYTEST="${{ needs.build-and-push.outputs.extra_pytest }}"
|
||||
export HF_TOKEN=${{ secrets.HF_TOKEN }}
|
||||
echo $DOCKER_IMAGE
|
||||
pytest -s -vv integration-tests ${PYTEST_FLAGS}
|
||||
pytest -s -vv integration-tests ${PYTEST_FLAGS} ${EXTRA_PYTEST}
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Rust builder
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80 AS chef
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80.1 AS chef
|
||||
WORKDIR /usr/src
|
||||
|
||||
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
|
||||
@ -32,6 +32,7 @@ RUN cargo chef cook --profile release-opt --recipe-path recipe.json
|
||||
ARG GIT_SHA
|
||||
ARG DOCKER_LABEL
|
||||
|
||||
COPY Cargo.lock Cargo.lock
|
||||
COPY Cargo.toml Cargo.toml
|
||||
COPY rust-toolchain.toml rust-toolchain.toml
|
||||
COPY proto proto
|
||||
@ -39,7 +40,7 @@ COPY benchmark benchmark
|
||||
COPY router router
|
||||
COPY backends backends
|
||||
COPY launcher launcher
|
||||
RUN cargo build --profile release-opt
|
||||
RUN cargo build --profile release-opt --frozen
|
||||
|
||||
# Python builder
|
||||
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
|
||||
|
@ -1,5 +1,5 @@
|
||||
# Rust builder
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80 AS chef
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80.1 AS chef
|
||||
WORKDIR /usr/src
|
||||
|
||||
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
|
||||
@ -31,6 +31,7 @@ RUN cargo chef cook --profile release-opt --recipe-path recipe.json
|
||||
ARG GIT_SHA
|
||||
ARG DOCKER_LABEL
|
||||
|
||||
COPY Cargo.lock Cargo.lock
|
||||
COPY Cargo.toml Cargo.toml
|
||||
COPY rust-toolchain.toml rust-toolchain.toml
|
||||
COPY proto proto
|
||||
@ -38,7 +39,7 @@ COPY benchmark benchmark
|
||||
COPY router router
|
||||
COPY backends backends
|
||||
COPY launcher launcher
|
||||
RUN cargo build --profile release-opt
|
||||
RUN cargo build --profile release-opt --frozen
|
||||
|
||||
# Text Generation Inference base image for RoCm
|
||||
FROM rocm/dev-ubuntu-22.04:6.2 AS base
|
||||
|
@ -1,6 +1,6 @@
|
||||
ARG PLATFORM=xpu
|
||||
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80 AS chef
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.80.1 AS chef
|
||||
WORKDIR /usr/src
|
||||
|
||||
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
|
||||
@ -32,6 +32,7 @@ RUN cargo chef cook --profile release-opt --recipe-path recipe.json
|
||||
ARG GIT_SHA
|
||||
ARG DOCKER_LABEL
|
||||
|
||||
COPY Cargo.lock Cargo.lock
|
||||
COPY Cargo.toml Cargo.toml
|
||||
COPY rust-toolchain.toml rust-toolchain.toml
|
||||
COPY proto proto
|
||||
@ -39,7 +40,7 @@ COPY benchmark benchmark
|
||||
COPY router router
|
||||
COPY backends backends
|
||||
COPY launcher launcher
|
||||
RUN cargo build --profile release-opt
|
||||
RUN cargo build --profile release-opt --frozen
|
||||
|
||||
|
||||
# Text Generation Inference base image for Intel
|
||||
@ -52,7 +53,7 @@ ARG MAMBA_VERSION=23.1.0-1
|
||||
ARG PYTHON_VERSION='3.11.10'
|
||||
# Automatically set by buildx
|
||||
ARG TARGETPLATFORM
|
||||
ENV PATH /opt/conda/bin:$PATH
|
||||
ENV PATH=/opt/conda/bin:$PATH
|
||||
|
||||
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
|
||||
# Install mamba
|
||||
@ -111,6 +112,8 @@ ENV PATH=/opt/conda/bin:/opt/intel/oneapi/mpi/latest/opt/mpi/libfabric/bin:/opt/
|
||||
ENV CCL_ZE_IPC_EXCHANGE=sockets
|
||||
ENV CMAKE_PREFIX_PATH=/opt/intel/oneapi/mkl/latest/lib/cmake:/opt/intel/oneapi/compiler/latest
|
||||
ENV CPATH=/opt/intel/oneapi/mpi/latest/include:/opt/intel/oneapi/ccl/latest/include:/opt/intel/oneapi/mkl/latest/include
|
||||
ENV TORCH_LLM_ALLREDUCE=1
|
||||
ENV CCL_TOPO_FABRIC_VERTEX_CONNECTION_CHECK=0
|
||||
|
||||
# Install benchmarker
|
||||
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
|
||||
@ -176,15 +179,17 @@ RUN conda install -c conda-forge gperftools mkl
|
||||
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torch-2.5.0.dev20240815%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torchvision-0.20.0.dev20240815%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torchaudio-2.4.0.dev20240815%2Bcpu-cp311-cp311-linux_x86_64.whl
|
||||
|
||||
RUN pip install triton py-libnuma
|
||||
|
||||
WORKDIR /usr/src
|
||||
|
||||
RUN git clone https://github.com/intel/intel-extension-for-pytorch && cd intel-extension-for-pytorch && git checkout f86e93e4890dc2c989024d148d415c9aa8a1649f
|
||||
RUN git clone https://github.com/intel/torch-ccl.git && cd torch-ccl && git checkout v2.4.0+cpu+rc0
|
||||
RUN cd intel-extension-for-pytorch && git submodule sync && git submodule update --init --recursive && python setup.py install
|
||||
RUN cd torch-ccl && git submodule sync && git submodule update --init --recursive && pip install .
|
||||
|
||||
RUN cd intel-extension-for-pytorch && git submodule sync && git submodule update --init --recursive && python setup.py install
|
||||
|
||||
RUN cd torch-ccl && git submodule sync && git submodule update --init --recursive && pip install .
|
||||
|
||||
ENV LD_PRELOAD=/opt/conda/lib/libtcmalloc.so
|
||||
ENV CCL_ROOT=/opt/conda/lib/python3.11/site-packages/oneccl_bindings_for_pytorch
|
||||
|
@ -120,7 +120,7 @@ curl localhost:3000/v1/chat/completions \
|
||||
|
||||
**Note:** To use NVIDIA GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 12.2 or higher. For running the Docker container on a machine with no GPUs or CUDA support, it is enough to remove the `--gpus all` flag and add `--disable-custom-kernels`, please note CPU is not the intended platform for this project, so performance might be subpar.
|
||||
|
||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.2.0-rocm --model-id $model` instead of the command above.
|
||||
**Note:** TGI supports AMD Instinct MI210 and MI250 GPUs. Details can be found in the [Supported Hardware documentation](https://huggingface.co/docs/text-generation-inference/supported_models#supported-hardware). To use AMD GPUs, please use `docker run --device /dev/kfd --device /dev/dri --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1-rocm --model-id $model` instead of the command above.
|
||||
|
||||
To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli):
|
||||
```
|
||||
@ -150,7 +150,7 @@ model=meta-llama/Meta-Llama-3.1-8B-Instruct
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
token=<your cli READ token>
|
||||
|
||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0 --model-id $model
|
||||
docker run --gpus all --shm-size 1g -e HF_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model
|
||||
```
|
||||
|
||||
### A note on Shared Memory (shm)
|
||||
|
@ -27,3 +27,6 @@ asyncio_mode = "auto"
|
||||
[build-system]
|
||||
requires = ["poetry-core>=1.0.0"]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
@ -2114,12 +2114,18 @@
|
||||
"ToolType": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "object",
|
||||
"default": null,
|
||||
"nullable": true
|
||||
"type": "string",
|
||||
"description": "Means the model can pick between generating a message or calling one or more tools.",
|
||||
"enum": [
|
||||
"auto"
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "string"
|
||||
"type": "string",
|
||||
"description": "Means the model will not call any tool and instead generates a message.",
|
||||
"enum": [
|
||||
"none"
|
||||
]
|
||||
},
|
||||
{
|
||||
"type": "object",
|
||||
@ -2131,13 +2137,10 @@
|
||||
"$ref": "#/components/schemas/FunctionName"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "object",
|
||||
"default": null,
|
||||
"nullable": true
|
||||
}
|
||||
]
|
||||
],
|
||||
"description": "Controls which (if any) tool is called by the model.",
|
||||
"example": "auto"
|
||||
},
|
||||
"Url": {
|
||||
"type": "object",
|
||||
@ -2183,4 +2186,4 @@
|
||||
"description": "Hugging Face Text Generation Inference API"
|
||||
}
|
||||
]
|
||||
}
|
||||
}
|
@ -3,6 +3,8 @@
|
||||
title: Text Generation Inference
|
||||
- local: quicktour
|
||||
title: Quick Tour
|
||||
- local: supported_models
|
||||
title: Supported Models
|
||||
- local: installation_nvidia
|
||||
title: Using TGI with Nvidia GPUs
|
||||
- local: installation_amd
|
||||
@ -15,8 +17,7 @@
|
||||
title: Using TGI with Intel GPUs
|
||||
- local: installation
|
||||
title: Installation from source
|
||||
- local: supported_models
|
||||
title: Supported Models and Hardware
|
||||
|
||||
- local: architecture
|
||||
title: Internal Architecture
|
||||
- local: usage_statistics
|
||||
|
@ -19,6 +19,6 @@ docker run --gpus all \
|
||||
--shm-size 1g \
|
||||
-e HF_TOKEN=$token \
|
||||
-p 8080:80 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:2.0.4 \
|
||||
-v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 \
|
||||
--model-id $model
|
||||
```
|
||||
|
@ -19,7 +19,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
|
||||
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize bitsandbytes
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize bitsandbytes
|
||||
```
|
||||
|
||||
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
|
||||
@ -27,7 +27,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingf
|
||||
In TGI, you can use 4-bit quantization by adding `--quantize bitsandbytes-nf4` or `--quantize bitsandbytes-fp4` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize bitsandbytes-nf4
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize bitsandbytes-nf4
|
||||
```
|
||||
|
||||
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).
