fix: clean up idefics 3 and improve prefix handling

This commit is contained in:
drbh 2025-01-07 22:05:47 +00:00
parent 4c8f5cdc35
commit 765ca78014
4 changed files with 76 additions and 523 deletions

View File

@ -632,20 +632,24 @@ class FlashLlamaModel(torch.nn.Module):
class FlashLlamaForCausalLM(torch.nn.Module): class FlashLlamaForCausalLM(torch.nn.Module):
def __init__(self, prefix: str, config, weights): def __init__(self, prefix: str, config, weights, name=None):
if name is None:
name = "model"
super().__init__() super().__init__()
base_model = "" if prefix.endswith("text_model") else ".model"
with no_fp8(weights): with no_fp8(weights):
self.embed_tokens = TensorParallelEmbedding( self.embed_tokens = TensorParallelEmbedding(
prefix=( prefix=(
"model.embed_tokens" f"{name}.embed_tokens"
if not prefix if not prefix
else f"{prefix}{base_model}.embed_tokens" else f"{prefix}.{name}.embed_tokens"
), ),
weights=weights, weights=weights,
) )
self.model = FlashLlamaModel(prefix, config, weights) self.model = FlashLlamaModel(
prefix=name if not prefix else f"{prefix}.{name}",
config=config,
weights=weights,
)
if config.tie_word_embeddings: if config.tie_word_embeddings:
suffix = "model.embed_tokens" suffix = "model.embed_tokens"
else: else:
@ -656,18 +660,13 @@ class FlashLlamaForCausalLM(torch.nn.Module):
if embedding_multiplier is not None: if embedding_multiplier is not None:
self.embed_tokens.weight.data *= embedding_multiplier self.embed_tokens.weight.data *= embedding_multiplier
if not prefix: prefix = "lm_head" if not prefix or name != "model" else f"{prefix}.lm_head"
head_prefix = suffix
elif prefix.endswith("text_model"):
head_prefix = suffix
else:
head_prefix = f"{prefix}.{suffix}"
with no_fp8(weights): with no_fp8(weights):
self.lm_head = SpeculativeHead.load( self.lm_head = SpeculativeHead.load(
config, config,
prefix=head_prefix, prefix,
weights=weights, weights,
) )
# Used in Granite # Used in Granite

View File

@ -12,7 +12,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
""" PyTorch Idefics2 model.""" """ PyTorch Idefics3 model."""
from typing import List, Optional, Tuple from typing import List, Optional, Tuple
@ -50,7 +50,7 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class Idefics2VisionEmbeddings(nn.Module): class Idefics3VisionEmbeddings(nn.Module):
""" """
This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable This is a modified version of `siglip.modelign_siglip.SiglipVisionEmbeddings` to enable images of variable
resolution. resolution.
@ -131,7 +131,7 @@ class Idefics2VisionEmbeddings(nn.Module):
return embeddings return embeddings
class Idefics2VisionAttention(nn.Module): class Idefics3VisionAttention(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.config = config self.config = config
@ -229,7 +229,7 @@ class Idefics2VisionAttention(nn.Module):
return attn_output return attn_output
class Idefics2VisionMLP(nn.Module): class Idefics3VisionMLP(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.config = config self.config = config
@ -248,11 +248,11 @@ class Idefics2VisionMLP(nn.Module):
return hidden_states return hidden_states
class Idefics2EncoderLayer(nn.Module): class Idefics3EncoderLayer(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.embed_dim = config.hidden_size self.embed_dim = config.hidden_size
self.self_attn = Idefics2VisionAttention( self.self_attn = Idefics3VisionAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights prefix=f"{prefix}.self_attn", config=config, weights=weights
) )
self.layer_norm1 = nn.LayerNorm.load( self.layer_norm1 = nn.LayerNorm.load(
@ -261,7 +261,7 @@ class Idefics2EncoderLayer(nn.Module):
self.layer_norm2 = nn.LayerNorm.load( self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", eps=config.layer_norm_eps, weights=weights prefix=f"{prefix}.layer_norm2", eps=config.layer_norm_eps, weights=weights
) )
self.mlp = Idefics2VisionMLP( self.mlp = Idefics3VisionMLP(
prefix=f"{prefix}.mlp", config=config, weights=weights prefix=f"{prefix}.mlp", config=config, weights=weights
) )
@ -288,13 +288,13 @@ class Idefics2EncoderLayer(nn.Module):
return hidden_states return hidden_states
