Merge branch 'huggingface:main' into main

This commit is contained in:
dstnluong-google 2024-02-21 13:53:21 -08:00 committed by GitHub
commit 74e09e6594
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
29 changed files with 1832 additions and 201 deletions

View File

@ -41,6 +41,10 @@ jobs:
components: rustfmt, clippy
- name: Install Protoc
uses: arduino/setup-protoc@v1
- name: Clean unused files
run: |
sudo rm -rf /usr/local/lib/android # will release about 10 GB if you don't need Android
sudo rm -rf /usr/share/dotnet # will release about 20GB if you don't need .NET
- name: Install sccache
run: |
curl -fsSL https://github.com/mozilla/sccache/releases/download/v$SCCACHE/sccache-v$SCCACHE-x86_64-unknown-linux-musl.tar.gz | tar -xzv --strip-components=1 -C /usr/local/bin sccache-v$SCCACHE-x86_64-unknown-linux-musl/sccache

295
Cargo.lock generated
View File

@ -19,12 +19,14 @@ checksum = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe"
[[package]]
name = "ahash"
version = "0.8.8"
version = "0.8.9"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "42cd52102d3df161c77a887b608d7a4897d7cc112886a9537b738a887a03aaff"
checksum = "d713b3834d76b85304d4d525563c1276e2e30dc97cc67bfb4585a4a29fc2c89f"
dependencies = [
"cfg-if",
"getrandom",
"once_cell",
"serde",
"version_check",
"zerocopy",
]
@ -40,9 +42,9 @@ dependencies = [
[[package]]
name = "anstream"
version = "0.6.11"
version = "0.6.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "6e2e1ebcb11de5c03c67de28a7df593d32191b44939c482e97702baaaa6ab6a5"
checksum = "96b09b5178381e0874812a9b157f7fe84982617e48f71f4e3235482775e5b540"
dependencies = [
"anstyle",
"anstyle-parse",
@ -88,9 +90,9 @@ dependencies = [
[[package]]
name = "anyhow"
version = "1.0.79"
version = "1.0.80"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "080e9890a082662b09c1ad45f567faeeb47f22b5fb23895fbe1e651e718e25ca"
checksum = "5ad32ce52e4161730f7098c077cd2ed6229b5804ccf99e5366be1ab72a98b4e1"
[[package]]
name = "arc-swap"
@ -128,7 +130,7 @@ checksum = "16e62a023e7c117e27523144c5d2459f4397fcc3cab0085af8e2224f643a0193"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -139,7 +141,7 @@ checksum = "c980ee35e870bd1a4d2c8294d4c04d0499e67bca1e4b5cefcc693c2fa00caea9"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -265,6 +267,21 @@ version = "0.21.7"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "9d297deb1925b89f2ccc13d7635fa0714f12c87adce1c75356b39ca9b7178567"
[[package]]
name = "bit-set"
version = "0.5.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0700ddab506f33b20a03b13996eccd309a48e5ff77d0d95926aa0210fb4e95f1"
dependencies = [
"bit-vec",
]
[[package]]
name = "bit-vec"
version = "0.6.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "349f9b6a179ed607305526ca489b34ad0a41aed5f7980fa90eb03160b69598fb"
[[package]]
name = "bitflags"
version = "1.3.2"
@ -288,9 +305,9 @@ dependencies = [
[[package]]
name = "bumpalo"
version = "3.15.0"
version = "3.15.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d32a994c2b3ca201d9b263612a374263f05e7adde37c4707f693dcd375076d1f"
checksum = "c764d619ca78fccbf3069b37bd7af92577f044bb15236036662d79b6559f25b7"
[[package]]
name = "bytecount"
@ -350,12 +367,9 @@ checksum = "df8670b8c7b9dae1793364eafadf7239c40d669904660c5960d74cfd80b46a53"
[[package]]
name = "cc"
version = "1.0.83"
version = "1.0.86"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f1174fb0b6ec23863f8b971027804a42614e347eafb0a95bf0b12cdae21fc4d0"
dependencies = [
"libc",
]
checksum = "7f9fa1897e4325be0d68d48df6aa1a71ac2ed4d27723887e7754192705350730"
[[package]]
name = "cfg-if"
@ -365,9 +379,9 @@ checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "clap"
version = "4.5.0"
version = "4.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "80c21025abd42669a92efc996ef13cfb2c5c627858421ea58d5c3b331a6c134f"
checksum = "c918d541ef2913577a0f9566e9ce27cb35b6df072075769e0b26cb5a554520da"
dependencies = [
"clap_builder",
"clap_derive",
@ -375,9 +389,9 @@ dependencies = [
[[package]]
name = "clap_builder"
version = "4.5.0"
version = "4.5.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "458bf1f341769dfcf849846f65dffdf9146daa56bcd2a47cb4e1de9915567c99"
checksum = "9f3e7391dad68afb0c2ede1bf619f579a3dc9c2ec67f089baa397123a2f3d1eb"
dependencies = [
"anstream",
"anstyle",
@ -394,7 +408,7 @@ dependencies = [
"heck",
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -716,6 +730,16 @@ dependencies = [
"cc",
]
[[package]]
name = "fancy-regex"
version = "0.11.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b95f7c0680e4142284cf8b22c14a476e87d61b004a3a0861872b32ef7ead40a2"
dependencies = [
"bit-set",
"regex",
]
[[package]]
name = "fastrand"
version = "2.0.1"
@ -780,6 +804,16 @@ dependencies = [
"percent-encoding",
]
[[package]]
name = "fraction"
version = "0.13.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3027ae1df8d41b4bed2241c8fdad4acc1e7af60c8e17743534b545e77182d678"
dependencies = [
"lazy_static",
"num",
]
[[package]]
name = "futures"
version = "0.3.30"
@ -836,7 +870,7 @@ checksum = "87750cf4b7a4c0625b1529e4c543c2182106e4dedc60a2a6455e00d212c489ac"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -895,8 +929,10 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "190092ea657667030ac6a35e305e62fc4dd69fd98ac98631e5d3a2b1575a12b5"
dependencies = [
"cfg-if",
"js-sys",
"libc",
"wasi",
"wasm-bindgen",
]
[[package]]
@ -1181,6 +1217,15 @@ version = "2.9.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "8f518f335dce6725a761382244631d86cf0ccb2863413590b31338feb467f9c3"
