add speculative head

This commit is contained in:
OlivierDehaene 2024-02-28 14:58:43 +01:00
parent d1d757e676
commit 725f0e350d
17 changed files with 431 additions and 355 deletions

View File

@ -5,80 +5,80 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 369,
"text": " for",
"logprob": -2.1914062,
"special": false
"id": 198,
"logprob": -2.9023438,
"special": false,
"text": "\n"
},
{
"id": 279,
"text": " the",
"logprob": -2.6210938,
"special": false
"id": 2,
"logprob": -2.9160156,
"special": false,
"text": "#"
},
{
"id": 2701,
"text": " following",
"logprob": -3.6445312,
"special": false
"id": 4230,
"logprob": -3.1035156,
"special": false,
"text": " Create"
},
{
"id": 729,
"text": " function",
"logprob": -2.9648438,
"special": false
"id": 264,
"logprob": -1.1025391,
"special": false,
"text": " a"
},
{
"id": 271,
"text": "\n\n",
"logprob": -1.9111328,
"special": false
"id": 1681,
"logprob": -1.6914062,
"special": false,
"text": " request"
},
{
"id": 31946,
"text": "Inputs",
"logprob": -1.6855469,
"special": false
"id": 198,
"logprob": -1.1953125,
"special": false,
"text": "\n"
},
{
"id": 25,
"text": ":",
"logprob": -1.6093254e-05,
"special": false
"id": 2035,
"logprob": -1.3203125,
"special": false,
"text": "request"
},
{
"id": 707,
"text": " def",
"logprob": -0.5678711,
"special": false
"id": 284,
"logprob": -0.13537598,
"special": false,
"text": " ="
},
{
"id": 1477,
"text": " find",
"logprob": -2.5917969,
"special": false
"id": 7388,
"logprob": -1.2402344,
"special": false,
"text": " requests"
},
{
"id": 6345,
"text": "_max",
"logprob": -1.8349609,
"special": false
"id": 670,
"logprob": -0.2775879,
"special": false,
"text": ".get"
}
],
],
"top_tokens": null
},
"generated_text": " for the following function\n\nInputs: def find_max"
"generated_text": "\n# Create a request\nrequest = requests.get"
}

View File

@ -5,80 +5,80 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": 0,
"tokens": [
{
"id": 311,
"text": " to",
"logprob": -1.4472656,
"special": false
"id": 311,
"logprob": -1.4277344,
"special": false,
"text": " to"
},
{
"id": 633,
"text": " get",
"logprob": -0.4741211,
"special": false
"id": 279,
"logprob": -0.65478516,
"special": false,
"text": " the"
},
{
"id": 264,
"text": " a",
"logprob": 0.0,
"special": false
"id": 2473,
"logprob": -1.8300781,
"special": false,
"text": " service"
},
{
"id": 1140,
"text": " list",
"logprob": 0.0,
"special": false
"id": 382,
"logprob": -0.75,
"special": false,
"text": ".\n\n"
},
{
"id": 315,
"text": " of",
"logprob": 0.0,
"special": false
"id": 286,
"logprob": -0.11621094,
"special": false,
"text": " "
},
{
"id": 678,
"text": " all",
"logprob": 0.0,
"special": false
"id": 549,
"logprob": 0.0,
"special": false,
"text": " :"
},
{
"id": 279,
"text": " the",
"logprob": -0.2590332,
"special": false
"id": 689,
"logprob": -0.48608398,
"special": false,
"text": "return"
},
{
"id": 3847,
"text": " users",
"logprob": -0.45239258,
"special": false
"id": 25,
"logprob": 0.0,
"special": false,
"text": ":"
},
{
"id": 304,
"text": " in",
"logprob": -0.12322998,
"special": false
"id": 5949,
"logprob": -0.5756836,
"special": false,
"text": " Response"
},
{
"id": 419,
"text": " this",
"logprob": -1.7275391,
"special": false
"id": 504,
"logprob": -0.24499512,
"special": false,
"text": " from"
}
],
"top_tokens": null
},
"generated_text": "Test request to get a list of all the users in this"
"generated_text": "Test request to the service.\n\n :return: Response from"
}