class Idefics2Encoder(nn.Module): class Idefics3Encoder(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.config = config self.config = config
self.layers = nn.ModuleList( self.layers = nn.ModuleList(
[ [
Idefics2EncoderLayer( Idefics3EncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights prefix=f"{prefix}.layers.{i}", config=config, weights=weights
) )
for i in range(config.num_hidden_layers) for i in range(config.num_hidden_layers)
@ -316,14 +316,14 @@ class Idefics2Encoder(nn.Module):
return hidden_states return hidden_states
class Idefics2VisionTransformer(nn.Module): class Idefics3VisionTransformer(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.config = config self.config = config
self.embeddings = Idefics2VisionEmbeddings( self.embeddings = Idefics3VisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights prefix=f"{prefix}.embeddings", config=config, weights=weights
) )
self.encoder = Idefics2Encoder( self.encoder = Idefics3Encoder(
prefix=f"{prefix}.encoder", config=config, weights=weights prefix=f"{prefix}.encoder", config=config, weights=weights
) )
self.post_layernorm = nn.LayerNorm.load( self.post_layernorm = nn.LayerNorm.load(
@ -377,317 +377,26 @@ class Idefics2VisionTransformer(nn.Module):
return last_hidden_state return last_hidden_state
class Idefics2MLP(nn.Module): class Idefics3SimpleMLP(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
act = config.text_config.hidden_act input_size = config.vision_config.hidden_size * (config.scale_factor**2)
self.act = ( output_size = config.text_config.hidden_size
ACT2FN[act] proj = nn.Parameter(
if "gelu" not in act weights.get_tensor(f"{prefix}.modality_projection.proj.weight"),
else lambda x: torch.nn.functional.gelu( requires_grad=False,
x, ).to(weights.dtype)
approximate=( self.proj = nn.Linear(input_size, output_size, bias=False)
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none" self.proj.weight = proj
),
)
)
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
def forward(self, hidden_states): def forward(self, x):
start_shape = hidden_states.shape[:-1] return self.proj(x)
gate_up_states = self.gate_up_proj(hidden_states)
intermediate_size = gate_up_states.shape[-1] // 2
gate_up_states = gate_up_states.view(-1, 2, intermediate_size)
return self.down_proj(
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1]
).view(*start_shape, -1)
class Idefics2RMSNorm(nn.Module):
def __init__(self, prefix, weights, eps):
"""
Idefics2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.weight"), requires_grad=False
)
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Idefics2PerceiverAttention(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.layer_idx = None
self.hidden_size = config.text_config.hidden_size
self.num_heads = config.perceiver_config.resampler_n_heads
self.head_size = config.perceiver_config.resampler_head_dim
self.num_key_value_heads = config.perceiver_config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_dropout = config.perceiver_config.attention_dropout
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
self.num_key_value_heads // weights.process_group.size()
)
self.q_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.q_proj",
weights=weights,
bias=False,
)
self.kv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
self.o_proj = TensorParallelRowLinear.load(
config=config, prefix=f"{prefix}.o_proj", weights=weights, bias=False
)
self.is_causal = False
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = latents.size()
kv_seq_len = q_len + context.size()[1]
hidden_states = torch.concat([context, latents], dim=-2)
query_states = self.q_proj(latents)
kv = self.kv(hidden_states)
key_states, value_states = kv.split(
[
self.head_size * self.num_key_value_heads,
self.head_size * self.num_key_value_heads,
],
dim=2,
)
query_states = query_states.view(
bsz, q_len, self.num_heads, self.head_size
).transpose(1, 2)
key_states = key_states.view(
bsz, kv_seq_len, self.num_key_value_heads, self.head_size
).transpose(1, 2)
value_states = value_states.view(
bsz, kv_seq_len, self.num_key_value_heads, self.head_size
).transpose(1, 2)
# repeat k/v heads if n_kv_heads < n_heads
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(