[[package]]
name = "iso8601"
version = "0.6.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "924e5d73ea28f59011fec52a0d12185d496a9b075d360657aed2a5707f701153"
dependencies = [
"nom",
]
[[package]]
name = "itertools"
version = "0.10.5"
@ -1223,6 +1268,36 @@ dependencies = [
"wasm-bindgen",
]
[[package]]
name = "jsonschema"
version = "0.17.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "2a071f4f7efc9a9118dfb627a0a94ef247986e1ab8606a4c806ae2b3aa3b6978"
dependencies = [
"ahash",
"anyhow",
"base64 0.21.7",
"bytecount",
"clap",
"fancy-regex",
"fraction",
"getrandom",
"iso8601",
"itoa",
"memchr",
"num-cmp",
"once_cell",
"parking_lot",
"percent-encoding",
"regex",
"reqwest",
"serde",
"serde_json",
"time",
"url",
"uuid",
]
[[package]]
name = "lazy_static"
version = "1.4.0"
@ -1363,7 +1438,7 @@ checksum = "38b4faf00617defe497754acde3024865bc143d44a86799b24e191ecff91354f"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -1451,7 +1526,7 @@ checksum = "f686d68a09079e63b1d2c64aa305095887ce50565f00a922ebfaeeee0d9ba6ce"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -1574,12 +1649,84 @@ dependencies = [
"winapi",
]
[[package]]
name = "num"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b05180d69e3da0e530ba2a1dae5110317e49e3b7f3d41be227dc5f92e49ee7af"
dependencies = [
"num-bigint",
"num-complex",
"num-integer",
"num-iter",
"num-rational",
"num-traits",
]
[[package]]
name = "num-bigint"
version = "0.4.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "608e7659b5c3d7cba262d894801b9ec9d00de989e8a82bd4bef91d08da45cdc0"
dependencies = [
"autocfg",
"num-integer",
"num-traits",
]
[[package]]
name = "num-cmp"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "63335b2e2c34fae2fb0aa2cecfd9f0832a1e24b3b32ecec612c3426d46dc8aaa"
[[package]]
name = "num-complex"
version = "0.4.5"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "23c6602fda94a57c990fe0df199a035d83576b496aa29f4e634a8ac6004e68a6"
dependencies = [
"num-traits",
]
[[package]]
name = "num-conv"
version = "0.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "51d515d32fb182ee37cda2ccdcb92950d6a3c2893aa280e540671c2cd0f3b1d9"
[[package]]
name = "num-integer"
version = "0.1.46"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "7969661fd2958a5cb096e56c8e1ad0444ac2bbcd0061bd28660485a44879858f"
dependencies = [
"num-traits",
]
[[package]]
name = "num-iter"
version = "0.1.44"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d869c01cc0c455284163fd0092f1f93835385ccab5a98a0dcc497b2f8bf055a9"
dependencies = [
"autocfg",
"num-integer",
"num-traits",
]
[[package]]
name = "num-rational"
version = "0.4.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0638a1c9d0a3c0914158145bc76cff373a75a627e6ecbfb71cbe6f453a5a19b0"
dependencies = [
"autocfg",
"num-bigint",
"num-integer",
"num-traits",
]
[[package]]
name = "num-traits"
version = "0.2.18"
@ -1654,9 +1801,9 @@ dependencies = [
[[package]]
name = "openssl"
version = "0.10.63"
version = "0.10.64"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "15c9d69dd87a29568d4d017cfe8ec518706046a05184e5aea92d0af890b803c8"
checksum = "95a0481286a310808298130d22dd1fef0fa571e05a8f44ec801801e84b216b1f"
dependencies = [
"bitflags 2.4.2",
"cfg-if",
@ -1675,7 +1822,7 @@ checksum = "a948666b637a0f465e8564c73e89d4dde00d72d4d473cc972f390fc3dcee7d9c"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -1686,9 +1833,9 @@ checksum = "ff011a302c396a5197692431fc1948019154afc178baf7d8e37367442a4601cf"
[[package]]
name = "openssl-sys"
version = "0.9.99"
version = "0.9.100"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "22e1bf214306098e4832460f797824c05d25aacdf896f64a985fb0fd992454ae"
checksum = "ae94056a791d0e1217d18b6cbdccb02c61e3054fc69893607f4067e3bb0b1fd1"
dependencies = [
"cc",
"libc",
@ -1891,7 +2038,7 @@ checksum = "266c042b60c9c76b8d53061e52b2e0d1116abc57cefc8c5cd671619a56ac3690"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -1937,7 +2084,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "a41cf62165e97c7f814d2221421dbb9afcbcdb0a88068e5ea206e19951c2cbb5"
dependencies = [
"proc-macro2",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -2010,7 +2157,7 @@ dependencies = [
"prost 0.12.3",
"prost-types",
"regex",
"syn 2.0.49",
"syn 2.0.50",
"tempfile",
"which",
]
@ -2038,7 +2185,7 @@ dependencies = [
"itertools 0.11.0",
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -2289,16 +2436,17 @@ dependencies = [
[[package]]
name = "ring"
version = "0.17.7"
version = "0.17.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "688c63d65483050968b2a8937f7995f443e27041a0f7700aa59b0822aedebb74"
checksum = "c17fa4cb658e3583423e915b9f3acc01cceaee1860e33d59ebae66adc3a2dc0d"
dependencies = [
"cc",
"cfg-if",
"getrandom",
"libc",
"spin 0.9.8",
"untrusted 0.9.0",
"windows-sys 0.48.0",
"windows-sys 0.52.0",
]
[[package]]
@ -2322,7 +2470,7 @@ dependencies = [
"quote",
"rust-embed-utils",
"shellexpand",
"syn 2.0.49",
"syn 2.0.50",
"walkdir",
]
@ -2383,7 +2531,7 @@ source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e87c9956bd9807afa1f77e0f7594af32566e830e088a5576d27c5b6f30f49d41"
dependencies = [
"log",
"ring 0.17.7",
"ring 0.17.8",
"rustls-pki-types",
"rustls-webpki",
"subtle",
@ -2411,7 +2559,7 @@ version = "0.102.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "faaa0a62740bedb9b2ef5afa303da42764c012f743917351dc9a237ea1663610"
dependencies = [
"ring 0.17.7",
"ring 0.17.8",
"rustls-pki-types",
"untrusted 0.9.0",
]