|
||||
@ -48,7 +48,7 @@ $$({\hat{W}_{l}}^{*} = argmin_{\hat{W_{l}}} ||W_{l}X-\hat{W}_{l}X||^{2}_{2})$$
|
||||
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize gptq
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:2.3.1 --model-id $model --quantize gptq
|
||||
```
|
||||
|
||||
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
|
||||
|
@ -17,8 +17,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||
|
||||
<Tip>
|
||||
|
||||
If you want to serve gated or private models, which provide
|
||||
controlled access to sensitive or proprietary content, refer to
|
||||
If you want to serve gated or private models, please refer to
|
||||
[this guide](https://huggingface.co/docs/text-generation-inference/en/basic_tutorials/gated_model_access)
|
||||
for detailed instructions.
|
||||
|
||||
@ -97,7 +96,7 @@ curl 127.0.0.1:8080/generate \
|
||||
To see all possible deploy flags and options, you can use the `--help` flag. It's possible to configure the number of shards, quantization, generation parameters, and more.
|
||||
|
||||
```bash
|
||||
docker run ghcr.io/huggingface/text-generation-inference:2.2.0 --help
|
||||
docker run ghcr.io/huggingface/text-generation-inference:2.3.1 --help
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
@ -1,9 +1,7 @@
|
||||
|
||||
# Supported Models and Hardware
|
||||
# Supported Models
|
||||
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
## Supported Models
|
||||
Text Generation Inference enables serving optimized models. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
||||
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
||||
@ -38,6 +36,7 @@ Text Generation Inference enables serving optimized models on specific hardware
|
||||
- [Mllama](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) (Multimodal)
|
||||
|
||||
|
||||
|
||||
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
|
||||
|
||||
```python
|
||||
|
@ -978,11 +978,11 @@
|
||||
"nixpkgs": "nixpkgs_6"
|
||||
},
|
||||
"locked": {
|
||||
"lastModified": 1728029332,
|
||||
"narHash": "sha256-j0RX3a67lvi2PC5w6J5DHTxM+l96J/OV5sAf34IUfUo=",
|
||||
"lastModified": 1728381423,
|
||||
"narHash": "sha256-gpHy1WtlA8ZTd8XmxsdCoDd4Z7DE7co37lH7P+nsADA=",
|
||||
"owner": "huggingface",
|
||||
"repo": "text-generation-inference-nix",
|
||||
"rev": "98049f853346ca780b81fee730715c90d33ac2b4",
|
||||
"rev": "93123736c97e9f7bfe825bfaf3d7de0fc9a21a1e",
|
||||
"type": "github"
|
||||
},
|
||||
"original": {
|
||||
|
@ -492,6 +492,7 @@ def launcher(event_loop):
|
||||
try:
|
||||
container = client.containers.get(container_name)
|
||||
container.stop()
|
||||
container.remove()
|
||||
container.wait()
|
||||
except NotFound:
|
||||
pass
|
||||
@ -514,13 +515,28 @@ def launcher(event_loop):
|
||||
volumes = [f"{DOCKER_VOLUME}:/data"]
|
||||
|
||||
if DOCKER_DEVICES:
|
||||
devices = DOCKER_DEVICES.split(",")
|
||||
if DOCKER_DEVICES.lower() == "none":
|
||||
devices = []
|
||||
else:
|
||||
devices = DOCKER_DEVICES.strip().split(",")
|
||||
visible = os.getenv("ROCR_VISIBLE_DEVICES")
|
||||
if visible:
|
||||
env["ROCR_VISIBLE_DEVICES"] = visible
|
||||
device_requests = []
|
||||
if not devices:
|
||||
devices = None
|
||||
elif devices == ["nvidia.com/gpu=all"]:
|
||||
devices = None
|
||||
device_requests = [
|
||||
docker.types.DeviceRequest(
|
||||
driver="cdi",
|
||||
# count=gpu_count,
|
||||
device_ids=[f"nvidia.com/gpu={i}"],
|
||||
)
|
||||
for i in range(gpu_count)
|
||||
]
|
||||
else:
|
||||
devices = []
|
||||
devices = None
|
||||
device_requests = [
|
||||
docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
|
||||
]
|
||||
@ -540,21 +556,26 @@ def launcher(event_loop):
|
||||
shm_size="1G",
|
||||
)
|
||||
|
||||
yield ContainerLauncherHandle(client, container.name, port)
|
||||
|
||||
if not use_flash_attention:
|
||||
del env["USE_FLASH_ATTENTION"]
|
||||
|
||||
try:
|
||||
container.stop()
|
||||
container.wait()
|
||||
except NotFound:
|
||||
pass
|
||||
yield ContainerLauncherHandle(client, container.name, port)
|
||||
|
||||
container_output = container.logs().decode("utf-8")
|
||||
print(container_output, file=sys.stderr)
|
||||
if not use_flash_attention:
|
||||
del env["USE_FLASH_ATTENTION"]
|
||||
|
||||
container.remove()
|
||||
try:
|
||||
container.stop()
|
||||
container.wait()
|
||||
except NotFound:
|
||||
pass
|
||||
|
||||
container_output = container.logs().decode("utf-8")
|
||||
print(container_output, file=sys.stderr)
|
||||
|
||||
finally:
|
||||
try:
|
||||
container.remove()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if DOCKER_IMAGE is not None:
|
||||
return docker_launcher
|
||||
|
@ -0,0 +1,104 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 1824,
|
||||
"logprob": -12.296875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.97216797,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -10.1796875,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.9658203,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.44384766,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.50878906,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.8876953,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.15124512,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.030288696,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.16687012,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.17858887,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": -0.8046875,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": -0.007205963,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5599,
|
||||
"logprob": -0.090026855,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.0030670166,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\n\nDeep learning is a subset of machine learning"
|
||||
}
|
@ -0,0 +1,99 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -13.921875,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -11.2265625,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -2.3886719,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -4.7109375,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.5229492,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 17504,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " Learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.5151367,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 13253,
|
||||
"logprob": -1.3359375,
|
||||
"special": false,
|
||||
"text": " Machine"
|
||||
},
|
||||
{
|
||||
"id": 17504,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " Learning"
|
||||
},
|
||||
{
|
||||
"id": 28725,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": ","
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "What is deep learning?\nDeep Learning is a subset of Machine Learning,"
|
||||
}
|
@ -0,0 +1,418 @@
|
||||
[
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 1824,
|
||||
"logprob": -12.296875,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.97216797,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -10.1796875,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.9658203,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.44384766,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.50878906,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.8876953,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.15136719,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.030273438,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.1665039,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.1776123,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": -0.8076172,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": -0.007183075,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5599,
|
||||
"logprob": -0.090148926,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.0030670166,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\n\nDeep learning is a subset of machine learning"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 1824,
|
||||
"logprob": -12.34375,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.96728516,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -10.1796875,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.97265625,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.44189453,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.51220703,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.87402344,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.15039062,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.030288696,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.1652832,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.17858887,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": -0.81103516,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": -0.007183075,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5599,
|
||||
"logprob": -0.08880615,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.0030612946,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\n\nDeep learning is a subset of machine learning"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 1824,
|
||||
"logprob": -12.34375,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.96728516,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -10.1796875,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.97265625,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.44189453,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.51220703,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.87402344,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.15039062,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.030288696,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.1652832,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.17858887,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": -0.81103516,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": -0.007183075,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5599,
|
||||
"logprob": -0.08880615,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.0030612946,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\n\nDeep learning is a subset of machine learning"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 1824,
|
||||
"logprob": -12.34375,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.96728516,
|
||||
"text": "is"
|
||||
},
|
||||
{
|
||||
"id": 3534,
|
||||
"logprob": -10.1796875,
|
||||
"text": "deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.97265625,
|
||||
"text": "learning"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.44189453,
|
||||
"text": "?"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.51220703,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.87402344,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 23229,
|
||||
"logprob": -0.15039062,
|
||||
"special": false,
|
||||
"text": "Deep"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.030288696,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -0.1652832,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.17858887,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 19804,
|
||||
"logprob": -0.81103516,
|
||||
"special": false,
|
||||
"text": " subset"
|
||||
},
|
||||
{
|
||||
"id": 302,
|
||||
"logprob": -0.007183075,
|
||||
"special": false,
|
||||
"text": " of"
|
||||
},
|
||||
{
|
||||
"id": 5599,
|
||||
"logprob": -0.08880615,
|
||||
"special": false,
|
||||
"text": " machine"
|
||||
},
|
||||
{
|
||||
"id": 5168,
|
||||
"logprob": -0.0030612946,
|
||||
"special": false,
|
||||
"text": " learning"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\n\nDeep learning is a subset of machine learning"
|
||||
}
|
||||
]
|
@ -1,38 +1,26 @@
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"finish_reason": "eos_token",
|
||||
"finish_reason": "stop",
|
||||
"index": 0,
|
||||
"logprobs": null,
|
||||
"message": {
|
||||
"content": null,
|
||||
"content": "I am an AI assistant",
|
||||
"name": null,
|
||||
"role": "assistant",
|
||||
"tool_calls": [
|
||||
{
|
||||
"function": {
|
||||
"arguments": {
|
||||
"error": "Cannot get current weather forecast from specified location and temperature unit. Please try again with different options."