query_states, key_states.transpose(2, 3)
) / math.sqrt(self.head_size)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(query_states.dtype)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_size)
attn_output = self.o_proj(attn_output)
return attn_output
class Idefics2PerceiverLayer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.hidden_size = config.text_config.hidden_size
self.n_latents = config.perceiver_config.resampler_n_latents
self.depth = config.perceiver_config.resampler_depth
self.rms_norm_eps = config.text_config.rms_norm_eps
self.input_latents_norm = Idefics2RMSNorm(
prefix=f"{prefix}.input_latents_norm",
weights=weights,
eps=self.rms_norm_eps,
)
self.input_context_norm = Idefics2RMSNorm(
prefix=f"{prefix}.input_context_norm",
weights=weights,
eps=self.rms_norm_eps,
)
self.self_attn = Idefics2PerceiverAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.post_attention_layernorm = Idefics2RMSNorm(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=self.rms_norm_eps,
)
self.mlp = Idefics2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
def forward(
self,
latents: torch.Tensor,
context: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
Args:
latents (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
context (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
"""
residual = latents
latents = self.input_latents_norm(latents)
context = self.input_context_norm(context)
latents = self.self_attn(
latents=latents,
context=context,
attention_mask=attention_mask,
)
latents = residual + latents
residual = latents
latents = self.post_attention_layernorm(latents)
latents = self.mlp(latents)
latents = residual + latents
return latents
class Idefics2PerceiverResampler(nn.Module):
def __init__(self, prefix, config, weights) -> None:
super().__init__()
self.hidden_size = config.text_config.hidden_size
self.hidden_act = config.perceiver_config.hidden_act
self.n_latents = config.perceiver_config.resampler_n_latents
self.depth = config.perceiver_config.resampler_depth
self.rms_norm_eps = config.text_config.rms_norm_eps
# Create Latents for Perceiver
self.latents = weights.get_tensor(f"{prefix}.latents")
# Create Transformer Blocks
self.layers = nn.ModuleList(
[
Idefics2PerceiverLayer(
prefix=f"{prefix}.layers.{idx}", config=config, weights=weights
)
for idx in range(self.depth)
]
)
self.norm = Idefics2RMSNorm(
prefix=f"{prefix}.norm",
weights=weights,
eps=config.text_config.rms_norm_eps,
)
def forward(
self,
context: torch.Tensor,
attention_mask,
) -> torch.Tensor:
# seq embed -> bsz seq embed
latents = self.latents.unsqueeze(0).expand(
(context.shape[0], *self.latents.size())
)
latent_attention_mask = torch.ones(
(attention_mask.size(0), latents.size(1)),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
attention_mask = torch.cat([attention_mask, latent_attention_mask], dim=-1)
attention_mask = _prepare_4d_attention_mask(
attention_mask, latents.dtype, tgt_len=self.n_latents
)
compressed_context = latents
for perceiver_layer in self.layers:
compressed_context = perceiver_layer(
compressed_context,
context,
attention_mask=attention_mask,
)
compressed_context = self.norm(compressed_context)
return compressed_context
class Idefics2Connector(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.modality_projection = Idefics2MLP(
prefix=f"{prefix}.modality_projection", config=config, weights=weights
)
self.perceiver_resampler = Idefics2PerceiverResampler(
prefix=f"{prefix}.perceiver_resampler", config=config, weights=weights
)
def forward(self, image_hidden_states, attention_mask):
image_hidden_states = self.modality_projection(image_hidden_states)
image_hidden_states = self.perceiver_resampler(
context=image_hidden_states, attention_mask=attention_mask
)
return image_hidden_states
class Idefics3Connector(nn.Module): class Idefics3Connector(nn.Module):
def __init__(self, prefix, config, weights): def __init__(self, prefix, config, weights):
super().__init__() super().__init__()
self.modality_projection = TensorParallelRowLinear.load( self.modality_projection = Idefics3SimpleMLP(prefix, config, weights)
prefix=f"{prefix}.modality_projection.proj",