@ -2424,9 +2572,9 @@ checksum = "7ffc183a10b4478d04cbbbfc96d0873219d962dd5accaff2ffbd4ceb7df837f4"
[[package]]
name = "ryu"
version = "1.0.16"
version = "1.0.17"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f98d2aa92eebf49b69786be48e4477826b256916e84a57ff2a4f21923b48eb4c"
checksum = "e86697c916019a8588c99b5fac3cead74ec0b4b819707a682fd4d23fa0ce1ba1"
[[package]]
name = "same-file"
@ -2458,7 +2606,7 @@ version = "0.7.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "da046153aa2352493d6cb7da4b6e5c0c057d8a1d0a9aa8560baffdd945acd414"
dependencies = [
"ring 0.17.7",
"ring 0.17.8",
"untrusted 0.9.0",
]
@ -2487,38 +2635,38 @@ dependencies = [
[[package]]
name = "semver"
version = "1.0.21"
version = "1.0.22"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b97ed7a9823b74f99c7742f5336af7be5ecd3eeafcb1507d1fa93347b1d589b0"
checksum = "92d43fe69e652f3df9bdc2b85b2854a0825b86e4fb76bc44d945137d053639ca"
dependencies = [
"serde",
]
[[package]]
name = "serde"
version = "1.0.196"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "870026e60fa08c69f064aa766c10f10b1d62db9ccd4d0abb206472bee0ce3b32"
checksum = "3fb1c873e1b9b056a4dc4c0c198b24c3ffa059243875552b2bd0933b1aee4ce2"
dependencies = [
"serde_derive",
]
[[package]]
name = "serde_derive"
version = "1.0.196"
version = "1.0.197"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "33c85360c95e7d137454dc81d9a4ed2b8efd8fbe19cee57357b32b9771fccb67"
checksum = "7eb0b34b42edc17f6b7cac84a52a1c5f0e1bb2227e997ca9011ea3dd34e8610b"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
name = "serde_json"
version = "1.0.113"
version = "1.0.114"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "69801b70b1c3dac963ecb03a364ba0ceda9cf60c71cfe475e99864759c8b8a79"
checksum = "c5f09b1bd632ef549eaa9f60a1f8de742bdbc698e6cee2095fc84dde5f549ae0"
dependencies = [
"itoa",
"ryu",
@ -2701,7 +2849,7 @@ dependencies = [
"proc-macro2",
"quote",
"rustversion",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -2723,9 +2871,9 @@ dependencies = [
[[package]]
name = "syn"
version = "2.0.49"
version = "2.0.50"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "915aea9e586f80826ee59f8453c1101f9d1c4b3964cd2460185ee8e299ada496"
checksum = "74f1bdc9872430ce9b75da68329d1c1746faf50ffac5f19e02b71e37ff881ffb"
dependencies = [
"proc-macro2",
"quote",
@ -2811,7 +2959,7 @@ dependencies = [
[[package]]
name = "text-generation-benchmark"
version = "1.4.1"
version = "1.4.2"
dependencies = [
"average",
"clap",
@ -2832,7 +2980,7 @@ dependencies = [
[[package]]
name = "text-generation-client"
version = "1.4.1"
version = "1.4.2"
dependencies = [
"futures",
"grpc-metadata",
@ -2848,7 +2996,7 @@ dependencies = [
[[package]]
name = "text-generation-launcher"
version = "1.4.1"
version = "1.4.2"
dependencies = [
"clap",
"ctrlc",
@ -2864,7 +3012,7 @@ dependencies = [
[[package]]
name = "text-generation-router"
version = "1.4.1"
version = "1.4.2"
dependencies = [
"async-stream",
"axum",
@ -2874,6 +3022,7 @@ dependencies = [
"futures-util",
"hf-hub",
"init-tracing-opentelemetry",
"jsonschema",
"metrics",
"metrics-exporter-prometheus",
"minijinja",
@ -2916,14 +3065,14 @@ checksum = "a953cb265bef375dae3de6663da4d3804eee9682ea80d8e2542529b73c531c81"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
name = "thread_local"
version = "1.1.7"
version = "1.1.8"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3fdd6f064ccff2d6567adcb3873ca630700f00b5ad3f060c25b5dcfd9a4ce152"
checksum = "8b9ef9bad013ada3808854ceac7b46812a6465ba368859a37e2100283d2d719c"
dependencies = [
"cfg-if",
"once_cell",
@ -3082,7 +3231,7 @@ checksum = "5b8a1e28f2deaa14e508979454cb3a223b10b938b45af148bc0986de36f1923b"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -3197,7 +3346,7 @@ dependencies = [
"proc-macro2",
"prost-build",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -3270,7 +3419,7 @@ checksum = "34704c8d6ebcbc939824180af020566b01a7c01f80641264eba0999f6c2b6be7"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -3400,9 +3549,9 @@ checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"
[[package]]
name = "unicode-normalization"
version = "0.1.22"
version = "0.1.23"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c5713f0fc4b5db668a2ac63cdb7bb4469d8c9fed047b1d0292cc7b0ce2ba921"
checksum = "a56d1686db2308d901306f92a263857ef59ea39678a5458e7cb17f01415101f5"
dependencies = [
"tinyvec",
]
@ -3511,7 +3660,7 @@ dependencies = [
"proc-macro2",
"quote",
"regex",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]
@ -3530,6 +3679,12 @@ dependencies = [
"zip",
]
[[package]]
name = "uuid"
version = "1.7.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "f00cc9702ca12d3c81455259621e676d0f7251cec66a21e98fe2e9a37db93b2a"
[[package]]
name = "valuable"
version = "0.1.0"
@ -3610,7 +3765,7 @@ dependencies = [
"once_cell",
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
"wasm-bindgen-shared",
]
@ -3644,7 +3799,7 @@ checksum = "642f325be6301eb8107a83d12a8ac6c1e1c54345a7ef1a9261962dfefda09e66"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
"wasm-bindgen-backend",
"wasm-bindgen-shared",
]
@ -3671,7 +3826,7 @@ version = "0.22.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "ed63aea5ce73d0ff405984102c42de94fc55a6b75765d621c65262469b3c9b53"
dependencies = [
"ring 0.17.7",
"ring 0.17.8",
"untrusted 0.9.0",
]
@ -3971,7 +4126,7 @@ checksum = "9ce1b18ccd8e73a9321186f97e46f9f04b778851177567b1975109d26a08d2a6"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.49",
"syn 2.0.50",
]
[[package]]