|
||||
},
|
||||
"description": null,
|
||||
"name": "notify_error"
|
||||
},
|
||||
"id": 0,
|
||||
"type": "function"
|
||||
}
|
||||
]
|
||||
"tool_calls": null
|
||||
},
|
||||
"usage": null
|
||||
}
|
||||
],
|
||||
"created": 1712852597,
|
||||
"created": 1728497062,
|
||||
"id": "",
|
||||
"model": "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
|
||||
"object": "text_completion",
|
||||
"system_fingerprint": "1.4.5-native",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"usage": {
|
||||
"completion_tokens": 39,
|
||||
"prompt_tokens": 496,
|
||||
"total_tokens": 535
|
||||
"completion_tokens": 23,
|
||||
"prompt_tokens": 604,
|
||||
"total_tokens": 627
|
||||
}
|
||||
}
|
||||
|
@ -0,0 +1,20 @@
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"delta": {
|
||||
"content": " assistant",
|
||||
"role": "assistant",
|
||||
"tool_calls": null
|
||||
},
|
||||
"finish_reason": null,
|
||||
"index": 0,
|
||||
"logprobs": null
|
||||
}
|
||||
],
|
||||
"created": 1728497531,
|
||||
"id": "",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"usage": null
|
||||
}
|
@ -0,0 +1,20 @@
|
||||
{
|
||||
"choices": [
|
||||
{
|
||||
"delta": {
|
||||
"content": " fans",
|
||||
"role": "assistant",
|
||||
"tool_calls": null
|
||||
},
|
||||
"finish_reason": null,
|
||||
"index": 0,
|
||||
"logprobs": null
|
||||
}
|
||||
],
|
||||
"created": 1728497461,
|
||||
"id": "",
|
||||
"model": "meta-llama/Llama-3.1-8B-Instruct",
|
||||
"object": "chat.completion.chunk",
|
||||
"system_fingerprint": "2.3.2-dev0-native",
|
||||
"usage": null
|
||||
}
|
@ -16,7 +16,7 @@ async def flash_gemma(flash_gemma_handle):
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_gemma(flash_gemma, response_snapshot):
|
||||
async def test_flash_gemma_simple(flash_gemma, response_snapshot):
|
||||
response = await flash_gemma.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
@ -15,7 +15,7 @@ async def flash_llama(flash_llama_handle):
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama(flash_llama, response_snapshot):
|
||||
async def test_flash_llama_simple(flash_llama, response_snapshot):
|
||||
response = await flash_llama.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
73
integration-tests/models/test_flash_mixtral_awq.py
Normal file
73
integration-tests/models/test_flash_mixtral_awq.py
Normal file
@ -0,0 +1,73 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_mixtral_awq_handle(launcher):
|
||||
with launcher("casperhansen/mixtral-instruct-awq", num_shard=2) as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def flash_mixtral_awq(flash_mixtral_awq_handle):
|
||||
await flash_mixtral_awq_handle.health(300)
|
||||
return flash_mixtral_awq_handle.client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_mixtral_awq(flash_mixtral_awq, response_snapshot):
|
||||
response = await flash_mixtral_awq.generate(
|
||||
"What is deep learning?", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
||||
assert response.details.generated_tokens == 10
|
||||
assert (
|
||||
response.generated_text == "\n\nDeep learning is a subset of machine learning"
|
||||
)
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_mixtral_awq_all_params(flash_mixtral_awq, response_snapshot):
|
||||
response = await flash_mixtral_awq.generate(
|
||||
"What is deep learning?",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
stop_sequences=["test"],
|
||||
temperature=0.5,
|
||||
top_p=0.9,
|
||||
top_k=10,
|
||||
truncate=5,
|
||||
typical_p=0.9,
|
||||
watermark=True,
|
||||
decoder_input_details=True,
|
||||
seed=0,
|
||||
)
|
||||
|
||||
assert response.details.generated_tokens == 10
|
||||
assert (
|
||||
response.generated_text
|
||||
== "What is deep learning?\nDeep Learning is a subset of Machine Learning,"
|
||||
)
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_flash_mixtral_awq_load(
|
||||
flash_mixtral_awq, generate_load, response_snapshot
|
||||
):
|
||||
responses = await generate_load(
|
||||
flash_mixtral_awq, "What is deep learning?", max_new_tokens=10, n=4
|
||||
)
|
||||
|
||||
assert len(responses) == 4
|
||||
assert responses[0].details.generated_tokens == 10
|
||||
assert (
|
||||
responses[0].generated_text
|
||||
== "\n\nDeep learning is a subset of machine learning"
|
||||
)
|
||||
assert all(
|
||||
[r.generated_text == responses[0].generated_text for r in responses]
|
||||
), f"{[r.generated_text for r in responses]}"
|
||||
|
||||
assert responses == response_snapshot
|
@ -207,11 +207,20 @@ async def test_flash_llama_grammar_tools_stream(
|
||||
)
|
||||
|
||||
count = 0
|
||||
tool_calls_generated = ""
|
||||
last_response = None
|
||||
async for response in responses:
|
||||
count += 1
|
||||
tool_calls_generated += response.choices[0].delta.tool_calls.function.arguments
|
||||
last_response = response
|
||||
assert response.choices[0].delta.content is None
|
||||
|
||||
assert (
|
||||
tool_calls_generated
|
||||
== '{"function": {"_name": "get_current_weather", "format": "celsius", "location": "Paris, France"}}<|eot_id|>'
|
||||
)
|
||||
assert count == 28
|
||||
assert response == response_snapshot
|
||||
assert last_response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@ -227,18 +236,94 @@ async def test_flash_llama_grammar_tools_insufficient_information(
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "STRICTLY ONLY RESPOND IF THE USER ASKS A WEATHER RELATED QUESTION",
|
||||
"content": "You're a helpful assistant! Answer the users question best you can.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Who are you?",
|
||||
},
|
||||
],
|
||||
stream=False,
|
||||
)
|
||||
|
||||
assert responses.choices[0].message.tool_calls is None
|
||||
assert responses.choices[0].message.content == "I am an AI assistant"
|
||||
|
||||
assert responses == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_insufficient_information_stream(
|
||||
flash_llama_grammar_tools, response_snapshot
|
||||
):
|
||||
responses = await flash_llama_grammar_tools.chat(
|
||||
max_tokens=100,
|
||||
seed=24,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You're a helpful assistant! Answer the users question best you can.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Who are you?",
|
||||
},
|
||||
],
|
||||
stream=True,
|
||||
)
|
||||
|
||||
count = 0
|
||||
content_generated = ""
|
||||
last_response = None
|
||||
async for response in responses:
|
||||
count += 1
|
||||
content_generated += response.choices[0].delta.content
|
||||
last_response = response
|
||||
assert response.choices[0].delta.tool_calls is None
|
||||
|
||||
assert count == 5
|
||||
assert content_generated == "I am an AI assistant"
|
||||
assert last_response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_grammar_tools_sea_creatures_stream(
|
||||
flash_llama_grammar_tools, response_snapshot
|
||||
):
|
||||
responses = await flash_llama_grammar_tools.chat(
|
||||
max_tokens=100,
|
||||
seed=24,
|
||||
tools=tools,
|
||||
tool_choice="auto",
|
||||
messages=[
|
||||
{
|
||||
"role": "system",
|
||||
"content": "You're a helpful assistant! Answer the users question best you can. If the question is not answerable by the tools, just generate a response.",
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Tell me a story about 3 sea creatures",
|
||||
},
|
||||
],
|
||||
stream=False,
|
||||
stream=True,
|
||||
)
|
||||
|
||||
assert responses.choices[0].message.content is None
|
||||
count = 0
|
||||
content_generated = ""
|
||||
last_response = None
|
||||
async for response in responses:
|
||||
count += 1
|
||||
content_generated += response.choices[0].delta.content
|
||||
last_response = response
|
||||
assert response.choices[0].delta.tool_calls is None
|
||||
|
||||
assert count == 62
|
||||
assert (
|
||||
responses.choices[0].message.tool_calls[0]["function"]["name"] == "notify_error"
|
||||
content_generated
|
||||
== "Once upon a time, in the ocean, there lived three sea creatures. There was a wise old octopus named Bob, a mischievous seagull named Sam, and a gentle sea turtle named Luna. They all lived together in a beautiful coral reef, surrounded by colorful fish and swaying sea fans"
|
||||
)
|
||||
assert responses == response_snapshot
|
||||
assert last_response == response_snapshot
|
||||
|
@ -13,3 +13,6 @@ pytest = "^7.4.0"
|
||||
pytest-asyncio = "^0.21.1"
|
||||
docker = "^7"
|
||||
numpy = "^1.20"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
@ -944,17 +944,19 @@ fn shard_manager(
|
||||
}
|
||||
});
|
||||
// We read stdin in another thread as it seems that lines() can block in some cases
|
||||
thread::spawn(move || {
|
||||
let mut stdin = io::stdin(); // We get `Stdin` here.