config=config,
weights=weights,
bias=False,
)
self.scale_factor = config.scale_factor self.scale_factor = config.scale_factor
def pixel_shuffle(self, x, scale_factor=2): def pixel_shuffle(self, x, scale_factor=2):
@ -706,8 +415,7 @@ class Idefics3Connector(nn.Module):
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2)) x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
return x return x
def forward(self, image_hidden_states, attention_mask): def forward(self, image_hidden_states):
print(image_hidden_states.device, self.modality_projection.linear.weight.device)
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor) image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
image_hidden_states = self.modality_projection(image_hidden_states) image_hidden_states = self.modality_projection(image_hidden_states)
return image_hidden_states return image_hidden_states
@ -726,7 +434,7 @@ class Idefics3ForConditionalGeneration(nn.Module):
vision_config = config.vision_config vision_config = config.vision_config
self.text_model = load_text_model( self.text_model = load_text_model(
prefix=f"{prefix}.model.text_model" if prefix else "model.text_model", prefix="model" if not prefix else f"{prefix}.model",
config=config.text_config, config=config.text_config,
weights=weights, weights=weights,
name="text_model", name="text_model",
@ -735,7 +443,7 @@ class Idefics3ForConditionalGeneration(nn.Module):
# The vision and connector models are not quantized. # The vision and connector models are not quantized.
with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)): with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)):
self.vision_model = Idefics2VisionTransformer( self.vision_model = Idefics3VisionTransformer(
prefix=( prefix=(
f"{prefix}.model.vision_model" if prefix else "model.vision_model" f"{prefix}.model.vision_model" if prefix else "model.vision_model"
), ),
@ -810,7 +518,6 @@ class Idefics3ForConditionalGeneration(nn.Module):
dim=(-1, -2, -3) dim=(-1, -2, -3)
) != nb_values_per_image ) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous() pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask # Handle the vision attention mask
if pixel_attention_mask is None: if pixel_attention_mask is None:
pixel_attention_mask = torch.ones( pixel_attention_mask = torch.ones(
@ -850,7 +557,6 @@ class Idefics3ForConditionalGeneration(nn.Module):
# Modality projection & resampling # Modality projection & resampling
image_hidden_states = self.connector( image_hidden_states = self.connector(
image_hidden_states, image_hidden_states,
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
) )
all_states.append(image_hidden_states) all_states.append(image_hidden_states)
@ -877,164 +583,3 @@ class Idefics3ForConditionalGeneration(nn.Module):
hidden_states = hidden_states[lm_head_indices] hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states) logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits return logits, speculative_logits
class Idefics2ForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = None
config.vision_config.speculator = config.speculator
config.text_config.quantize = config.quantize
config.text_config.speculator = config.speculator
vision_config = config.vision_config
self.text_model = load_text_model(
prefix="model" if not prefix else f"{prefix}.model",
config=config.text_config,
weights=weights,
name="text_model",
)
self.dtype = weights.dtype
# The vision and connector models are not quantized.
with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)):
self.vision_model = Idefics2VisionTransformer(
prefix=(
f"{prefix}.model.vision_model" if prefix else "model.vision_model"
),
config=vision_config,
weights=weights,
)
config.quantize = None
self.connector = Idefics2Connector(
prefix=f"{prefix}.model.connector" if prefix else "model.connector",
config=config,
weights=weights,
)
self.config = config
self.image_seq_len = config.perceiver_config.resampler_n_latents
self.image_token_id = config.image_token_id
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
image_features: torch.Tensor,
):
"""In place merges in vision_embeddings with inputs_embeds."""
