mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 12:24:53 +00:00
awq fallback to exllama
This commit is contained in:
parent
461dd6f1c7
commit
75086526d3
146
server/text_generation_server/utils/awq/pack_utils.py
Normal file
146
server/text_generation_server/utils/awq/pack_utils.py
Normal file
@ -0,0 +1,146 @@
|
||||
import torch
|
||||
from typing import List
|
||||
|
||||
|
||||
AWQ_PACK_ORDER = [0, 2, 4, 6, 1, 3, 5, 7]
|
||||
REVERSE_AWQ_PACK_ORDER = [0, 4, 1, 5, 2, 6, 3, 7]
|
||||
|
||||
|
||||
def pack(imatrix: torch.Tensor, direction: str = "column"):
|
||||
"""
|
||||
Packs a 4-bit integer matrix into a packed 32-bit integer matrix.
|
||||
Args:
|
||||
imatrix (torch.Tensor): matrix of integers
|
||||
direction (str): direction of packing, either "column" or "row"
|
||||
Returns:
|
||||
qmatrix (torch.Tensor): packed matrix of integers
|
||||
"""
|
||||
shifts = torch.arange(0, 32, 4, device=imatrix.device)
|
||||
|
||||
imatrix = imatrix.to(torch.int8)
|
||||
imatrix = torch.bitwise_and(imatrix, 0x0F) # eventually correct overflow
|
||||
|
||||
if direction == "column":
|
||||
imatrix = imatrix.view(-1, imatrix.shape[1] // (32 // 4), (32 // 4))
|
||||
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, None, :]).sum(dim=-1)
|
||||
|
||||
elif direction == "row":
|
||||
imatrix = imatrix.view(imatrix.shape[0] // (32 // 4), (32 // 4), -1)
|
||||
qmatrix = torch.bitwise_left_shift(imatrix, shifts[None, :, None]).sum(dim=1)
|
||||
|
||||
qmatrix = qmatrix.to(torch.int32)
|
||||
|
||||
return qmatrix
|
||||
|
||||
|
||||
def unpack(qmatrix: torch.Tensor, direction: str = "column"):
|
||||
"""
|
||||
Unpacks a 32-bit packed integer matrix into a 4-bit integer matrix.
|
||||
Args:
|
||||
qmatrix (torch.Tensor): matrix of packed integers
|
||||
direction (str): direction of unpacking, either "column" or "row"
|
||||
Returns:
|
||||
imatrix (torch.Tensor): matrix of integers
|
||||
"""
|
||||
shifts = torch.arange(0, 32, 4, device=qmatrix.device)
|
||||
|
||||
if direction == "column":
|
||||
imatrix = torch.bitwise_right_shift(
|
||||
qmatrix[:, :, None], shifts[None, None, :]
|
||||
).view(qmatrix.shape[0], -1)
|
||||
|
||||
elif direction == "row":
|
||||
imatrix = torch.bitwise_right_shift(
|
||||
qmatrix[:, None, :], shifts[None, :, None]
|
||||
).view(-1, qmatrix.shape[-1])
|
||||
|
||||
imatrix = imatrix.to(torch.int8) & 0x0F # eventually correct overflow
|
||||
|
||||
return imatrix
|
||||
|
||||
|
||||
def quantize(fmatrix, scales, zeros, group_size):
|
||||
"""
|
||||
Quantizes a matrix of 16-bit floats into a matrix of 4-bit integers.
|
||||
Args:
|
||||
fmatrix (torch.Tensor): matrix of 16-bit floats
|
||||
scales (torch.Tensor): matrix of 16-bit floats
|
||||
zeros (torch.Tensor): matrix of 4-bit integers
|
||||
group_size (int): group size
|
||||
Returns:
|
||||
imatrix (torch.Tensor): matrix of 4-bit integers
|
||||
"""
|
||||
zeros = zeros.to(torch.int8) & 0x0F
|
||||
|
||||
imatrix = torch.round(
|
||||
(
|
||||
fmatrix / scales.repeat_interleave(group_size, dim=0)
|
||||
+ zeros.repeat_interleave(group_size, dim=0)
|
||||
)
|
||||
)
|
||||
|
||||
imatrix = imatrix.to(torch.int8) & 0x0F
|
||||
|
||||
return imatrix
|
||||
|
||||
|
||||
def dequantize(imatrix, scales, zeros, group_size):
|
||||
"""
|
||||
Dequantizes a 4-bit integer matrix into a float matrix.
