fix: improve step to use batch

This commit is contained in:
drbh 2024-02-06 00:17:04 +00:00
parent a4f1916a56
commit 63bc4c59d4

View File

@ -115,16 +115,61 @@ class MambaBlock(nn.Module):
return attn_outputs, conv_state, last_state return attn_outputs, conv_state, last_state
def step(self, hidden_states, conv_state, ssm_state): def step(self, hidden_states, conv_state, ssm_state):
# only support decoding with 1 token at a time _xz = self.in_proj(hidden_states)
xz = self.in_proj(hidden_states.view((1, -1))) _x, _z = _xz.chunk(2, dim=-1) # (B D)
x, z = xz.chunk(2, dim=-1) # (B D) conv_state_new = torch.cat([conv_state, _x.transpose(1,2)], dim=-1)
x = causal_conv1d_update( conv_out = causal_conv1d_fn( x=conv_state_new, weight=self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2)), bias=self.conv1d.bias, activation=self.activation)
x, conv_state = conv_state_new[:, :, 1:]
conv_state,
self.conv1d.weight.view(self.conv1d.weight.size(0), -1), handle_batched = False
self.conv1d.bias, if handle_batched:
self.activation, bsz, seqlen, dim = hidden_states.shape
) # empty output tensor for the loop
output_tensor = torch.zeros(
(bsz, seqlen, dim),
device=hidden_states.device,
dtype=hidden_states.dtype
)
for i in range(0, bsz):
x = conv_out[:,:,i]
z = _z[:, i, :]
x_db = self.x_proj(x)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = self.dt_proj_no_bias(dt)
dt = F.softplus(dt + self.dt_proj.bias).view((dt.size(1), -1))
dA = torch.exp(dt * self.negA)
dB = dt * B.view(-1, B.size(-1))
x_shape = (-1, x.size(-1), 1)
# ssm_state = (ssm_state * dA + dB * x.view(x_shape))
ssm_state[i] = (ssm_state[i] * dA + dB * x)#.view(x_shape))
c_shape = (C.size(0), C.size(1), -1)
out_mm_shape = (C.size(0), -1)
out = torch.matmul(ssm_state.to(C.dtype), C.view(c_shape)).view(out_mm_shape)
# in-place ops
out.add_((x * self.D).to(out.dtype))
out.mul_(F.silu(z))
out = self.out_proj(out)
output_tensor[i] = out
return output_tensor, conv_state, ssm_state
# TODO: remove this code only left for reference
# # only support decoding with 1 token at a time
# xz = self.in_proj(hidden_states.view((1, -1)))
# x, z = xz.chunk(2, dim=-1) # (B D)
# x = causal_conv1d_update(
# x,
# conv_state,
# self.conv1d.weight.view(self.conv1d.weight.size(0), -1),
# self.conv1d.bias,
# self.activation,
# )
# TODO: prefer using batched logic in all cases
# this just pulls the last element of the batch
x = conv_out[:,:,-1]
z = _z[:, -1, :]
x_db = self.x_proj(x) x_db = self.x_proj(x)
dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1) dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
dt = self.dt_proj_no_bias(dt) dt = self.dt_proj_no_bias(dt)