revert + style + minor improvements

This commit is contained in:
Cyril Vallez 2025-01-20 15:13:24 +01:00
parent a2fe842795
commit 6e0f37c0ca
No known key found for this signature in database
5 changed files with 45 additions and 33 deletions

View File

@ -963,7 +963,9 @@ def quantize(
max_shard_size = "10GB"
state_dict_split = split_torch_state_dict_into_shards(
state_dict, filename_pattern="model.safetensors", max_shard_size=max_shard_size,
state_dict,
filename_pattern="model.safetensors",
max_shard_size=max_shard_size,
)
index = None
if state_dict_split.is_sharded:

View File

@ -21,7 +21,9 @@ import transformers
from text_generation_server.utils.speculate import get_speculate, set_speculate
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM, CausalLMBatchKeysLast
from text_generation_server.models.transformers_flash_causal_lm import TransformersFlashCausalLM
from text_generation_server.models.transformers_flash_causal_lm import (
TransformersFlashCausalLM,
)
from text_generation_server.models.custom_modeling.opt_modeling import OPTForCausalLM
from text_generation_server.models.custom_modeling.mpt_modeling import (
MPTForCausalLM,
@ -377,11 +379,19 @@ def get_model(
transformers_causal_lm_class = CausalLM
# Fast transformers path
transformers_model_class = getattr(transformers, modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[model_type])
if transformers_model_class.is_backend_compatible():
transformers_model_class = getattr(
transformers, modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES[model_type]
)
if transformers_model_class._supports_flex_attn:
transformers_causal_lm_class = TransformersFlashCausalLM
if not FLASH_ATTENTION and lora_adapter_ids is not None and len(lora_adapter_ids) > 0:
raise ValueError("Transformers backend AutoModel do not support `lora_adapter_ids`.")
if (
not FLASH_ATTENTION
and lora_adapter_ids is not None
and len(lora_adapter_ids) > 0
):
raise ValueError(
"Transformers backend AutoModel do not support `lora_adapter_ids`."
)
quantization_config = config_dict.get("quantization_config", None)
if quantization_config is None:

View File

@ -67,4 +67,3 @@ def set_adapter_to_index(adapter_to_index: Dict[str, int]):
def get_adapter_to_index():
global ADAPTER_TO_INDEX
return ADAPTER_TO_INDEX

View File

@ -22,7 +22,7 @@ def tgi_flash_attention_forward(
query_states: torch.Tensor,
key_states: torch.Tensor,
value_states: torch.Tensor,
attention_mask: Optional[torch.Tensor], # This needs to stay as it is passed as a positional arg in transformers
attention_mask: Optional[torch.Tensor], # This is a positional arg in Transformers
kv_cache: List[KVCache],
kv_head_mapping: torch.Tensor,
slots: torch.Tensor,
@ -30,6 +30,7 @@ def tgi_flash_attention_forward(
seqlen: Seqlen,
block_tables: torch.Tensor,
max_s: int,
kv_scales: KVScales,
softmax_scale: Optional[float] = None,
sliding_window: Optional[int] = None,
softcap: Optional[float] = None,
@ -37,20 +38,13 @@ def tgi_flash_attention_forward(
):
kv_cache = kv_cache[module.layer_idx]
# This means no scale
kv_scales=KVScales(torch.tensor(1., device=key_states.device), torch.tensor(1., device=key_states.device))
query_states = query_states.transpose(1, 2).squeeze(dim=0)
key_states = key_states.transpose(1, 2).squeeze(dim=0)
value_states = value_states.transpose(1, 2).squeeze(dim=0)
# Take care of updating the cache in-place
kv_cache.store(
key=key_states,
value=value_states,
slots=slots,
kv_scales=kv_scales
)
kv_cache.store(key=key_states, value=value_states, slots=slots, kv_scales=kv_scales)
_, num_heads, head_dim = query_states.shape
softmax_scale = 1 / math.sqrt(head_dim) if softmax_scale is None else softmax_scale
@ -110,14 +104,11 @@ class TransformersFlashCausalLM(FlashCausalLM):
if speculator:
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
device_count = 0
if torch.cuda.is_available():
device = torch.device("cuda:0")
device_count = torch.cuda.device_count()
dtype = torch.float16 if dtype is None else dtype
elif hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device("xpu")
device_count = torch.xpu.device_count()
dtype = torch.float16 if dtype is None else dtype
else:
if quantize:
@ -156,7 +147,6 @@ class TransformersFlashCausalLM(FlashCausalLM):
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.num_layers = model.config.num_hidden_layers
self.num_heads = model.config.num_attention_heads // self.process_group.size()
self.num_kv_heads = model.config.num_key_value_heads
@ -190,9 +180,16 @@ class TransformersFlashCausalLM(FlashCausalLM):
)
self.num_groups = self.num_heads // self.num_kv_heads
# Those will never change and will be used in the forwards
self.kv_head_mapping = torch.arange(
0, self.num_kv_heads, dtype=torch.int32, device=device
).repeat_interleave(self.num_groups)
# This means no scale
self.kv_scales = KVScales(
torch.tensor(1.0, device=device),
torch.tensor(1.0, device=device),
)
torch.distributed.barrier(group=self.process_group)
# Skip FlashCausalLM init.
@ -242,21 +239,17 @@ class TransformersFlashCausalLM(FlashCausalLM):
seqlen: Seqlen,
max_s: int,
lm_head_indices: Optional[torch.Tensor],
prefill_cache_indices = None, # not used, but passed to match original signature
adapter_data = None, # not supported, but passed to match original signature
prefill_cache_indices=None, # not used, but passed to match original signature
adapter_data=None, # not supported, but passed to match original signature
):
# Transformers does not support None as a default
if lm_head_indices is None:
lm_head_indices = 0
# Equivalent tp `self.model.forward`, see the monkey patch in __init__
logits = self.model.original_forward(
hidden_states = self.model.model.forward(
input_ids=input_ids.unsqueeze(0), # expand dim to easily fit transformers
position_ids=position_ids.unsqueeze(0), # expand dim to easily fit transformers
position_ids=position_ids.unsqueeze(
0
), # expand dim to easily fit transformers
past_key_values=None, # we use self.kv_cache instead of transformers cache object
use_cache=False, # we use self.kv_cache instead of transformers cache object
return_dict=True,
num_logits_to_keep=lm_head_indices,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
@ -264,6 +257,14 @@ class TransformersFlashCausalLM(FlashCausalLM):
seqlen=seqlen,
max_s=max_s,
kv_head_mapping=self.kv_head_mapping,
).logits.squeeze(dim=0)
kv_scales=self.kv_scales,
)[0].squeeze(dim=0)
return logits, None
# And compute logits from the lm_head, slicing correctly the indices
# NOTE: some logits post-processing (e.g. in gemma2) may be absent here with the split of the modules
# To update with full Transformers support asap
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits = self.model.lm_head.forward(hidden_states)
return logits, None

View File

@ -5,7 +5,7 @@ import torch
from typing import List, Optional, DefaultDict
from loguru import logger
from typing import Dict, Union
from typing import Dict
from text_generation_server.pb.generate_pb2 import GrammarType
from outlines.fsm.guide import RegexGuide