|
||||
Args:
|
||||
imatrix (torch.Tensor): matrix of 4-bit integers
|
||||
scales (torch.Tensor): matrix of 16-bit floats
|
||||
zeros (torch.Tensor): matrix of 4-bit integers
|
||||
group_size (int): group size
|
||||
Returns:
|
||||
fmatrix (torch.Tensor): matrix of 16-bit floats
|
||||
"""
|
||||
zeros = zeros.to(torch.int8) & 0x0F
|
||||
imatrix = imatrix.to(torch.int8) & 0x0F
|
||||
|
||||
fmatrix = (
|
||||
imatrix - zeros.repeat_interleave(group_size, dim=0)
|
||||
) * scales.repeat_interleave(group_size, dim=0)
|
||||
|
||||
fmatrix = fmatrix.to(torch.float16)
|
||||
|
||||
return fmatrix
|
||||
|
||||
|
||||
def apply_order(
|
||||
imatrix: torch.Tensor,
|
||||
direction: str = "column",
|
||||
order: List[int] = AWQ_PACK_ORDER,
|
||||
):
|
||||
"""
|
||||
Applies the order to a 4-bit integer matrix.
|
||||
Args:
|
||||
imatrix (torch.Tensor): matrix of integers
|
||||
direction (str): direction of applying order, either "column" or "row"
|
||||
order (List[int]): order to apply, default is AWQ_PACK_ORDER
|
||||
Returns:
|
||||
imatrix (torch.Tensor): matrix of integers
|
||||
"""
|
||||
if direction == "column":
|
||||
imatrix = imatrix.view(-1, (32 // 4))[:, order].view(imatrix.shape)
|
||||
elif direction == "row":
|
||||
imatrix = imatrix.view((32 // 4), -1)[order, :].view(imatrix.shape)
|
||||
|
||||
return imatrix
|
||||
|
||||
|
||||
def fast_awq_to_exllama(qweight, qzeros):
|
||||
# awq uses column packing for both weights and zeros
|
||||
izeros = unpack(qzeros, direction="column")
|
||||
iweights = unpack(qweight, direction="column")
|
||||
|
||||
# Reverse the order of the iweight and izeros tensors
|
||||
izeros = apply_order(izeros, direction="column", order=REVERSE_AWQ_PACK_ORDER)
|
||||
iweights = apply_order(iweights, direction="column", order=REVERSE_AWQ_PACK_ORDER)
|
||||
# Subtract 1 from the izeros tensor (exllama adds 1 during inference)
|
||||
izeros = izeros - 1
|
||||
# exllama uses row packing for weights and column packing for zeros
|
||||
qzeros = pack(izeros, direction="column")
|
||||
qweight = pack(iweights, direction="row")
|
||||
|
||||
return qweight, qzeros
|
@ -25,6 +25,7 @@ HAS_AWQ = True
|
||||
try:
|
||||
from text_generation_server.utils.awq.quantize.qmodule import WQLinear
|
||||
except ImportError:
|
||||
from text_generation_server.utils.awq.pack_utils import fast_awq_to_exllama
|
||||
HAS_AWQ = False
|
||||
|
||||
try:
|
||||
@ -349,14 +350,20 @@ def get_linear(weight, bias, quantize):
|
||||
raise NotImplementedError(
|
||||
f"The passed weight is not `awq` compatible, loader needs to be updated."
|
||||
)
|
||||
linear = WQLinear(
|
||||
w_bit=bits,
|
||||
group_size=groupsize,
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
bias=bias is not None,
|
||||
)
|
||||
if HAS_AWQ:
|
||||
linear = WQLinear(
|
||||
w_bit=bits,
|
||||
group_size=groupsize,
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
bias=bias is not None,
|
||||
)
|
||||
elif HAS_EXLLAMA:
|
||||
qweight, qzeros = fast_awq_to_exllama(qweight, qzeros)
|
||||
linear = ExllamaQuantLinear(
|
||||
qweight, qzeros, scales, None, bias, bits, groupsize
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
||||
return linear
|
||||
|
Loading…
Reference in New Issue
Block a user