View File

@ -6,82 +6,82 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 369,
"text": " for",
"logprob": -2.1914062,
"special": false
"id": 198,
"logprob": -2.9023438,
"special": false,
"text": "\n"
},
{
"id": 279,
"text": " the",
"logprob": -2.6210938,
"special": false
"id": 2,
"logprob": -2.9140625,
"special": false,
"text": "#"
},
{
"id": 2701,
"text": " following",
"logprob": -3.6445312,
"special": false
"id": 4230,
"logprob": -3.1054688,
"special": false,
"text": " Create"
},
{
"id": 729,
"text": " function",
"logprob": -2.9648438,
"special": false
"id": 264,
"logprob": -1.0966797,
"special": false,
"text": " a"
},
{
"id": 271,
"text": "\n\n",
"logprob": -1.9111328,
"special": false
"id": 1681,
"logprob": -1.6914062,
"special": false,
"text": " request"
},
{
"id": 31946,
"text": "Inputs",
"logprob": -1.6855469,
"special": false
"id": 198,
"logprob": -1.1923828,
"special": false,
"text": "\n"
},
{
"id": 25,
"text": ":",
"logprob": -1.6093254e-05,
"special": false
"id": 2035,
"logprob": -1.3193359,
"special": false,
"text": "request"
},
{
"id": 707,
"text": " def",
"logprob": -0.5678711,
"special": false
"id": 284,
"logprob": -0.13586426,
"special": false,
"text": " ="
},
{
"id": 1477,
"text": " find",
"logprob": -2.5917969,
"special": false
"id": 7388,
"logprob": -1.2412109,
"special": false,
"text": " requests"
},
{
"id": 6345,
"text": "_max",
"logprob": -1.8349609,
"special": false
"id": 670,
"logprob": -0.2775879,
"special": false,
"text": ".get"
}
],
"top_tokens": null
},
"generated_text": " for the following function\n\nInputs: def find_max"
"generated_text": "\n# Create a request\nrequest = requests.get"
},
{
"details": {
@ -90,82 +90,82 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 369,
"text": " for",
"logprob": -2.1914062,
"special": false
"id": 198,
"logprob": -2.9023438,
"special": false,
"text": "\n"
},
{
"id": 279,
"text": " the",
"logprob": -2.6210938,
"special": false
"id": 2,
"logprob": -2.9140625,
"special": false,
"text": "#"
},
{
"id": 2701,
"text": " following",
"logprob": -3.6445312,
"special": false
"id": 4230,
"logprob": -3.1054688,
"special": false,
"text": " Create"
},
{
"id": 729,
"text": " function",
"logprob": -2.9648438,
"special": false
"id": 264,
"logprob": -1.0966797,
"special": false,
"text": " a"
},
{
"id": 271,
"text": "\n\n",
"logprob": -1.9111328,
"special": false
"id": 1681,
"logprob": -1.6914062,
"special": false,
"text": " request"
},
{
"id": 31946,
"text": "Inputs",
"logprob": -1.6855469,
"special": false
"id": 198,
"logprob": -1.1923828,
"special": false,
"text": "\n"
},
{
"id": 25,
"text": ":",
"logprob": -1.6093254e-05,
"special": false
"id": 2035,
"logprob": -1.3193359,
"special": false,
"text": "request"
},
{
"id": 707,
"text": " def",
"logprob": -0.5678711,
"special": false
"id": 284,
"logprob": -0.13586426,
"special": false,
"text": " ="
},
{
"id": 1477,
"text": " find",
"logprob": -2.5917969,
"special": false
"id": 7388,
"logprob": -1.2412109,
"special": false,
"text": " requests"
},
{
"id": 6345,
"text": "_max",
"logprob": -1.8349609,
"special": false
"id": 670,
"logprob": -0.2775879,
"special": false,
"text": ".get"
}
],
"top_tokens": null
},
"generated_text": " for the following function\n\nInputs: def find_max"
"generated_text": "\n# Create a request\nrequest = requests.get"
},
{
"details": {
@ -174,82 +174,82 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 369,
"text": " for",
"logprob": -2.1914062,