|
||||
loop {
|
||||
let mut buffer = vec![0; 4096];
|
||||
if let Ok(n) = stdin.read(&mut buffer) {
|
||||
if n > 0 {
|
||||
let _ = pstdin.write_all(&buffer[..n]);
|
||||
if LevelFilter::current() >= tracing::Level::DEBUG {
|
||||
thread::spawn(move || {
|
||||
let mut stdin = io::stdin(); // We get `Stdin` here.
|
||||
loop {
|
||||
let mut buffer = vec![0; 4096];
|
||||
if let Ok(n) = stdin.read(&mut buffer) {
|
||||
if n > 0 {
|
||||
let _ = pstdin.write_all(&buffer[..n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
let mut ready = false;
|
||||
let start_time = Instant::now();
|
||||
|
@ -1,5 +1,7 @@
|
||||
{
|
||||
mkShell,
|
||||
black,
|
||||
isort,
|
||||
openssl,
|
||||
pkg-config,
|
||||
protobuf,
|
||||
@ -14,6 +16,8 @@
|
||||
mkShell {
|
||||
buildInputs =
|
||||
[
|
||||
black
|
||||
isort
|
||||
openssl.dev
|
||||
pkg-config
|
||||
(rust-bin.stable.latest.default.override {
|
||||
|
@ -355,6 +355,8 @@ pub enum InferError {
|
||||
MissingTemplateVariable(String),
|
||||
#[error("Tool error: {0}")]
|
||||
ToolError(String),
|
||||
#[error("Stream event serialization error")]
|
||||
StreamSerializationError(String),
|
||||
}
|
||||
|
||||
impl InferError {
|
||||
@ -368,6 +370,7 @@ impl InferError {
|
||||
InferError::TemplateError(_) => "template_error",
|
||||
InferError::MissingTemplateVariable(_) => "missing_template_variable",
|
||||
InferError::ToolError(_) => "tool_error",
|
||||
InferError::StreamSerializationError(_) => "stream_serialization_error",
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -31,32 +31,29 @@ impl ToolGrammar {
|
||||
|
||||
let mut tools = tools.clone();
|
||||
|
||||
// add the notify_error function to the tools
|
||||
let notify_error = Tool {
|
||||
// add the no_tool function to the tools
|
||||
let no_tool = Tool {
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
name: "notify_error".to_string(),
|
||||
description: Some("Notify an error or issue".to_string()),
|
||||
name: "no_tool".to_string(),
|
||||
description: Some("Open ened response with no specific tool selected".to_string()),
|
||||
arguments: json!({
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"error": {
|
||||
"content": {
|
||||
"type": "string",
|
||||
"description": "The error or issue to notify"
|
||||
"description": "The response content",
|
||||
}
|
||||
},
|
||||
"required": ["error"]
|
||||
"required": ["content"]
|
||||
}),
|
||||
},
|
||||
};
|
||||
tools.push(notify_error);
|
||||
tools.push(no_tool);
|
||||
|
||||
// if tools are provided and no tool_choice we default to the OneOf
|
||||
let tools_to_use = match tool_choice {
|
||||
ToolType::FunctionName(name) => {
|
||||
vec![Self::find_tool_by_name(&tools, &name)?]
|
||||
}
|
||||
ToolType::Function { function } => {
|
||||
ToolType::Function(function) => {
|
||||
vec![Self::find_tool_by_name(&tools, &function.name)?]
|
||||
}
|
||||
ToolType::OneOf => tools.clone(),
|
||||
|
@ -957,12 +957,18 @@ pub fn default_tool_prompt() -> String {
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
|
||||
#[serde(untagged)]
|
||||
#[schema(example = "auto")]
|
||||
/// Controls which (if any) tool is called by the model.
|
||||
pub enum ToolType {
|
||||
/// Means the model can pick between generating a message or calling one or more tools.
|
||||
#[schema(rename = "auto")]
|
||||
OneOf,
|
||||
FunctionName(String),
|
||||
Function { function: FunctionName },
|
||||
/// Means the model will not call any tool and instead generates a message.
|
||||
#[schema(rename = "none")]
|
||||
NoTool,
|
||||
/// Forces the model to call a specific tool.