# mask = input_ids == self.config.image_token_index
mask = input_ids == self.config.image_token_id
# Let's pray we have enabled enough slots !
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
seqlen: Seqlen,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
# Unused here
image_sizes: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None:
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(
dtype=self.dtype
) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_hidden_states
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
true_max_s=max_s,
prefill_cache_indices=None,
adapter_data=adapter_data,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.text_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -4,7 +4,7 @@ def load_text_model(prefix, config, weights, name=None):
FlashLlamaForCausalLM, FlashLlamaForCausalLM,
) )
return FlashLlamaForCausalLM(prefix, config, weights) return FlashLlamaForCausalLM(prefix, config, weights, name=name)
elif config.model_type == "mistral": elif config.model_type == "mistral":
from text_generation_server.models.custom_modeling.flash_mistral_modeling import ( from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
FlashMistralForCausalLM, FlashMistralForCausalLM,

View File

@ -13,6 +13,7 @@ from text_generation_server.models.flash_causal_lm import (
FlashCausalLM, FlashCausalLM,
) )
from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION
from loguru import logger
from text_generation_server.utils.log import log_master from text_generation_server.utils.log import log_master
from transformers import AutoProcessor from transformers import AutoProcessor
from text_generation_server.layers.attention import Seqlen from text_generation_server.layers.attention import Seqlen
@ -29,25 +30,32 @@ IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
def get_image_prompt_string( def get_image_prompt_string(
rows=0, *,
cols=0, image_seq_len,
seq_len=1, image_rows,
fake_token=IDEFICS3_FAKE_IMAGE_TOKEN, image_cols,
img_token=IDEFICS3_IMAGE_TOKEN, fake_token_around_image,
global_token=IDEFICS3_GLOBAL_IMG_TOKEN, image_token,
global_img_token,
): ):
tokens = img_token * seq_len """Prompt with expanded image tokens for when the image is split into patches."""
end_token = f"{fake_token}{global_token}{tokens}{fake_token}" text_split_images = ""
for n_h in range(image_rows):
for n_w in range(image_cols):
text_split_images += (
f"{fake_token_around_image}"
+ f"<row_{n_h + 1}_col_{n_w + 1}>"
+ f"{image_token}" * image_seq_len
)
text_split_images += "\n"
if rows == 0 or cols == 0: text_split_images += (
return end_token f"\n{fake_token_around_image}"
+ f"{global_img_token}"
grid = "\n".join( + f"{image_token}" * image_seq_len
"".join(f"{fake_token}<row_{i+1}_col_{j+1}>{tokens}" for j in range(cols)) + f"{fake_token_around_image}"
for i in range(rows)
) )
return text_split_images
return f"{grid}\n\n{end_token}"
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
@ -89,18 +97,17 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
/ (config.scale_factor**2) / (config.scale_factor**2)
) )
image_str = get_image_prompt_string( image_str = get_image_prompt_string(
rows=n_rows, image_seq_len=image_seq_len,
cols=n_cols, image_rows=n_rows,
seq_len=image_seq_len, image_cols=n_cols,
fake_token=IDEFICS3_FAKE_IMAGE_TOKEN, fake_token_around_image=IDEFICS3_FAKE_IMAGE_TOKEN,
img_token=IDEFICS3_IMAGE_TOKEN, image_token=IDEFICS3_IMAGE_TOKEN,
global_token=IDEFICS3_GLOBAL_IMG_TOKEN, global_img_token=IDEFICS3_GLOBAL_IMG_TOKEN,
) )
return image_str return image_str
elif config.model_type == "llava_next": elif config.model_type == "llava_next":
height, width = image_input["image_sizes"][image_id] height, width = image_input["image_sizes"][image_id]
num_features = get_number_of_features(height, width, config) num_features = get_number_of_features(height, width, config)
from loguru import logger
log_master( log_master(
logger.info, logger.info,
@ -238,9 +245,11 @@ class VlmCausalLMBatch(FlashCausalLMBatch):
if images: if images:
kwargs = {} kwargs = {}
match processor.image_processor_class: if (
case "Idefics3ImageProcessor": hasattr(processor, "image_processor_class")
kwargs["return_row_col_info"] = True and processor.image_processor_class == "Idefics3ImageProcessor"
):
kwargs["return_row_col_info"] = True
image_inputs = processor.image_processor( image_inputs = processor.image_processor(
images, return_tensors="pt", **kwargs images, return_tensors="pt", **kwargs