View File

@ -9,7 +9,7 @@ members = [
resolver = "2"
[workspace.package]
version = "1.4.1"
version = "1.4.2"
edition = "2021"
authors = ["Olivier Dehaene"]
homepage = "https://github.com/huggingface/text-generation-inference"

View File

@ -10,7 +10,7 @@
"name": "Apache 2.0",
"url": "https://www.apache.org/licenses/LICENSE-2.0"
},
"version": "1.4.1"
"version": "1.4.2"
},
"paths": {
"/": {
@ -637,6 +637,35 @@
}
}
},
"ChatCompletionComplete": {
"type": "object",
"required": [
"index",
"message",
"finish_reason"
],
"properties": {
"finish_reason": {
"type": "string"
},
"index": {
"type": "integer",
"format": "int32",
"minimum": 0
},
"logprobs": {
"allOf": [
{
"$ref": "#/components/schemas/ChatCompletionLogprobs"
}
],
"nullable": true
},
"message": {
"$ref": "#/components/schemas/Message"
}
}
},
"ChatCompletionDelta": {
"type": "object",
"required": [
@ -654,6 +683,59 @@
}
}
},
"ChatCompletionLogprob": {
"type": "object",
"required": [
"token",
"logprob",
"top_logprobs"
],
"properties": {
"logprob": {
"type": "number",
"format": "float"
},
"token": {
"type": "string"
},
"top_logprobs": {
"type": "array",
"items": {
"$ref": "#/components/schemas/ChatCompletionTopLogprob"
}
}
}
},
"ChatCompletionLogprobs": {
"type": "object",
"required": [
"content"
],
"properties": {
"content": {
"type": "array",
"items": {
"$ref": "#/components/schemas/ChatCompletionLogprob"
}
}
}
},
"ChatCompletionTopLogprob": {
"type": "object",
"required": [
"token",
"logprob"
],
"properties": {
"logprob": {
"type": "number",
"format": "float"
},
"token": {
"type": "string"
}
}
},
"ChatRequest": {
"type": "object",
"required": [
@ -1022,6 +1104,49 @@
}
}
},
"GrammarType": {
"oneOf": [
{
"type": "object",
"required": [
"type",
"value"
],
"properties": {
"type": {
"type": "string",
"enum": [
"json"
]
},
"value": {
"description": "A string that represents a [JSON Schema](https://json-schema.org/).\n\nJSON Schema is a declarative language that allows to annotate JSON documents\nwith types and descriptions."
}
}
},
{
"type": "object",
"required": [
"type",
"value"
],
"properties": {
"type": {
"type": "string",
"enum": [
"regex"
]
},
"value": {
"type": "string"
}
}
}
],
"discriminator": {
"propertyName": "type"
}
},
"Info": {
"type": "object",
"required": [
@ -1311,6 +1436,31 @@
"items": {
"$ref": "#/components/schemas/SimpleToken"
}
},
"Usage": {
"type": "object",
"required": [
"prompt_tokens",
"completion_tokens",
"total_tokens"
],
"properties": {
"completion_tokens": {
"type": "integer",
"format": "int32",
"minimum": 0
},
"prompt_tokens": {
"type": "integer",
"format": "int32",
"minimum": 0
},
"total_tokens": {
"type": "integer",
"format": "int32",
"minimum": 0
}
}
}
}
},

View File

@ -40,6 +40,9 @@ class ResponseComparator(JSONSnapshotExtension):
exclude=None,
matcher=None,
):
if isinstance(data, Response):
data = data.dict()
if isinstance(data, List):
data = [d.dict() for d in data]

View File

@ -0,0 +1,89 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 1736,
"logprob": -2.09375,
"special": false,
"text": " form"
},
{
"id": 109,
"logprob": -1.8671875,
"special": false,
"text": "\n\n"
},
{
"id": 651,
"logprob": -2.4375,
"special": false,
"text": "The"
},
{
"id": 2121,
"logprob": -1.8203125,
"special": false,
"text": " test"
},
{
"id": 3853,
"logprob": -0.23242188,
"special": false,
"text": " request"
},
{
"id": 1736,
"logprob": -0.08544922,
"special": false,
"text": " form"
},
{
"id": 603,
"logprob": -0.9375,
"special": false,
"text": " is"
},
{
"id": 1671,
"logprob": -1.671875,
"special": false,
"text": " used"
},
{
"id": 577,
"logprob": -0.40429688,
"special": false,
"text": " to"
},
{
"id": 3853,
"logprob": -1.1875,
"special": false,
"text": " request"
}
],
"top_tokens": null
},
"generated_text": " form\n\nThe test request form is used to request"
}

View File

@ -0,0 +1,89 @@
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": 0,
"tokens": [
{
"id": 7539,
"logprob": -0.73046875,
"special": false,
"text": " forms"
},
{
"id": 708,
"logprob": 0.0,
"special": false,
"text": " are"
},
{
"id": 671,
"logprob": -1.703125,
"special": false,
"text": " an"
},
{
"id": 8727,
"logprob": 0.0,
"special": false,
"text": " essential"
},
{
"id": 1702,
"logprob": 0.0,
"special": false,
"text": " part"
},
{
"id": 576,
"logprob": 0.0,
"special": false,
"text": " of"
},
{
"id": 573,
"logprob": 0.0,
"special": false,
"text": " the"
},
{
"id": 11859,
"logprob": -1.6953125,
"special": false,
"text": " lab"
},
{
"id": 2185,
"logprob": -1.3125,
"special": false,
"text": " process"
},
{
"id": 578,
"logprob": -1.5,
"special": false,
"text": " and"
}
],
"top_tokens": null
},
"generated_text": "Test request forms are an essential part of the lab process and"
}

View File

@ -0,0 +1,358 @@
[
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 1736,
"logprob": -2.09375,
"special": false,
"text": " form"
},
{
"id": 109,
"logprob": -1.9140625,
"special": false,
"text": "\n\n"
},
{
"id": 651,
"logprob": -2.453125,
"special": false,
"text": "The"
},
{
"id": 2121,
"logprob": -1.8984375,
"special": false,
"text": " test"
},
{
"id": 3853,
"logprob": -0.23535156,
"special": false,
"text": " request"
},
{
"id": 1736,
"logprob": -0.091308594,
"special": false,
"text": " form"
},
{
"id": 603,
"logprob": -0.96875,
"special": false,
"text": " is"
},
{
"id": 1671,
"logprob": -1.6484375,
"special": false,
"text": " used"
},
{
"id": 577,
"logprob": -0.43164062,
"special": false,
"text": " to"
},
{
"id": 3853,
"logprob": -1.2421875,
"special": false,
"text": " request"
}
],
"top_tokens": null
},
"generated_text": " form\n\nThe test request form is used to request"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 1736,
"logprob": -2.09375,
"special": false,
"text": " form"
},
{
"id": 109,
"logprob": -1.9140625,
"special": false,
"text": "\n\n"
},
{
"id": 651,
"logprob": -2.453125,
"special": false,
"text": "The"
},
{
"id": 2121,
"logprob": -1.8984375,
"special": false,
"text": " test"
},
{
"id": 3853,
"logprob": -0.23535156,
"special": false,
"text": " request"
},
{
"id": 1736,
"logprob": -0.091308594,
"special": false,
"text": " form"
},
{
"id": 603,
"logprob": -0.96875,
"special": false,
"text": " is"
},
{
"id": 1671,
"logprob": -1.6484375,
"special": false,
"text": " used"
},
{
"id": 577,
"logprob": -0.43164062,
"special": false,
"text": " to"
},
{
"id": 3853,
"logprob": -1.2421875,
"special": false,
"text": " request"
}
],
"top_tokens": null
},
"generated_text": " form\n\nThe test request form is used to request"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 1736,
"logprob": -2.09375,
"special": false,
"text": " form"
},
{
"id": 109,
"logprob": -1.9140625,
"special": false,
"text": "\n\n"
},
{
"id": 651,
"logprob": -2.453125,
"special": false,
"text": "The"
},
{
"id": 2121,
"logprob": -1.8984375,
"special": false,
"text": " test"
},
{
"id": 3853,
"logprob": -0.23535156,
"special": false,
"text": " request"
},
{
"id": 1736,
"logprob": -0.091308594,
"special": false,
"text": " form"
},
{
"id": 603,
"logprob": -0.96875,
"special": false,
"text": " is"
},
{
"id": 1671,
"logprob": -1.6484375,
"special": false,
"text": " used"
},
{
"id": 577,
"logprob": -0.43164062,
"special": false,
"text": " to"
},
{
"id": 3853,
"logprob": -1.2421875,
"special": false,
"text": " request"
}
],
"top_tokens": null
},
"generated_text": " form\n\nThe test request form is used to request"
},
{
"details": {
"best_of_sequences": null,
"finish_reason": "length",
"generated_tokens": 10,
"prefill": [
{
"id": 2,
"logprob": null,
"text": "<bos>"
},
{
"id": 2015,
"logprob": -10.0,
"text": "Test"
},
{
"id": 3853,
"logprob": -10.875,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 1736,
"logprob": -2.09375,
"special": false,
"text": " form"
},
{
"id": 109,
"logprob": -1.9140625,
"special": false,
"text": "\n\n"
},
{
"id": 651,
"logprob": -2.453125,
"special": false,
"text": "The"
},
{
"id": 2121,
"logprob": -1.8984375,
"special": false,
"text": " test"
},
{
"id": 3853,
"logprob": -0.23535156,
"special": false,
"text": " request"
},
{
"id": 1736,
"logprob": -0.091308594,
"special": false,
"text": " form"
},
{
"id": 603,
"logprob": -0.96875,
"special": false,
"text": " is"
},
{
"id": 1671,
"logprob": -1.6484375,
"special": false,
"text": " used"
},
{
"id": 577,
"logprob": -0.43164062,
"special": false,
"text": " to"
},
{
"id": 3853,
"logprob": -1.2421875,
"special": false,
"text": " request"
}
],
"top_tokens": null
},
"generated_text": " form\n\nThe test request form is used to request"
}
]