|
||||
#[schema(rename = "function")]
|
||||
Function(FunctionName),
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
|
||||
@ -977,6 +983,7 @@ pub struct ToolChoice(pub Option<ToolType>);
|
||||
#[derive(Deserialize)]
|
||||
#[serde(untagged)]
|
||||
enum ToolTypeDeserializer {
|
||||
Null,
|
||||
String(String),
|
||||
ToolType(ToolType),
|
||||
}
|
||||
@ -984,10 +991,11 @@ enum ToolTypeDeserializer {
|
||||
impl From<ToolTypeDeserializer> for ToolChoice {
|
||||
fn from(value: ToolTypeDeserializer) -> Self {
|
||||
match value {
|
||||
ToolTypeDeserializer::Null => ToolChoice(None),
|
||||
ToolTypeDeserializer::String(s) => match s.as_str() {
|
||||
"none" => ToolChoice(Some(ToolType::NoTool)),
|
||||
"auto" => ToolChoice(Some(ToolType::OneOf)),
|
||||
_ => ToolChoice(Some(ToolType::FunctionName(s))),
|
||||
_ => ToolChoice(Some(ToolType::Function(FunctionName { name: s }))),
|
||||
},
|
||||
ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
|
||||
}
|
||||
|
@ -42,6 +42,7 @@ use hf_hub::{Cache, Repo, RepoType};
|
||||
use http::header::AUTHORIZATION;
|
||||
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
|
||||
use pyo3::types::IntoPyDict;
|
||||
use regex::Regex;
|
||||
use serde_json::Value;
|
||||
use std::convert::Infallible;
|
||||
use std::fs::File;
|
||||
@ -452,12 +453,20 @@ async fn generate_stream(
|
||||
Sse<impl Stream<Item = Result<Event, Infallible>>>,
|
||||
) {
|
||||
let span = tracing::Span::current();
|
||||
let on_message_callback = |stream_token: StreamResponse| {
|
||||
let event = Event::default();
|
||||
event.json_data(stream_token).unwrap()
|
||||
};
|
||||
let (headers, response_stream) =
|
||||
generate_stream_internal(infer, compute_type, Json(req), on_message_callback, span).await;
|
||||
generate_stream_internal(infer, compute_type, Json(req), span).await;
|
||||
|
||||
let response_stream = async_stream::stream! {
|
||||
let mut response_stream = Box::pin(response_stream);
|
||||
while let Some(raw_event) = response_stream.next().await {
|
||||
yield Ok(raw_event.map_or_else(Event::from, |token| {
|
||||
Event::default()
|
||||
.json_data(token)
|
||||
.unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into())
|
||||
}));
|
||||
}
|
||||
};
|
||||
|
||||
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
||||
(headers, sse)
|
||||
}
|
||||
@ -466,9 +475,11 @@ async fn generate_stream_internal(
|
||||
infer: Infer,
|
||||
ComputeType(compute_type): ComputeType,
|
||||
Json(req): Json<GenerateRequest>,
|
||||
on_message_callback: impl Fn(StreamResponse) -> Event,
|
||||
span: tracing::Span,
|
||||
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
|
||||
) -> (
|
||||
HeaderMap,
|
||||
impl Stream<Item = Result<StreamResponse, InferError>>,
|
||||
) {
|
||||
let start_time = Instant::now();
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
|
||||
@ -500,12 +511,12 @@ async fn generate_stream_internal(
|
||||
let err = InferError::from(ValidationError::BestOfStream);
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
yield Err(err);
|
||||
} else if req.parameters.decoder_input_details {
|
||||
let err = InferError::from(ValidationError::PrefillDetailsStream);
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
yield Err(err);
|
||||
} else {
|
||||
match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
|
||||
// Keep permit as long as generate_stream lives
|
||||
@ -535,8 +546,7 @@ async fn generate_stream_internal(
|
||||
generated_text: None,
|
||||
details: None,
|
||||
};
|
||||
let event = on_message_callback(stream_token);
|
||||
yield Ok(event);
|
||||
yield Ok(stream_token);
|
||||
}
|
||||
// Yield event for last token and compute timings
|
||||
InferStreamResponse::End {
|
||||
@ -600,9 +610,7 @@ async fn generate_stream_internal(
|
||||
details
|
||||
};
|
||||
|
||||
|
||||
let event = on_message_callback(stream_token);
|
||||
yield Ok(event);
|
||||
yield Ok(stream_token);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -610,7 +618,7 @@ async fn generate_stream_internal(
|
||||
// yield error
|
||||
Err(err) => {
|
||||
error = true;
|
||||
yield Ok(Event::from(err));
|
||||
yield Err(err);
|
||||
break;
|
||||
}
|
||||
}
|
||||
@ -619,7 +627,7 @@ async fn generate_stream_internal(
|
||||
// yield error
|
||||
Err(err) => {
|
||||
error = true;
|
||||
yield Ok(Event::from(err));
|
||||
yield Err(err);
|
||||
}
|
||||
}
|
||||
// Check if generation reached the end
|
||||
@ -628,7 +636,7 @@ async fn generate_stream_internal(
|
||||
let err = InferError::IncompleteGenerationStream;
|
||||
metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
yield Err(err);
|
||||
}
|
||||
}
|
||||
};
|
||||
@ -771,75 +779,85 @@ async fn completions(
|
||||
|
||||
// Create a future for each generate_stream_internal call.
|
||||
let generate_future = async move {
|
||||
let on_message_callback = move |stream_token: StreamResponse| {
|
||||
let event = Event::default();
|
||||
|
||||
let current_time = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
|
||||
let message = match stream_token.details {
|
||||
Some(details) => {
|
||||
let completion_tokens = details.generated_tokens;
|
||||
let prompt_tokens = details.input_length;
|
||||
let total_tokens = prompt_tokens + completion_tokens;
|
||||
|
||||
Completion::Final(CompletionFinal {
|
||||
id: String::new(),
|
||||
created: current_time,
|
||||
model: model_id.clone(),
|
||||
system_fingerprint: system_fingerprint.clone(),
|
||||
choices: vec![CompletionComplete {
|
||||
finish_reason: details.finish_reason.to_string(),
|
||||
index: index as u32,
|
||||
logprobs: None,
|
||||
text: stream_token.token.text,
|
||||
}],
|
||||
usage: Usage {
|
||||
prompt_tokens,
|
||||
completion_tokens,
|
||||
total_tokens,
|
||||
},
|
||||
})
|
||||
}
|
||||
None => Completion::Chunk(Chunk {
|
||||
id: String::new(),
|
||||
created: current_time,
|
||||
choices: vec![CompletionComplete {
|
||||
finish_reason: String::new(),
|
||||
index: index as u32,
|
||||
logprobs: None,
|
||||
text: stream_token.token.text,
|
||||
}],
|
||||
model: model_id.clone(),
|
||||
system_fingerprint: system_fingerprint.clone(),
|
||||
}),
|
||||
};
|
||||
|
||||
event
|
||||
.json_data(message)
|
||||
.unwrap_or_else(|_e| Event::default())
|
||||
};
|
||||
|
||||
let (header_tx, header_rx) = oneshot::channel();
|
||||
let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();
|
||||
|
||||
tokio::spawn(async move {
|
||||
let (header_map, sse) = generate_stream_internal(
|
||||
let (headers, response_stream) = generate_stream_internal(
|
||||
infer_clone.clone(),
|
||||
compute_type_clone.clone(),
|
||||
Json(generate_request),
|
||||
on_message_callback,
|
||||
span_clone.clone(),
|
||||
)
|
||||
.await;
|
||||
|
||||
let response_stream = async_stream::stream! {
|
||||
let mut response_stream = Box::pin(response_stream);
|
||||
|
||||
while let Some(stream_token) = response_stream.next().await {
|
||||
match stream_token {
|
||||
Ok(stream_token) => {
|
||||
let event = Event::default();
|
||||
|
||||
let current_time = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
|
||||
let message = match stream_token.details {
|
||||
Some(details) => {
|
||||
let completion_tokens = details.generated_tokens;
|
||||
let prompt_tokens = details.input_length;
|
||||
let total_tokens = prompt_tokens + completion_tokens;
|
||||
|
||||
Completion::Final(CompletionFinal {
|
||||
id: String::new(),
|
||||
created: current_time,
|
||||
model: model_id.clone(),
|
||||
system_fingerprint: system_fingerprint.clone(),
|
||||
choices: vec![CompletionComplete {
|
||||
finish_reason: details.finish_reason.to_string(),
|
||||
index: index as u32,
|
||||
logprobs: None,
|
||||
text: stream_token.token.text,
|
||||
}],
|
||||
usage: Usage {
|
||||
prompt_tokens,
|
||||
completion_tokens,
|
||||
total_tokens,
|
||||
},
|
||||
})
|
||||
}
|
||||
None => Completion::Chunk(Chunk {
|
||||
id: String::new(),
|
||||
created: current_time,
|
||||
choices: vec![CompletionComplete {
|
||||
finish_reason: String::new(),
|
||||
index: index as u32,
|
||||
logprobs: None,
|
||||
text: stream_token.token.text,
|
||||
}],
|
||||
model: model_id.clone(),
|
||||
system_fingerprint: system_fingerprint.clone(),
|
||||
}),
|
||||
};
|
||||
|
||||
let event = event
|
||||
.json_data(message)
|
||||
.unwrap_or_else(|_e| Event::default());
|
||||
|
||||
yield Ok(event);
|
||||
}
|
||||
Err(err) => yield Ok(Event::from(err)),
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
// send and dont wait for response
|
||||
let _ = header_tx.send(header_map);
|
||||
let _ = header_tx.send(headers);
|
||||
|
||||
// pin an emit messages to the sse_tx
|
||||
let mut sse = Box::pin(sse);
|
||||
let mut sse = Box::pin(response_stream);
|
||||
while let Some(event) = sse.next().await {
|
||||
if sse_tx.send(event).is_err() {
|
||||
tracing::error!("Failed to send event. Receiver dropped.");
|
||||
@ -1072,6 +1090,84 @@ async fn completions(
|
||||
}
|
||||
}
|
||||
|
||||
enum StreamState {
|
||||
Buffering,
|
||||
BufferTrailing,
|
||||
Content { skip_close_quote: bool },
|
||||
}
|
||||
|
||||
/// Convert a StreamResponse into an Event to be sent over SSE
|
||||
fn create_event_from_stream_token(
|
||||
stream_token: &StreamResponse,
|
||||
logprobs: bool,
|
||||
stream_options: Option<StreamOptions>,
|
||||
inner_using_tools: bool,
|
||||
system_fingerprint: String,
|
||||
model_id: String,
|
||||
) -> Event {
|
||||
let event = Event::default();
|
||||
let current_time = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
|
||||
let logprobs = logprobs.then(|| {
|
||||
ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens.clone()))
|
||||
});
|
||||
|
||||
// replace the content with the tool calls if grammar is present
|
||||
let (content, tool_calls) = if inner_using_tools {
|
||||
(None, Some(vec![stream_token.token.text.clone()]))
|
||||
} else {
|
||||
let content = if !stream_token.token.special {
|
||||
Some(stream_token.token.text.clone())
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
(content, None)
|
||||
};
|
||||
|
||||
let (usage, finish_reason) = match &stream_token.details {
|
||||
Some(details) => {
|
||||
let usage = if stream_options
|
||||
.as_ref()
|
||||
.map(|s| s.include_usage)
|
||||
.unwrap_or(false)
|
||||
{
|
||||
let completion_tokens = details.generated_tokens;
|
||||
let prompt_tokens = details.input_length;
|
||||
let total_tokens = prompt_tokens + completion_tokens;
|
||||
Some(Usage {
|
||||
completion_tokens,
|
||||
prompt_tokens,
|
||||
total_tokens,
|
||||
})
|
||||
} else {
|
||||
None
|
||||
};
|
||||
(usage, Some(details.finish_reason.format(true)))
|
||||
}
|
||||
None => (None, None),
|
||||
};
|
||||
|
||||
let chat_complete = CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
|
||||
model_id.clone(),
|
||||
system_fingerprint.clone(),
|
||||
content,
|
||||
tool_calls,
|
||||
current_time,
|
||||
logprobs,
|
||||
finish_reason,
|
||||
usage,
|
||||
));
|
||||
|
||||
event.json_data(chat_complete).unwrap_or_else(|e| {
|
||||
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
|
||||
Event::default()
|
||||
})
|
||||
}
|
||||
|
||||
/// Generate tokens
|
||||
#[utoipa::path(
|
||||
post,
|
||||
@ -1128,88 +1224,135 @@ async fn chat_completions(
|
||||
// static values that will be returned in all cases
|
||||
let model_id = info.model_id.clone();
|
||||
let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
|
||||
|
||||
// switch on stream
|
||||
if stream {
|
||||
// pass this callback to the stream generation and build the required event structure
|
||||
let on_message_callback = move |stream_token: StreamResponse| {
|
||||
let event = Event::default();
|
||||
let (headers, response_stream) =
|
||||
generate_stream_internal(infer, compute_type, Json(generate_request), span).await;
|
||||
|
||||
let current_time = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
|
||||
let logprobs = logprobs.then(|| {
|
||||
ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens))
|
||||
});
|
||||
|
||||
// replace the content with the tool calls if grammar is present
|
||||
let (content, tool_calls) = if using_tools {
|
||||
(None, Some(vec![stream_token.token.text]))
|
||||
} else {
|
||||
let content = if !stream_token.token.special {
|
||||
Some(stream_token.token.text)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
(content, None)
|
||||
};
|
||||
|
||||
let (usage, finish_reason) = match stream_token.details {
|
||||
Some(details) => {
|
||||
let usage = if stream_options
|
||||
.as_ref()
|
||||
.map(|s| s.include_usage)
|
||||
.unwrap_or(false)
|
||||
{
|
||||
let completion_tokens = details.generated_tokens;
|
||||
let prompt_tokens = details.input_length;
|
||||
let total_tokens = prompt_tokens + completion_tokens;
|
||||
Some(Usage {
|
||||
completion_tokens,
|
||||
prompt_tokens,
|
||||
total_tokens,
|
||||
})
|
||||
} else {
|
||||
None
|
||||
};
|
||||
(usage, Some(details.finish_reason.format(true)))
|
||||
}
|
||||
None => (None, None),
|
||||
};
|
||||
event
|
||||
.json_data(CompletionType::ChatCompletionChunk(
|
||||
ChatCompletionChunk::new(
|
||||
model_id.clone(),
|
||||
system_fingerprint.clone(),
|
||||
content,
|
||||
tool_calls,
|
||||
current_time,
|
||||
logprobs,
|
||||
finish_reason,
|
||||
usage,
|
||||
),
|
||||
// regex to match any function name
|
||||
let function_regex = match Regex::new(r#"\{"function":\{"_name":"([^"]+)""#) {
|
||||
Ok(regex) => regex,
|
||||
Err(e) => {
|
||||
return Err((
|
||||
StatusCode::INTERNAL_SERVER_ERROR,
|
||||
Json(ErrorResponse {
|
||||
error: format!("Failed to compile regex: {}", e),
|
||||
error_type: "regex".to_string(),
|
||||
}),
|
||||
))
|
||||
.unwrap_or_else(|e| {
|
||||
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
|
||||
Event::default()
|
||||
})
|
||||
}
|
||||
};
|
||||
|
||||
let (headers, response_stream) = generate_stream_internal(
|
||||
infer,
|
||||
compute_type,
|
||||
Json(generate_request),
|
||||
on_message_callback,
|
||||
span,
|
||||
)
|
||||
.await;
|
||||
let response_stream = async_stream::stream! {
|
||||
let mut response_stream = Box::pin(response_stream);
|
||||
let mut buffer = Vec::new();
|
||||
let mut json_buffer = String::new();
|
||||
let mut state = if using_tools {
|
||||
StreamState::Buffering
|
||||
} else {
|
||||
StreamState::Content {
|
||||
skip_close_quote: false,
|
||||
}
|
||||
};
|
||||
let mut response_as_tool = using_tools;
|
||||
while let Some(result) = response_stream.next().await {
|
||||
if let Ok(stream_token) = result {
|
||||
let token_text = &stream_token.token.text.clone();
|
||||
match state {
|
||||
StreamState::Buffering => {
|
||||
json_buffer.push_str(&token_text.replace(" ", ""));
|
||||
buffer.push(stream_token);
|
||||
if let Some(captures) = function_regex.captures(&json_buffer) {
|
||||
let function_name = captures[1].to_string();
|
||||
if function_name == "no_tool" {
|
||||
state = StreamState::BufferTrailing;
|
||||
response_as_tool = false;
|
||||
buffer.clear();
|
||||
json_buffer.clear();
|
||||
} else {
|
||||
state = StreamState::Content {
|
||||
skip_close_quote: false,
|
||||
};
|
||||
// send all the buffered messages
|
||||
for stream_token in &buffer {
|
||||
let event = create_event_from_stream_token(
|
||||
stream_token,
|
||||
logprobs,
|
||||
stream_options.clone(),
|
||||
response_as_tool,
|
||||
system_fingerprint.clone(),
|
||||
model_id.clone(),
|
||||
);
|
||||
yield Ok::<Event, Infallible>(event);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// if we skipped sending the buffer we need to avoid sending the following json key and quotes
|
||||
StreamState::BufferTrailing => {
|
||||
let infix_text = "\"content\":\"";
|
||||
json_buffer.push_str(&token_text.replace(" ", ""));
|
||||
// keep capturing until we find the infix text
|
||||
match json_buffer.find(infix_text) {
|
||||
Some(content_key_index) => {
|
||||
json_buffer =
|
||||
json_buffer[content_key_index + infix_text.len()..].to_string();
|
||||
}
|
||||
None => {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
// if there is leftover text after removing the infix text, we need to send it
|
||||
if !json_buffer.is_empty() {
|
||||
let event = Event::default();
|
||||
let current_time = std::time::SystemTime::now()
|
||||
.duration_since(std::time::UNIX_EPOCH)
|
||||
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
|
||||
.as_secs();
|
||||
let chat_complete =
|
||||
CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
|
||||
model_id.clone(),
|
||||
system_fingerprint.clone(),
|
||||
Some(json_buffer.clone()),
|
||||
None,
|
||||
current_time,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
));
|
||||
yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
|
||||
InferError::StreamSerializationError(e.to_string()).into()
|
||||
}));
|
||||
}
|
||||
// cleanup the buffers
|
||||
buffer.clear();
|
||||
json_buffer.clear();
|
||||
state = StreamState::Content {
|
||||
skip_close_quote: true,
|
||||
};
|
||||
}
|
||||
StreamState::Content { skip_close_quote } => {
|
||||
if skip_close_quote && token_text.contains('"') {
|
||||
break;
|
||||
}
|
||||
|
||||
let response_stream = response_stream.chain(futures::stream::once(async {
|
||||
Ok(Event::default().data("[DONE]"))
|
||||
}));
|
||||
// send the content
|
||||
let event = create_event_from_stream_token(
|
||||
&stream_token,
|
||||
logprobs,
|
||||
stream_options.clone(),
|
||||
response_as_tool,
|
||||
system_fingerprint.clone(),
|
||||
model_id.clone(),
|
||||
);
|
||||
|
||||
yield Ok::<Event, Infallible>(event);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
|
||||
};
|
||||
|
||||
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
||||
Ok((headers, sse).into_response())
|
||||
@ -1246,17 +1389,33 @@ async fn chat_completions(
|
||||
if let Value::Object(ref mut props) = arguments {
|
||||
props.remove("_name");
|
||||
}
|
||||
|
||||
let tool_calls = vec![ToolCall {
|
||||
id: "0".to_string(),
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
description: None,
|
||||
name,
|
||||
arguments,
|
||||
},
|
||||
}];
|
||||
(Some(tool_calls), None)
|
||||
match name.as_str() {
|
||||
"no_tool" => {
|
||||
// parse the content message
|
||||
let content_message = arguments
|
||||
.get("content")
|
||||
.and_then(Value::as_str)
|
||||
.ok_or_else(|| {
|
||||
InferError::ToolError(
|
||||
"No `content` found in generated text".to_string(),
|
||||
)
|
||||
})?