"special": false
"id": 198,
"logprob": -2.9023438,
"special": false,
"text": "\n"
},
{
"id": 279,
"text": " the",
"logprob": -2.6210938,
"special": false
"id": 2,
"logprob": -2.9140625,
"special": false,
"text": "#"
},
{
"id": 2701,
"text": " following",
"logprob": -3.6445312,
"special": false
"id": 4230,
"logprob": -3.1054688,
"special": false,
"text": " Create"
},
{
"id": 729,
"text": " function",
"logprob": -2.9648438,
"special": false
"id": 264,
"logprob": -1.0966797,
"special": false,
"text": " a"
},
{
"id": 271,
"text": "\n\n",
"logprob": -1.9111328,
"special": false
"id": 1681,
"logprob": -1.6914062,
"special": false,
"text": " request"
},
{
"id": 31946,
"text": "Inputs",
"logprob": -1.6855469,
"special": false
"id": 198,
"logprob": -1.1923828,
"special": false,
"text": "\n"
},
{
"id": 25,
"text": ":",
"logprob": -1.6093254e-05,
"special": false
"id": 2035,
"logprob": -1.3193359,
"special": false,
"text": "request"
},
{
"id": 707,
"text": " def",
"logprob": -0.5678711,
"special": false
"id": 284,
"logprob": -0.13586426,
"special": false,
"text": " ="
},
{
"id": 1477,
"text": " find",
"logprob": -2.5917969,
"special": false
"id": 7388,
"logprob": -1.2412109,
"special": false,
"text": " requests"
},
{
"id": 6345,
"text": "_max",
"logprob": -1.8349609,
"special": false
"id": 670,
"logprob": -0.2775879,
"special": false,
"text": ".get"
}
],
"top_tokens": null
},
"generated_text": " for the following function\n\nInputs: def find_max"
"generated_text": "\n# Create a request\nrequest = requests.get"
},
{
"details": {
@ -258,81 +258,81 @@
"generated_tokens": 10,
"prefill": [
{
"id": 2271,
"text": "Test",
"logprob": null
"id": 2271,
"logprob": null,
"text": "Test"
},
{
"id": 1681,
"text": " request",
"logprob": -7.0351562
"id": 1681,
"logprob": -8.8515625,
"text": " request"
}
],
"seed": null,
"tokens": [
{
"id": 369,
"text": " for",
"logprob": -2.1914062,
"special": false
"id": 198,
"logprob": -2.9023438,
"special": false,
"text": "\n"
},
{
"id": 279,
"text": " the",
"logprob": -2.6210938,
"special": false
"id": 2,
"logprob": -2.9140625,
"special": false,
"text": "#"
},
{
"id": 2701,
"text": " following",
"logprob": -3.6445312,
"special": false
"id": 4230,
"logprob": -3.1054688,
"special": false,
"text": " Create"
},
{
"id": 729,
"text": " function",
"logprob": -2.9648438,
"special": false
"id": 264,
"logprob": -1.0966797,
"special": false,
"text": " a"
},
{
"id": 271,
"text": "\n\n",
"logprob": -1.9111328,
"special": false
"id": 1681,
"logprob": -1.6914062,
"special": false,
"text": " request"
},
{
"id": 31946,
"text": "Inputs",
"logprob": -1.6855469,
"special": false
"id": 198,
"logprob": -1.1923828,
"special": false,
"text": "\n"
},
{
"id": 25,
"text": ":",
"logprob": -1.6093254e-05,
"special": false
"id": 2035,
"logprob": -1.3193359,
"special": false,
"text": "request"
},
{
"id": 707,
"text": " def",
"logprob": -0.5678711,
"special": false
"id": 284,
"logprob": -0.13586426,
"special": false,
"text": " ="
},
{
"id": 1477,
"text": " find",
"logprob": -2.5917969,
"special": false
"id": 7388,
"logprob": -1.2412109,
"special": false,
"text": " requests"
},
{
"id": 6345,
"text": "_max",
"logprob": -1.8349609,
"special": false
"id": 670,
"logprob": -0.2775879,
"special": false,
"text": ".get"
}
],
"top_tokens": null
},
"generated_text": " for the following function\n\nInputs: def find_max"
"generated_text": "\n# Create a request\nrequest = requests.get"
}
]