View File

@ -135,129 +135,129 @@
"special": false,
"text": "\",\""
},
{
"id": 4230,
"logprob": -0.020492554,
"special": false,
"text": "last"
},
{
"id": 1170,
"logprob": -0.0013818741,
"special": false,
"text": "Name"
},
{
"id": 4710,
"logprob": -0.0067749023,
"special": false,
"text": "\":\""
},
{
"id": 29950,
"logprob": -0.11578369,
"special": false,
"text": "H"
},
{
"id": 14339,
"logprob": -0.004131317,
"special": false,
"text": "olt"
},
{
"id": 29920,
"logprob": -0.0033359528,
"special": false,
"text": "z"
},
{
"id": 3284,
"logprob": -0.20471191,
"special": false,
"text": "\",\""
},
{
"id": 29882,
"logprob": -0.0069274902,
"logprob": -0.08862305,
"special": false,
"text": "h"
},
{
"id": 20838,
"logprob": -0.19580078,
"id": 711,
"logprob": -0.66259766,
"special": false,
"text": "obb"
"text": "ob"
},
{
"id": 29891,
"logprob": -2.2649765e-06,
"id": 1609,
"logprob": -5.51939e-05,
"special": false,
"text": "y"
"text": "by"
},
{
"id": 4710,
"logprob": -0.32080078,
"logprob": -0.23120117,
"special": false,
"text": "\":\""
},
{
"id": 29911,
"logprob": -2.1035156,
"logprob": -2.3730469,
"special": false,
"text": "T"
},
{
"id": 11003,
"logprob": -0.020767212,
"logprob": -0.032104492,
"special": false,
"text": "rees"
},
{
"id": 3284,
"logprob": -0.6010742,
"logprob": -0.22021484,
"special": false,
"text": "\",\""
},
{
"id": 4230,
"logprob": -0.06726074,
"special": false,
"text": "last"
},
{
"id": 1170,
"logprob": -0.003501892,
"special": false,
"text": "Name"
},
{
"id": 4710,
"logprob": -0.0045661926,
"special": false,
"text": "\":\""
},
{
"id": 29950,
"logprob": -0.12512207,
"special": false,
"text": "H"
},
{
"id": 14339,
"logprob": -0.009552002,
"special": false,
"text": "olt"
},
{
"id": 29920,
"logprob": -0.00042438507,
"special": false,
"text": "z"
},
{
"id": 3284,
"logprob": -0.11651611,
"special": false,
"text": "\",\""
},
{
"id": 29876,
"logprob": -0.57666016,
"logprob": -0.29736328,
"special": false,
"text": "n"
},
{
"id": 398,
"logprob": -0.0061073303,
"logprob": -0.003030777,
"special": false,
"text": "um"
},
{
"id": 29907,
"logprob": -0.45703125,
"logprob": -0.3774414,
"special": false,
"text": "C"
},
{
"id": 1446,
"logprob": -0.0002872944,
"logprob": -0.0003130436,
"special": false,
"text": "ats"
},
{
"id": 1115,
"logprob": -0.0021018982,
"logprob": -0.0021514893,
"special": false,
"text": "\":"
},
{
"id": 29906,
"logprob": -0.08996582,
"logprob": -0.071899414,
"special": false,
"text": "2"
},
{
"id": 29913,
"logprob": -0.021697998,
"logprob": -0.018997192,
"special": false,
"text": "}"
},
@ -270,5 +270,5 @@
],
"top_tokens": null
},
"generated_text": "{\"firstName\":\"David\",\"lastName\":\"Holtz\",\"hobby\":\"Trees\",\"numCats\":2}"
"generated_text": "{\"firstName\":\"David\",\"hobby\":\"Trees\",\"lastName\":\"Holtz\",\"numCats\":2}"
}

View File

@ -18,7 +18,6 @@ async def flash_llama_awq(flash_llama_awq_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq(flash_llama_awq, response_snapshot):
response = await flash_llama_awq.generate(
"What is Deep Learning?", max_new_tokens=10, decoder_input_details=True
@ -33,7 +32,6 @@ async def test_flash_llama_awq(flash_llama_awq, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_all_params(flash_llama_awq, response_snapshot):
response = await flash_llama_awq.generate(
"What is Deep Learning?",
@ -55,7 +53,6 @@ async def test_flash_llama_awq_all_params(flash_llama_awq, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_load(flash_llama_awq, generate_load, response_snapshot):
responses = await generate_load(
flash_llama_awq, "What is Deep Learning?", max_new_tokens=10, n=4