|
||||
.to_string();
|
||||
(None, Some(content_message))
|
||||
}
|
||||
_ => {
|
||||
let tool_calls = vec![ToolCall {
|
||||
id: "0".to_string(),
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
description: None,
|
||||
name,
|
||||
arguments,
|
||||
},
|
||||
}];
|
||||
(Some(tool_calls), None)
|
||||
}
|
||||
}
|
||||
} else {
|
||||
(None, Some(generation.generated_text))
|
||||
};
|
||||
@ -2323,6 +2482,7 @@ impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
|
||||
InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
|
||||
InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
|
||||
InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
|
||||
InferError::StreamSerializationError(_) => StatusCode::INTERNAL_SERVER_ERROR,
|
||||
};
|
||||
|
||||
(
|
||||
@ -2500,8 +2660,8 @@ mod tests {
|
||||
);
|
||||
|
||||
assert!(result.is_ok());
|
||||
let (inputs, _grammar, using_tools) = result.unwrap();
|
||||
let (inputs, _grammar, using_tools) = result.expect("Failed to prepare chat input");
|
||||
assert_eq!(using_tools, true);
|
||||
assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"error\":{\"description\":\"The error or issue to notify\",\"type\":\"string\"}},\"required\":[\"error\"],\"type\":\"object\"}, \"description\": \"Notify an error or issue\", \"name\": \"notify_error\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
|
||||
assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"content\":{\"description\":\"The response content\",\"type\":\"string\"}},\"required\":[\"content\"],\"type\":\"object\"}, \"description\": \"Open ened response with no specific tool selected\", \"name\": \"no_tool\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
|
||||
}
|
||||
}
|
||||
|
@ -1,5 +1,5 @@
|
||||
[toolchain]
|
||||
# Released on: June 13, 2024
|
||||
# https://releases.rs/docs/1.79.0/
|
||||
channel = "1.80.0"
|
||||
channel = "1.80.1"
|
||||
components = ["rustfmt", "clippy"]
|
||||
|
29
server/poetry.lock
generated
29
server/poetry.lock
generated
@ -1269,12 +1269,12 @@ files = [
|
||||
|
||||
[[package]]
|
||||
name = "moe-kernels"
|
||||
version = "0.4.0"
|
||||
version = "0.6.0"
|
||||
description = "MoE kernels"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", hash = "sha256:3fc0475bb3b9c09bbf08f6f6e9767d10eaba55b558f67a605fe70ae0cbb5e6a4"},
|
||||
{file = "moe_kernels-0.6.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", hash = "sha256:f28fd2a56c3ac7bfe74bc44cc7c8c0791a2644ad689b084ea4ed6decb7f41c25"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1284,16 +1284,16 @@ triton = "*"
|
||||
|
||||
[package.source]
|
||||
type = "url"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "moe-kernels"
|
||||
version = "0.4.0"
|
||||
version = "0.6.0"
|
||||
description = "MoE kernels"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", hash = "sha256:8ca72a064ceb84a23a3437cc6e6363907ad41588877f6acb1febc010fc7beb22"},
|
||||
{file = "moe_kernels-0.6.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", hash = "sha256:db475948fd9f7a8647aa3f73256ff4d3bb111425305bcd0b0d3559ccc75b8937"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1303,16 +1303,16 @@ triton = "*"
|
||||
|
||||
[package.source]
|
||||
type = "url"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "moe-kernels"
|
||||
version = "0.4.0"
|
||||
version = "0.6.0"
|
||||
description = "MoE kernels"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", hash = "sha256:d302d6b16bb4905b2312dc68da6a6f51e87d0cd3c4bf1f23d995501162399a8e"},
|
||||
{file = "moe_kernels-0.6.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", hash = "sha256:364be07c06aafbab1f51d9e26d9a4ff658defe1462a4c645abaf7b895ed163a8"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1322,16 +1322,16 @@ triton = "*"
|
||||
|
||||
[package.source]
|
||||
type = "url"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "moe-kernels"
|
||||
version = "0.4.0"
|
||||
version = "0.6.0"
|
||||
description = "MoE kernels"
|
||||
optional = true
|
||||
python-versions = ">=3.7"
|
||||
files = [
|
||||
{file = "moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", hash = "sha256:6aee3e723efa5113c338b40e6cb20fa62da6c442c65c1a6cc97751d34158a93a"},
|
||||
{file = "moe_kernels-0.6.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", hash = "sha256:81e7fa25fb5ed5336f5151994f5e3f600df7e166fe013576968c59415e442894"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
@ -1341,7 +1341,7 @@ triton = "*"
|
||||
|
||||
[package.source]
|
||||
type = "url"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl"
|
||||
url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl"
|
||||
|
||||
[[package]]
|
||||
name = "mpmath"
|
||||
@ -3402,11 +3402,6 @@ files = [
|
||||
{file = "triton-3.0.0-1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:34e509deb77f1c067d8640725ef00c5cbfcb2052a1a3cb6a6d343841f92624eb"},
|
||||
{file = "triton-3.0.0-1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:bcbf3b1c48af6a28011a5c40a5b3b9b5330530c3827716b5fbf6d7adcc1e53e9"},
|
||||
{file = "triton-3.0.0-1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:6e5727202f7078c56f91ff13ad0c1abab14a0e7f2c87e91b12b6f64f3e8ae609"},
|
||||
{file = "triton-3.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b052da883351fdf6be3d93cedae6db3b8e3988d3b09ed221bccecfa9612230"},
|
||||
{file = "triton-3.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cd34f19a8582af96e6291d4afce25dac08cb2a5d218c599163761e8e0827208e"},
|
||||
{file = "triton-3.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d5e10de8c011adeb7c878c6ce0dd6073b14367749e34467f1cff2bde1b78253"},
|
||||
{file = "triton-3.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e8903767951bf86ec960b4fe4e21bc970055afc65e9d57e916d79ae3c93665e3"},
|
||||
{file = "triton-3.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:41004fb1ae9a53fcb3e970745feb87f0e3c94c6ce1ba86e95fa3b8537894bef7"},
|
||||
]
|
||||
|
||||
[package.dependencies]
|
||||
|
@ -47,10 +47,10 @@ marlin-kernels = [
|
||||
{ url = "https://github.com/danieldk/marlin-kernels/releases/download/v0.2.0/marlin_kernels-0.2.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true },
|
||||
]
|
||||
moe-kernels = [
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.4.0/moe_kernels-0.4.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp39-cp39-linux_x86_64.whl", python = "~3.9", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp310-cp310-linux_x86_64.whl", python = "~3.10", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp311-cp311-linux_x86_64.whl", python = "~3.11", optional = true },
|
||||
{ url = "https://github.com/danieldk/moe-kernels/releases/download/v0.6.0/moe_kernels-0.6.0+cu123torch2.4-cp312-cp312-linux_x86_64.whl", python = "~3.12", optional = true },
|
||||
]
|
||||
rich = "^13.7.1"
|
||||
|
||||
@ -82,3 +82,6 @@ requires = [
|
||||
"poetry-core>=1.0.0",
|
||||
]
|
||||
build-backend = "poetry.core.masonry.api"
|
||||
|
||||
[tool.isort]
|
||||
profile = "black"
|
||||
|
@ -68,5 +68,5 @@ else:
|
||||
def clamp(self, max):
|
||||
if SYSTEM == "rocm":
|
||||
return self
|
||||
raise NotImplementedError("Not implemented seqlen for paged")
|
||||
return Seqlen(torch.clamp(self.input_lengths, max=max))
|
||||
self.input_lengths = torch.clamp(self.input_lengths, max=max)
|
||||
return self
|
||||
|
@ -24,10 +24,8 @@ class KVCache:
|
||||
):
|
||||
"""Construct the key-value cache for a layer."""