View File

@ -3,7 +3,7 @@ import pytest
@pytest.fixture(scope="module")
def flash_qwen2_handle(launcher):
with launcher("Qwen/Qwen1.5-7B") as handle:
with launcher("Qwen/Qwen1.5-0.5B") as handle:
yield handle
@ -20,7 +20,7 @@ async def test_flash_qwen2(flash_qwen2, response_snapshot):
)
assert response.details.generated_tokens == 10
assert response.generated_text == " for the following function\n\nInputs: def find_max"
assert response.generated_text == "\n# Create a request\nrequest = requests.get"
assert response == response_snapshot
@ -48,14 +48,12 @@ async def test_flash_qwen2_all_params(flash_qwen2, response_snapshot):
@pytest.mark.asyncio
async def test_flash_qwen2_load(flash_qwen2, generate_load, response_snapshot):
responses = await generate_load(
flash_qwen2, "Test request", max_new_tokens=10, n=4
)
responses = await generate_load(flash_qwen2, "Test request", max_new_tokens=10, n=4)
assert len(responses) == 4
assert all(
[r.generated_text == responses[0].generated_text for r in responses]
), f"{[r.generated_text for r in responses]}"
assert responses[0].generated_text == ": Let n = 10 - 1"
assert responses[0].generated_text == "\n# Create a request\nrequest = requests.get"
assert responses == response_snapshot

View File

@ -332,27 +332,6 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif model_type == "qwen2":
if FLASH_ATTENTION:
return FlashQwen2(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(
FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2")
)
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "gemma":
if FLASH_ATTENTION:
return FlashGemma(
@ -364,9 +343,7 @@ def get_model(
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(
FLASH_ATT_ERROR_MESSAGE.format("Sharded Golden Gate")
)
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
else:
return CausalLM(
model_id,
@ -424,6 +401,17 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "mixtral":
sliding_window = config_dict.get("sliding_window", -1)
@ -438,6 +426,18 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "starcoder2":
sliding_window = config_dict.get("sliding_window", -1)
if (
@ -450,6 +450,43 @@ def get_model(
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(
FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
)
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "qwen2":
sliding_window = config_dict.get("sliding_window", -1)
if (
(sliding_window is None or sliding_window == -1) and FLASH_ATTENTION
) or HAS_FLASH_ATTN_V2_CUDA:
return FlashQwen2(
model_id,
revision,
quantize=quantize,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "opt":
return OPTSharded(

View File

@ -486,6 +486,9 @@ class CausalLM(Model):
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if use_medusa:
raise RuntimeError("Medusa decoding is not enabled for AutoModel")
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype

View File

@ -870,7 +870,7 @@ class BloomForCausalLM(BloomPreTrainedModel):
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**deprecated_arguments,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set

View File

@ -11,7 +11,7 @@ from text_generation_server.utils.layers import (
TensorParallelColumnLinear,
TensorParallelEmbedding,
PositionRotaryEmbedding,
TensorParallelHead,
SpeculativeHead,
get_linear,
FastRMSNorm,
)
@ -51,8 +51,14 @@ def _load_gqa(config, prefix: str, weights):
config.hidden_size,
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
w = [
weights.get_sharded(f"{p}.bias", dim=0)
for p in [f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"]
]
bias = torch.cat(w, dim=0).to(dtype=weights.dtype).to(device=weights.device)
return TensorParallelColumnLinear(
get_linear(weight, bias=None, quantize=config.quantize)
get_linear(weight, bias=bias, quantize=config.quantize)
)
@ -170,6 +176,7 @@ class Qwen2Attention(torch.nn.Module):
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
class Qwen2MLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
@ -212,7 +219,9 @@ class Qwen2Layer(nn.Module):
def __init__(self, layer_id, config, weights):
super().__init__()
prefix = f"model.layers.{layer_id}"
self.self_attn = Qwen2Attention(prefix=f"{prefix}.self_attn", config=config, weights=weights)
self.self_attn = Qwen2Attention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.mlp = Qwen2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = FastRMSNorm.load(
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
@ -262,6 +271,7 @@ class Qwen2Layer(nn.Module):
return mlp_output, attn_res
class Qwen2Model(torch.nn.Module):
def __init__(self, config, weights):
super().__init__()
@ -286,7 +296,7 @@ class Qwen2Model(torch.nn.Module):
)
self.gradient_checkpointing = False
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
@ -338,7 +348,7 @@ class Qwen2ForCausalLM(torch.nn.Module):
super().__init__()
self.model = Qwen2Model(config, weights)
self.lm_head = TensorParallelHead.load(
self.lm_head = SpeculativeHead.load(
config,
prefix="lm_head",
weights=weights,