View File

@ -18,7 +18,6 @@ async def flash_llama_awq_sharded(flash_llama_awq_handle_sharded):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_sharded(flash_llama_awq_sharded, response_snapshot):
response = await flash_llama_awq_sharded.generate(
"What is Deep Learning?", max_new_tokens=10, decoder_input_details=True
@ -33,7 +32,6 @@ async def test_flash_llama_awq_sharded(flash_llama_awq_sharded, response_snapsho
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_awq_load_sharded(
flash_llama_awq_sharded, generate_load, response_snapshot
):

View File

@ -0,0 +1,61 @@
import pytest
@pytest.fixture(scope="module")
def flash_gemma_handle(launcher):
with launcher("gg-hf/gemma-2b", num_shard=1) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_gemma(flash_gemma_handle):
await flash_gemma_handle.health(300)
return flash_gemma_handle.client
@pytest.mark.skip
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_gemma(flash_gemma, response_snapshot):
response = await flash_gemma.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.skip
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_gemma_all_params(flash_gemma, response_snapshot):
response = await flash_gemma.generate(
"Test request",
max_new_tokens=10,
repetition_penalty=1.2,
return_full_text=True,
stop_sequences=["test"],
temperature=0.5,
top_p=0.9,
top_k=10,
truncate=5,
typical_p=0.9,
watermark=True,
decoder_input_details=True,
seed=0,
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.skip
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_gemma_load(flash_gemma, generate_load, response_snapshot):
responses = await generate_load(flash_gemma, "Test request", max_new_tokens=10, n=4)
assert len(responses) == 4
assert all([r.generated_text == responses[0].generated_text for r in responses])
assert responses == response_snapshot

View File

@ -14,7 +14,6 @@ async def flash_medusa(flash_medusa_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_medusa_simple(flash_medusa, response_snapshot):
response = await flash_medusa.generate(
"What is Deep Learning?", max_new_tokens=10, decoder_input_details=True
@ -25,7 +24,6 @@ async def test_flash_medusa_simple(flash_medusa, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_medusa_all_params(flash_medusa, response_snapshot):
response = await flash_medusa.generate(
"What is Deep Learning?",
@ -48,7 +46,6 @@ async def test_flash_medusa_all_params(flash_medusa, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_medusa_load(flash_medusa, generate_load, response_snapshot):
responses = await generate_load(
flash_medusa, "What is Deep Learning?", max_new_tokens=10, n=4

View File

@ -14,7 +14,6 @@ async def flash_mistral(flash_mistral_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_mistral(flash_mistral, response_snapshot):
response = await flash_mistral.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
@ -26,7 +25,6 @@ async def test_flash_mistral(flash_mistral, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_mistral_all_params(flash_mistral, response_snapshot):
response = await flash_mistral.generate(
"Test request",
@ -49,7 +47,6 @@ async def test_flash_mistral_all_params(flash_mistral, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_mistral_load(flash_mistral, generate_load, response_snapshot):
responses = await generate_load(
flash_mistral, "Test request", max_new_tokens=10, n=4

View File

@ -14,7 +14,6 @@ async def flash_phi(flash_phi_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_phi(flash_phi, response_snapshot):
response = await flash_phi.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
@ -26,7 +25,6 @@ async def test_flash_phi(flash_phi, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_phi_all_params(flash_phi, response_snapshot):
response = await flash_phi.generate(
"Test request",
@ -50,7 +48,6 @@ async def test_flash_phi_all_params(flash_phi, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_phi_load(flash_phi, generate_load, response_snapshot):
responses = await generate_load(flash_phi, "Test request", max_new_tokens=10, n=4)

View File

@ -14,7 +14,6 @@ async def flash_starcoder_gptq(flash_starcoder_gptq_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder_gptq(flash_starcoder_gptq, generous_response_snapshot):
response = await flash_starcoder_gptq.generate(
"def geometric_mean(L: List[float]):",
@ -26,7 +25,6 @@ async def test_flash_starcoder_gptq(flash_starcoder_gptq, generous_response_snap
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder_gptq_default_params(
flash_starcoder_gptq, generous_response_snapshot
):
@ -43,7 +41,6 @@ async def test_flash_starcoder_gptq_default_params(
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_starcoder_gptq_load(
flash_starcoder_gptq, generate_load, generous_response_snapshot
):

View File

@ -19,7 +19,6 @@ async def flash_llama_grammar(flash_llama_grammar_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"Test request", max_new_tokens=10, decoder_input_details=True
@ -30,7 +29,6 @@ async def test_flash_llama_grammar(flash_llama_grammar, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_regex(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"Whats Googles DNS",
@ -49,7 +47,6 @@ async def test_flash_llama_grammar_regex(flash_llama_grammar, response_snapshot)
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_json(flash_llama_grammar, response_snapshot):
response = await flash_llama_grammar.generate(
"info: david holtz like trees and has two cats. ",
@ -92,13 +89,12 @@ async def test_flash_llama_grammar_json(flash_llama_grammar, response_snapshot):
assert response.details.generated_tokens == 30
assert (
response.generated_text
== '{"firstName":"David","lastName":"Holtz","hobby":"Trees","numCats":2}'
== '{"firstName":"David","hobby":"Trees","lastName":"Holtz","numCats":2}'
)
assert response == response_snapshot
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_load(
flash_llama_grammar, generate_load, response_snapshot
):
@ -130,7 +126,6 @@ async def test_flash_llama_grammar_load(
# this is the same as the above test, but only fires off a single request
# this is only to ensure that the parallel and single inference produce the same result
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_llama_grammar_single_load_instance(
flash_llama_grammar, generate_load, response_snapshot
):

View File

@ -14,7 +14,6 @@ async def fused_kernel_mamba(fused_kernel_mamba_handle):
@pytest.mark.asyncio
@pytest.mark.private
async def test_mamba(fused_kernel_mamba, response_snapshot):
response = await fused_kernel_mamba.generate(
"What is Deep Learning?", max_new_tokens=10
@ -26,7 +25,6 @@ async def test_mamba(fused_kernel_mamba, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_mamba_all_params(fused_kernel_mamba, response_snapshot):
response = await fused_kernel_mamba.generate(
"blue, red, yellow, ",
@ -53,7 +51,6 @@ async def test_mamba_all_params(fused_kernel_mamba, response_snapshot):
@pytest.mark.asyncio
@pytest.mark.private
async def test_mamba_load(
fused_kernel_mamba, generate_load, generous_response_snapshot
):

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "text-generation-integration-tests"
version = "1.4.1"
version = "1.4.2"
description = "Text Generation Inference integration tests"
authors = ["Nicolas Patry <nicolas@huggingface.co>"]

View File

@ -22,6 +22,7 @@ text-generation-client = { path = "client" }
clap = { version = "4.4.5", features = ["derive", "env"] }
futures = "0.3.28"
hf-hub = { version = "0.3.0", features = ["tokio"] }
jsonschema = { version = "0.17.1", features = ["draft202012"] }
metrics = "0.21.1"
metrics-exporter-prometheus = { version = "0.12.1", features = [] }
nohash-hasher = "0.2.0"

View File

@ -64,39 +64,16 @@ impl HubTokenizerConfig {
}
}
mod json_object_or_string_to_string {
use serde::{Deserialize, Deserializer};
use serde_json::Value;
// A custom deserializer that treats both strings and objects as strings.
// This provides flexibility with input formats for the 'grammar' field.
pub fn deserialize<'de, D>(deserializer: D) -> Result<String, D::Error>
where
D: Deserializer<'de>,
{
let value = Value::deserialize(deserializer)?;
match value {
Value::String(s) => Ok(s),
// Safely handle serialization and return an error if it fails
Value::Object(o) => {
serde_json::to_string(&o).map_err(|e| serde::de::Error::custom(e.to_string()))
}
_ => Err(serde::de::Error::custom(
"expected string or object for grammar",
)),
}
}
}
#[derive(Clone, Debug, Deserialize, ToSchema)]
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
#[serde(
rename = "json",
deserialize_with = "json_object_or_string_to_string::deserialize"
)]
Json(String),
/// A string that represents a [JSON Schema](https://json-schema.org/).
///
/// JSON Schema is a declarative language that allows to annotate JSON documents
/// with types and descriptions.
#[serde(rename = "json")]
#[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
Json(serde_json::Value),
#[serde(rename = "regex")]
Regex(String),
}
@ -370,7 +347,7 @@ pub(crate) struct ChatCompletionTopLogprob {
logprob: f32,
}
#[derive(Clone, Deserialize, Serialize)]
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Usage {
pub prompt_tokens: u32,
pub completion_tokens: u32,

View File

@ -270,7 +270,7 @@ async fn main() -> Result<(), RouterError> {
let compat_return_full_text = match &model_info.pipeline_tag {
None => {
tracing::warn!("no pipeline tag found for model {tokenizer_name}");
false
true
}
Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
};

View File

@ -3,11 +3,12 @@ use crate::health::Health;
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
use crate::{
BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
ChatCompletionLogprobs, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk,
ChatCompletionComplete, ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs,
ChatCompletionTopLogprob, ChatRequest, CompatGenerateRequest, Details, ErrorResponse,
FinishReason, GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
HubTokenizerConfig, Infer, Info, Message, PrefillToken, SimpleToken, StreamDetails,
StreamResponse, Token, TokenizeResponse, Validation, VertexRequest, VertexResponse,
StreamResponse, Token, TokenizeResponse, Usage, Validation, VertexRequest, VertexResponse,
};
use axum::extract::Extension;
use axum::http::{HeaderMap, Method, StatusCode};
@ -893,11 +894,16 @@ pub async fn run(
Info,
CompatGenerateRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
GenerateParameters,
PrefillToken,
@ -912,6 +918,7 @@ pub async fn run(
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
)
),
tags(

View File

@ -1,7 +1,9 @@
/// Payload validation logic
use crate::validation::ValidationError::{BestOfSampling, BestOfSeed, EmptyInput};
use crate::{GenerateParameters, GenerateRequest, GrammarType};
use jsonschema::{Draft, JSONSchema};
use rand::{thread_rng, Rng};
use serde_json::Value;
use text_generation_client::{
GrammarType as ProtoGrammarType, NextTokenChooserParameters, StoppingCriteriaParameters,
};
@ -313,8 +315,29 @@ impl Validation {
return Err(ValidationError::Grammar);
}
match grammar {
// currently both are handled the same way since compilation is done in Python
GrammarType::Json(json) => (json, ProtoGrammarType::Json.into()),
GrammarType::Json(json) => {
let json = match json {
// if value is a string, we need to parse it again to make sure its
// a valid json
Value::String(s) => serde_json::from_str(&s)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string())),
Value::Object(_) => Ok(json),
_ => Err(ValidationError::Grammar),
}?;
// Check if the json is a valid JSONSchema
JSONSchema::options()
.with_draft(Draft::Draft202012)
.compile(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?;
(
// Serialize json to string
serde_json::to_string(&json)
.map_err(|e| ValidationError::InvalidGrammar(e.to_string()))?,
ProtoGrammarType::Json.into(),
)
}
GrammarType::Regex(regex) => (regex, ProtoGrammarType::Regex.into()),
}
}
@ -486,6 +509,8 @@ pub enum ValidationError {
Tokenizer(String),
#[error("grammar is not supported")]
Grammar,
#[error("grammar is not valid: {0}")]
InvalidGrammar(String),
}
#[cfg(test)]

View File

@ -1,6 +1,6 @@
[tool.poetry]
name = "text-generation-server"
version = "1.4.1"
version = "1.4.2"
description = "Text Generation Inference Python gRPC Server"
authors = ["Olivier Dehaene <olivier@huggingface.co>"]

View File

@ -52,6 +52,9 @@ try:
from text_generation_server.models.flash_llama import (
FlashLlama,
)
from text_generation_server.models.flash_gemma import (
FlashGemma,
)
from text_generation_server.models.flash_santacoder import (
FlashSantacoderSharded,
)
@ -312,6 +315,28 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "gemma":
if FLASH_ATTENTION:
return FlashGemma(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
use_medusa=use_medusa,
)
elif sharded:
raise NotImplementedError(
FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate")
)
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type in ["RefinedWeb", "RefinedWebModel", "falcon"]:
if sharded:

View File

@ -0,0 +1,609 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
import os
from shutil import copyfile
from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from tokenizers import processors
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from transformers.utils import logging
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
TensorParallelHead,
get_linear,
FastRMSNorm,
)
GemmaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "tokenizer.model",
"tokenizer_file": "tokenizer.json",
}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer.model",
},
"tokenizer_file": {
"hf-internal-testing/llama-tokenizer": "https://huggingface.co/hf-internal-testing/llama-tokenizer/resolve/main/tokenizer_config.json",
},
}
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
# fmt: off
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information."""
# fmt: on
class GemmaTokenizerFast(PreTrainedTokenizerFast):
vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
slow_tokenizer_class = GemmaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
add_bos_token=True,
add_eos_token=False,
use_default_system_prompt=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
use_default_system_prompt=use_default_system_prompt,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.use_default_system_prompt = use_default_system_prompt
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "")
+ VOCAB_FILES_NAMES["vocab_file"],
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
@property
def default_chat_template(self):
raise NotImplementedError
# TODO ArthurZ let's rely on the template processor instead, refactor all fast tokenizers
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
class GemmaConfig(PretrainedConfig):
def __init__(
self,
vocab_size=256128,
hidden_size=3072,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.head_dim = head_dim
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class GemmaFastRMSNorm(FastRMSNorm):
@classmethod
def load(cls, prefix, weights, eps=1e-6):
weight = weights.get_tensor(f"{prefix}.weight") + 1
return cls(weight, eps)
def load_attention(config, prefix, weights):
if config.num_attention_heads != config.num_key_value_heads:
return _load_gqa(config, prefix, weights)
else:
return TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=False,
)
def _load_gqa(config, prefix: str, weights):
assert config.num_attention_heads % weights.process_group.size() == 0
weight = weights.get_multi_weights_col(
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
quantize=config.quantize,
dim=0,
)
if config.quantize not in ["gptq", "awq"]:
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
head_size = config.head_dim
num_heads = config.num_attention_heads // weights.process_group.size()
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
assert list(weight.shape) == [
(num_heads + 2 * num_key_value_heads) * head_size,
config.hidden_size,
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
return TensorParallelColumnLinear(
get_linear(weight, bias=None, quantize=config.quantize)
)
class FlashGemmaAttention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.head_size = config.head_dim
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
base=config.rope_theta,
device=weights.device,
)
self.softmax_scale = self.head_size**-0.5
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = (
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = load_attention(config, prefix, weights)
self.o_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.o_proj",
weights=weights,
bias=False,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
def forward(
self,
hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
2 * self.head_size * self.num_key_value_heads,
],
dim=1,
)
query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
)
# output tensor
attn_output = torch.empty_like(query)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
flash_attn.attention(
query,
torch.select(kv, dim=1, index=0),
torch.select(kv, dim=1, index=1),
attn_output,
cu_seqlen_prefill,
max_s,
self.softmax_scale,
)
# Decode
else:
paged_attention.attention(
attn_output,
query,
kv_cache[0],
kv_cache[1],
self.kv_head_mapping,
self.softmax_scale,
block_tables,
input_lengths,
max_s,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
class GemmaMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
act = config.hidden_act
self.act = (
ACT2FN[act]
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
),
)
)
# Fuse gate and up proj
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
weights=weights,
dim=0,
bias=False,
)
self.down_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.down_proj",
weights=weights,
bias=False,
)
self.intermediate_size = (
config.intermediate_size // weights.process_group.size()
)
def forward(self, hidden_states):
gate_up_states = self.gate_up_proj(hidden_states)
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
return self.down_proj(self.act(gate_up_states[:, 0]) * gate_up_states[:, 1])
class FlashGemmaLayer(nn.Module):
def __init__(self, layer_id, config, weights):
super().__init__()
prefix = f"model.layers.{layer_id}"
self.self_attn = FlashGemmaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.mlp = GemmaMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = GemmaFastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
)
self.post_attention_layernorm = GemmaFastRMSNorm.load(
prefix=f"{prefix}.post_attention_layernorm",
weights=weights,
eps=config.rms_norm_eps,
)
def forward(
self,
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
normed_hidden_states, res = self.input_layernorm(hidden_states, residual)
# Self Attention
attn_output = self.self_attn(
normed_hidden_states,
cos,
sin,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
)
# faster post attention rms norm
normed_attn_res_output, attn_res = self.post_attention_layernorm(
attn_output, res
)
mlp_output = self.mlp(normed_attn_res_output)
return mlp_output, attn_res
class FlashGemmaModel(torch.nn.Module):
def __init__(self, config, weights):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
embed_norm = config.hidden_size**0.5
self.embed_tokens = TensorParallelEmbedding(
prefix="model.embed_tokens", weights=weights
)
self.embed_tokens.weight *= embed_norm
self.layers = nn.ModuleList(
[
FlashGemmaLayer(
layer_id,
config,
weights,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = GemmaFastRMSNorm.load(
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
)
self.gradient_checkpointing = False
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
residual = None
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cos,
sin,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
input_lengths,
max_s,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class FlashGemmaForCausalLM(torch.nn.Module):
def __init__(self, config, weights):
super().__init__()
self.model = FlashGemmaModel(config, weights)
self.lm_head = TensorParallelHead.load(
config,
prefix="model.embed_tokens" if config.tie_word_embeddings else "lm_head",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
lm_head_indices: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = self.model(
input_ids,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.lm_head(hidden_states)
return logits

View File

@ -0,0 +1,104 @@
import torch
import torch.distributed
from opentelemetry import trace
from typing import Optional
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
GemmaTokenizerFast,
FlashGemmaForCausalLM,
GemmaConfig,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
tracer = trace.get_tracer(__name__)
class FlashGemma(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
use_medusa: Optional[str] = None,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashGemma is only available on GPU")
tokenizer = GemmaTokenizerFast.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
use_fast=True,
from_slow=False,
)
config = GemmaConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
if config.quantize in ["gptq", "awq"]:
weights._set_gptq_params(model_id, revision)
model = FlashGemmaForCausalLM(config, weights)
if use_medusa:
from text_generation_server.utils.medusa import MedusaModel
from huggingface_hub import hf_hub_download
import json
import os
from pathlib import Path
is_local_model = (
Path(use_medusa).exists() and Path(use_medusa).is_dir()
) or os.getenv("WEIGHTS_CACHE_OVERRIDE", None) is not None
if not is_local_model:
medusa_config = hf_hub_download(
use_medusa, revision=revision, filename="config.json"
)
medusa_head = hf_hub_download(
use_medusa, revision=revision, filename="medusa_lm_head.pt"
)
else:
medusa_config = str(Path(use_medusa) / "config.json")
medusa_head = str(Path(use_medusa) / "medusa_lm_head.pt")
with open(medusa_config, "r") as f:
config = json.load(f)
medusa_sf = medusa_head[: -len(".pt")] + ".safetensors"
weights = Weights(
[medusa_sf], device, dtype, process_group=self.process_group
)
lm_head = model.lm_head
model.lm_head = MedusaModel(config, weights, lm_head)
torch.distributed.barrier(group=self.process_group)
super(FlashGemma, self).__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),
num_kv_heads=model.model.num_key_value_heads,
head_size=model.model.head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)

View File

@ -328,7 +328,6 @@ class HeterogeneousNextTokenChooser:
scores = scores.view(B, S, -1)
next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long)
mask = torch.full((scores.shape[-1],), -math.inf, device=self.device)
for j in range(S):
_scores = scores[:, j]
@ -338,10 +337,10 @@ class HeterogeneousNextTokenChooser:
_scores = self.repetition_processor(input_ids, _scores)
if self.frequency_processor is not None:
_scores = self.frequency_processor(input_ids, _scores)
for warper in self.warpers:
_scores = warper(input_ids, _scores)
if self.grammar_processor is not None:
_scores = self.grammar_processor(_scores, self.fsm_grammar_states)
for warper in self.warpers:
_scores = warper(input_ids, _scores)
_next_ids = self.choice(_scores)
scores[:, j] = _scores
next_ids[:, j] = _next_ids