|
||||
|
||||
if (
|
||||
dtype == torch.float8_e5m2
|
||||
and (ATTENTION != "flashinfer"
|
||||
or SYSTEM != "cuda")
|
||||
if dtype == torch.float8_e5m2 and (
|
||||
ATTENTION != "flashinfer" or SYSTEM != "cuda"
|
||||
):
|
||||
raise ValueError(
|
||||
"float8_e5m2 KV cache is currently only supported for flashinfer on CUDA"
|
||||
|
@ -43,7 +43,7 @@ def can_use_gptq_marlin(
|
||||
and quant_method in {"awq", "gptq"}
|
||||
and bits in GPTQ_MARLIN_BITS
|
||||
and groupsize in GPTQ_MARLIN_GROUP_SIZES
|
||||
# We only suppord asymmetric quantization for AWQ.
|
||||
# We only support asymmetric quantization for AWQ.
|
||||
and (sym or quant_method == "awq")
|
||||
)
|
||||
|
||||
|
@ -210,11 +210,17 @@ class SparseMoELayer(nn.Module):
|
||||
and isinstance(weights.loader.weight_class, UnquantizedWeight)
|
||||
) or isinstance(weights.loader, HybridFP8UnquantLoader):
|
||||
cls = UnquantizedSparseMoELayer
|
||||
elif isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym:
|
||||
elif isinstance(
|
||||
weights.loader, GPTQMarlinWeightsLoader
|
||||
) and can_use_marlin_moe_gemm(
|
||||
quant_method=weights.loader.quant_method,
|
||||
quantize=weights.loader.quantize,
|
||||
sym=weights.loader.sym,
|
||||
):
|
||||
cls = GPTQMarlinSparseMoELayer
|
||||
else:
|
||||
raise ValueError(
|
||||
f"Unsupported weights loader: {weights.loader}, sparse MoE is only supported for unquantized and GPTQ weights"
|
||||
f"Unsupported weights loader: {type(weights.loader)}, sparse MoE is only supported for unquantized, AWQ, and GPTQ weights"
|
||||
)
|
||||
|
||||
log_once(
|
||||
|
@ -34,9 +34,10 @@ def can_use_marlin_moe_gemm(
|
||||
SYSTEM == "cuda"
|
||||
and fused_marlin_moe is not None
|
||||
and has_sm_8_0
|
||||
and quantize == "gptq"
|
||||
and quant_method == "gptq"
|
||||
and sym
|
||||
and quantize in {"awq", "gptq"}
|
||||
and quant_method in {"awq", "gptq"}
|
||||
# We only support asymmetric quantization for AWQ.
|
||||
and (sym or quant_method == "awq")
|
||||
)
|
||||
|
||||
|
||||
@ -72,10 +73,15 @@ class GPTQMarlinSparseMoELayer(nn.Module):
|
||||
super().__init__()
|
||||
|
||||
if not (
|
||||
isinstance(weights.loader, GPTQMarlinWeightsLoader) and weights.loader.sym
|
||||
isinstance(weights.loader, GPTQMarlinWeightsLoader)
|
||||
and can_use_marlin_moe_gemm(
|
||||
quant_method=weights.loader.quant_method,
|
||||
quantize=weights.loader.quantize,
|
||||
sym=weights.loader.sym,
|
||||
)
|
||||
):
|
||||
raise ValueError(
|
||||
f"Unsupported weights loader: {weights.loader}, only GPTQMarlinWeightsLoader with symmetric quantization is supported"
|
||||
f"Unsupported weights loader: {type(weights.loader)}, only GPTQMarlinWeightsLoader with AWQ and symmetric GPTQ quantization is supported"
|
||||
)
|
||||
|
||||
assert (n_expert_group is None) == (
|
||||
@ -102,17 +108,24 @@ class GPTQMarlinSparseMoELayer(nn.Module):
|
||||
|
||||
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
|
||||
return fused_marlin_moe(
|
||||
x,
|
||||
hidden_states=x,
|
||||
w1=self.gate_up_proj.qweight,
|
||||
w2=self.down_proj.qweight,
|
||||
g_idx1=self.gate_up_proj.g_idx,
|
||||
g_idx2=self.down_proj.g_idx,
|
||||
perm1=self.gate_up_proj.perm,
|
||||
perm2=self.down_proj.perm,
|
||||
w1_scale=self.gate_up_proj.scales,
|
||||
w2_scale=self.down_proj.scales,
|
||||
is_full_k1=self.gate_up_proj.is_full_k,
|
||||
is_full_k2=self.down_proj.is_full_k,
|
||||
w1_zeros=(
|
||||
self.gate_up_proj.qzeros
|
||||
if self.gate_up_proj.qzeros.numel() > 0
|
||||
else None
|
||||
),
|
||||
w2_zeros=(
|
||||
self.down_proj.qzeros if self.down_proj.qzeros.numel() > 0 else None
|
||||
),
|
||||
g_idx1=self.gate_up_proj.g_idx,
|
||||
g_idx2=self.down_proj.g_idx,
|
||||
sort_indices1=self.gate_up_proj.perm,
|
||||
sort_indices2=self.down_proj.perm,
|
||||
is_k_full=self.gate_up_proj.is_full_k or self.down_proj.is_full_k,
|
||||
gating_output=gating_output,
|
||||
topk=self.topk,
|
||||
renormalize=self.renormalize,
|
||||
|
@ -517,14 +517,13 @@ class CausalLM(Model):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device(f"xpu:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
elif SYSTEM == "ipex":
|
||||
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device(f"xpu:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
# Float16 doesn't exist on target.
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
device = torch.device("cpu")
|
||||
# Float16 doesn't exist on target.
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
@ -593,8 +592,14 @@ class CausalLM(Model):
|
||||
if speculator:
|
||||
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
|
||||
|
||||
device_count = 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
device_count = torch.cuda.device_count()
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device("xpu")
|
||||
device_count = torch.xpu.device_count()
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
@ -616,18 +621,17 @@ class CausalLM(Model):
|
||||
torch_dtype=dtype,
|
||||
device_map=(
|
||||
"auto"
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > 1
|
||||
if device_count > 1
|
||||
else None
|
||||
),
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if (
|
||||
torch.cuda.is_available()
|
||||
and torch.cuda.device_count() == 1
|
||||
device_count == 1
|
||||
and quantize != "bitsandbytes"
|
||||
):
|
||||
model = model.cuda()
|
||||
model = model.to(device)
|
||||
|
||||
if tokenizer.pad_token_id is None:
|
||||
if model.config.pad_token_id is not None:
|
||||
|
@ -558,14 +558,13 @@ class Seq2SeqLM(Model):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device(f"xpu:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
elif SYSTEM == "ipex":
|
||||
if hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device(f"xpu:{rank}")
|
||||
dtype = default_dtype if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
# Float16 doesn't exist on target.
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
device = torch.device("cpu")
|
||||
# Float16 doesn't exist on target.
|
||||
dtype = torch.bfloat16 if dtype is None else dtype
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32 if dtype is None else dtype
|
||||
@ -630,8 +629,14 @@ class Seq2SeqLM(Model):
|
||||
if speculator:
|
||||
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
|
||||
|
||||
device_count = 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
device_count = torch.cuda.device_count()
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
device = torch.device("xpu")
|
||||
device_count = torch.xpu.device_count()
|
||||
dtype = torch.float16 if dtype is None else dtype
|
||||
else:
|
||||
if quantize:
|
||||
@ -646,14 +651,14 @@ class Seq2SeqLM(Model):
|
||||
torch_dtype=dtype,
|
||||
device_map=(
|
||||
"auto"
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() > 1
|
||||
if device_count > 1
|
||||
else None
|
||||
),
|
||||
load_in_8bit=quantize == "bitsandbytes",
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
|
||||
model = model.cuda()
|
||||
if device_count == 1:
|
||||
model = model.to(device)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id,
|
||||
|
@ -66,6 +66,11 @@ elif is_ipex_available():
|
||||
empty_cache = noop
|
||||
synchronize = noop
|
||||
get_free_memory = get_cpu_free_memory
|
||||
elif hasattr(torch, "xpu") and torch.xpu.is_available():
|
||||
SYSTEM = "xpu"
|
||||
empty_cache = torch.xpu.empty_cache
|
||||
synchronize = torch.xpu.synchronize
|
||||
get_free_memory = get_xpu_free_memory
|
||||
else:
|
||||
SYSTEM = "cpu"
|
||||
|
||||
|
@ -5,14 +5,13 @@ import json
|
||||
import os
|
||||
|
||||
TEMPLATE = """
|
||||
# Supported Models and Hardware
|
||||
# Supported Models
|
||||
|
||||
Text Generation Inference enables serving optimized models on specific hardware for the highest performance. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
## Supported Models
|
||||
Text Generation Inference enables serving optimized models. The following sections list which models (VLMs & LLMs) are supported.
|
||||
|
||||
SUPPORTED_MODELS
|
||||
|
||||
|
||||
If the above list lacks the model you would like to serve, depending on the model's pipeline type, you can try to initialize and serve the model anyways to see how well it performs, but performance isn't guaranteed for non-optimized models:
|
||||
|
||||
```python
|
||||
|
Loading…
Reference in New Issue
Block a user