use modified vllm rope kernel when using rocm

This commit is contained in:
Felix Marty 2023-11-16 17:29:27 +00:00
parent 52c0e0e53b
commit 736e199737
7 changed files with 45 additions and 48 deletions

View File

@ -4,8 +4,8 @@ build-vllm-cuda: BRANCH=main
build-vllm-cuda: build-vllm build-vllm-cuda: build-vllm
build-vllm-rocm: REPOSITORY=https://github.com/fxmarty/vllm-public.git build-vllm-rocm: REPOSITORY=https://github.com/fxmarty/vllm-public.git
build-vllm-rocm: VLLM_COMMIT=65f4a79621b4d992cf97f6b84598804eb4ca87b6 build-vllm-rocm: VLLM_COMMIT=ad9b7c4095ef54419a0533d254f2ad84bd2dfcae
build-vllm-rocm: BRANCH=port-to-rocm build-vllm-rocm: BRANCH=rotary-no-positions-split-cos-sin
build-vllm-rocm: build-vllm build-vllm-rocm: build-vllm
vllm: vllm:

View File

@ -223,9 +223,6 @@ class FlashLlamaAttention(torch.nn.Module):
self.hidden_size = config.hidden_size self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads self.head_size = self.hidden_size // self.num_heads
# self.rotary_emb = PositionRotaryEmbedding.load(
# config=config, prefix=f"{prefix}.rotary_emb", weights=weights
# )
self.rotary_emb = PositionRotaryEmbedding.static( self.rotary_emb = PositionRotaryEmbedding.static(
config=config, config=config,
dim=self.head_size, dim=self.head_size,
@ -281,8 +278,7 @@ class FlashLlamaAttention(torch.nn.Module):
query = query.view(-1, self.num_heads, self.head_size) query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots

View File

@ -280,8 +280,7 @@ class MistralAttention(torch.nn.Module):
query = query.view(-1, self.num_heads, self.head_size) query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size) kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
if prefill_cache_indices is not None: if prefill_cache_indices is not None:
kv_to_cache = kv[prefill_cache_indices] kv_to_cache = kv[prefill_cache_indices]

View File

@ -135,8 +135,7 @@ class FlashNeoxAttention(torch.nn.Module):
qkv = qkv.view(-1, 3, self.num_heads, self.head_size) qkv = qkv.view(-1, 3, self.num_heads, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(qkv[:, 0], cos, sin) self.rotary_emb(qkv[:, 0], qkv[:, 1], cos, sin)
self.rotary_emb(qkv[:, 1], cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots qkv[:, 1], qkv[:, 2], kv_cache[0], kv_cache[1], slots

View File

@ -185,8 +185,7 @@ class FlashRWAttention(torch.nn.Module):
kv = kv.view(-1, 2, self.num_heads_kv, self.head_size) kv = kv.view(-1, 2, self.num_heads_kv, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=1, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots kv[:, 0], kv[:, 1], kv_cache[0], kv_cache[1], slots
@ -301,8 +300,7 @@ class FlashRWLargeAttention(torch.nn.Module):
query = query.reshape(-1, self.num_groups * self.num_heads, self.head_size) query = query.reshape(-1, self.num_groups * self.num_heads, self.head_size)
# Inplace rotary # Inplace rotary
self.rotary_emb(query, cos, sin) self.rotary_emb(query, torch.select(kv, dim=2, index=0), cos, sin)
self.rotary_emb(torch.select(kv, dim=2, index=0), cos, sin)
paged_attention.reshape_and_cache( paged_attention.reshape_and_cache(
kv[:, :, 0].contiguous(), kv[:, :, 0].contiguous(),

View File

@ -425,8 +425,6 @@ class IdeficsRMSNorm(nn.Module):
self.weight.data, self.weight.data,
self.variance_epsilon, self.variance_epsilon,
) )
if res is None:
res = hidden_states
if unwrap: if unwrap:
out = out.view(*shape) out = out.view(*shape)
@ -613,15 +611,12 @@ class IdeficsAttention(nn.Module):
position_ids.view(-1), max_s, hidden_states.dtype position_ids.view(-1), max_s, hidden_states.dtype
) )
shape = query_states.shape query_shape = query_states.shape
query_states = self.rotary_emb( key_shape = key_states.shape
query_states.view(-1, *shape[2:]), cos, sin self.rotary_emb(query_states.view(-1, *query_shape[2:]), key_states.reshape(-1, *key_shape[2:]), cos, sin)
).view(shape)
shape = key_states.shape query_states = query_states.view(query_shape)
key_states = self.rotary_emb( key_states = key_states.view(key_shape)
key_states.reshape(-1, *shape[2:]), cos, sin
).view(shape)
query_states = query_states.transpose(1, 2) query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2) key_states = key_states.transpose(1, 2)

View File

@ -555,6 +555,8 @@ try:
if IS_CUDA_SYSTEM: if IS_CUDA_SYSTEM:
from flash_attn.layers.rotary import RotaryEmbedding from flash_attn.layers.rotary import RotaryEmbedding
import rotary_emb import rotary_emb
elif IS_ROCM_SYSTEM:
from vllm import pos_encoding_ops
def _create_inv_freq(dim, base, device): def _create_inv_freq(dim, base, device):
inv_freq = 1.0 / ( inv_freq = 1.0 / (
@ -583,32 +585,34 @@ try:
self.scaling_factor = scaling_factor self.scaling_factor = scaling_factor
self.dynamic_args = None self.dynamic_args = None
def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor): def forward(self, query: torch.Tensor, key: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
# Such controlflows may add some overhead. # Such controlflows may add some overhead.
if IS_CUDA_SYSTEM: if IS_CUDA_SYSTEM:
rotary_dim = cos.shape[-1] rotary_dim = cos.shape[-1]
x1 = x[..., :rotary_dim] q1 = query[..., :rotary_dim]
x2 = x[..., rotary_dim : 2 * rotary_dim] q2 = query[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False) rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
return x
k1 = key[..., :rotary_dim]
k2 = key[..., rotary_dim : 2 * rotary_dim]
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
elif IS_ROCM_SYSTEM: elif IS_ROCM_SYSTEM:
# For RoCm, we fall back on a manual implementation given that Flash Attention's ROPE kernel can not be compiled for RoCm. # NOTE: On RoCm systems, we use a ROPE implementatation adapted from VLLM which launches a single kernel for both query/key, contrary to flash-attn implementation used on NVIDIA systems.
# We could use VLLM ROPE kernel here (compatible with RoCm), but the API is different and would require position_ids: https://github.com/vllm-project/vllm/blob/1a2bbc930135cd3b94fbff2aafbdf5c568acc8bd/csrc/pos_encoding.cpp#L3 # Compiling flash-attn rotary on RoCm, it appears hipcc is unable to unroll loops, resulting in an even slower inference compared to eager: https://github.com/pytorch/pytorch/issues/113773
rotary_dim = cos.shape[-1]
dtype = x.dtype head_size = query.shape[-1]
x_upcast = x.to(torch.float32)
cos = cos.to(torch.float32)
sin = sin.to(torch.float32)
x1 = x_upcast[..., :rotary_dim] # Inplace operation, updating query and key.
x2 = x_upcast[..., rotary_dim : 2 * rotary_dim] pos_encoding_ops.rotary_embedding(
query,
# Flash Attention rotary_emb kernel casts everything to float, not sure why, so we do so here as well. key,
x[..., :rotary_dim] = (x1 * cos - x2 * sin).to(dtype) head_size,
x[..., rotary_dim : 2 * rotary_dim] = (x1 * sin + x2 * cos).to(dtype) cos,
return x sin,
True
)
else: else:
raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.") raise ValueError("Your system seem to be not supported. Please check your install or open an issue at https://github.com/huggingface/text-generation-inference/issues with a clear reproduction.")
@ -714,12 +718,18 @@ try:
""" """
Return cos and sin for the asked position ids Return cos and sin for the asked position ids
""" """
if IS_ROCM_SYSTEM:
# For RoCm, we always use float cos/sin to avoid a cast.
# For NVIDIA, for some reason, the flash-attn rotary kernel requires cos/sin and query/key to be of same dtype: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary.cpp#L26
# But later on goes and cast cos/sin to float anyway: https://github.com/Dao-AILab/flash-attention/blob/017716451d446e464dde9aca3a3c1ed2209caaa9/csrc/rotary/rotary_cuda.cu#L29, which looks suboptimal.
dtype = torch.float32
self._update_cos_sin_cache(dtype, position_ids.device, max_s) self._update_cos_sin_cache(dtype, position_ids.device, max_s)
cos = torch.index_select(self._cos_cached, 0, position_ids) cos = torch.index_select(self._cos_cached, 0, position_ids)
sin = torch.index_select(self._sin_cached, 0, position_ids) sin = torch.index_select(self._sin_cached, 0, position_ids)
return cos.unsqueeze(1), sin.unsqueeze(1) # Note: this unsqueeze is not necessary on RoCm + VLLM ROPE implementation, but we leave it as is to avoid yet an other controlflow.
return cos.unsqueeze(1).float(), sin.unsqueeze(1).float()
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding): class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor): def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):