View File

@ -721,7 +721,7 @@ class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel):
)
hidden_states = outputs[0]
lm_logits = self.embed_out(hidden_states)
lm_logits, speculative_logits = self.embed_out(hidden_states)
lm_loss = None
if labels is not None:
@ -739,12 +739,15 @@ class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel):
output = (lm_logits,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
return (
CausalLMOutputWithPast(
loss=lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
),
speculative_logits,
)
def prepare_inputs_for_generation(

View File

@ -792,16 +792,19 @@ class OPTForCausalLM(OPTPreTrainedModel):
return_dict=return_dict,
)
logits = self.lm_head(outputs[0]).contiguous()
logits, speculative_logits = self.lm_head(outputs)
loss = None
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
return (
CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
),
speculative_logits,
)
def prepare_inputs_for_generation(

View File

@ -315,7 +315,7 @@ class BaseFlashMistral(FlashCausalLM):
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
raise NotImplementedError("FlashLlama is only available on GPU")
raise NotImplementedError("FlashMistral is only available on GPU")
tokenizer = LlamaTokenizerFast.from_pretrained(
model_id,

View File

@ -1,12 +1,17 @@
import math
import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoTokenizer
from transformers.models.qwen2 import Qwen2Tokenizer
from typing import Optional
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.cache_manager import BLOCK_SIZE
from text_generation_server.models.flash_mistral import (
BaseFlashMistral,
set_sliding_window,
)
from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
Qwen2ForCausalLM,
)
@ -20,12 +25,13 @@ from text_generation_server.utils import (
tracer = trace.get_tracer(__name__)
class FlashQwen2(FlashCausalLM):
class FlashQwen2(BaseFlashMistral):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
@ -36,23 +42,25 @@ class FlashQwen2(FlashCausalLM):
else:
raise NotImplementedError("FlashQwen2 is only available on GPU")
try:
tokenizer = Qwen2Tokenizer.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
)
tokenizer = Qwen2Tokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
config = Qwen2Config.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
# Set context windows
if config.sliding_window is not None:
set_sliding_window(
config.sliding_window, math.ceil(config.sliding_window / BLOCK_SIZE)
)
torch.distributed.barrier(group=self.process_group)
@ -63,8 +71,10 @@ class FlashQwen2(FlashCausalLM):
model = Qwen2ForCausalLM(config, weights)
self.cuda_graphs = {}
torch.distributed.barrier(group=self.process_group)
super(FlashQwen2, self).__init__(
super(BaseFlashMistral, self).__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),
@ -74,4 +84,5 @@ class FlashQwen2(FlashCausalLM):
device=device,
rank=rank,
world_size=world_size,
sliding_window=config.sliding_window,
)

View File

@ -38,7 +38,7 @@ class FlashStarcoder2(BaseFlashMistral):
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
raise NotImplementedError("FlashLlama is only available on GPU")
raise NotImplementedError("FlashStarcoder2 is only available on GPU")
tokenizer = GPT2TokenizerFast.from_pretrained(
model_id,

View File

@ -167,6 +167,7 @@ class GalacticaSharded(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
@ -194,6 +195,7 @@ class GalacticaSharded(CausalLM):
)
config.quantize = quantize
tokenizer.pad_token_id = config.pad_token_id
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
@ -229,10 +231,10 @@ class GalacticaSharded(CausalLM):
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
outputs = self.model.forward(
outputs, speculative_logits = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
use_cache=True,
)
return outputs.logits, outputs.past_key_values
return outputs.logits, speculative_logits, outputs.past_key_values

View File

@ -24,6 +24,7 @@ class GPTNeoxSharded(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
@ -50,6 +51,7 @@ class GPTNeoxSharded(CausalLM):
trust_remote_code=trust_remote_code,
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
@ -75,7 +77,7 @@ class GPTNeoxSharded(CausalLM):
def forward(
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
):
outputs = self.model.forward(
outputs, speculative_logits = self.model.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
@ -84,4 +86,4 @@ class GPTNeoxSharded(CausalLM):
)
logits = outputs.logits
return logits, outputs.past_key_values
return logits, speculative_logits, outputs.past_key_values

View File

@ -12,9 +12,13 @@ class RW(CausalLM):
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if use_medusa:
raise RuntimeError("Medusa decoding is not enabled for AutoModel")
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype

View File

@ -536,6 +536,9 @@ class Seq2SeqLM(Model):
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if use_medusa:
raise RuntimeError("Medusa decoding is not enabled for AutoModel")
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype