add window size in proto

This commit is contained in:
OlivierDehaene 2023-09-27 12:20:20 +02:00
parent 2811ec9bff
commit 630e417ca0
8 changed files with 40 additions and 14 deletions

View File

@ -31,6 +31,7 @@ message InfoResponse {
bool requires_padding = 1;
string dtype = 2;
string device_type = 3;
optional uint32 window_size = 4;
}
/// Empty request

View File

@ -50,10 +50,11 @@ impl Infer {
max_waiting_tokens: usize,
max_concurrent_requests: usize,
requires_padding: bool,
window_size: Option<u32>,
generation_health: Arc<AtomicBool>,
) -> Self {
// Infer shared state
let queue = Queue::new(requires_padding, 16);
let queue = Queue::new(requires_padding, 16, window_size);
let shared = Arc::new(Shared {
batching_task: Notify::new(),
});

View File

@ -2,6 +2,7 @@ use crate::infer::InferError;
use crate::infer::InferStreamResponse;
use crate::validation::ValidGenerateRequest;
use nohash_hasher::{BuildNoHashHasher, IntMap};
use std::cmp::min;
use std::collections::VecDeque;
use text_generation_client::{Batch, Request};
use tokio::sync::oneshot;
@ -33,12 +34,17 @@ pub(crate) struct Queue {
}
impl Queue {
pub(crate) fn new(requires_padding: bool, block_size: u32) -> Self {
pub(crate) fn new(requires_padding: bool, block_size: u32, window_size: Option<u32>) -> Self {
// Create channel
let (queue_sender, queue_receiver) = flume::unbounded();
// Launch background queue task
tokio::spawn(queue_task(requires_padding, block_size, queue_receiver));
tokio::spawn(queue_task(
requires_padding,
block_size,
window_size,
queue_receiver,
));
Self { queue_sender }
}
@ -84,9 +90,10 @@ impl Queue {
async fn queue_task(
requires_padding: bool,
block_size: u32,
window_size: Option<u32>,
receiver: flume::Receiver<QueueCommand>,
) {
let mut state = State::new(requires_padding, block_size);
let mut state = State::new(requires_padding, block_size, window_size);
while let Ok(cmd) = receiver.recv_async().await {
match cmd {
@ -126,16 +133,20 @@ struct State {
/// Paged Attention block size
block_size: u32,
/// Sliding window
window_size: Option<u32>,
}
impl State {
fn new(requires_padding: bool, block_size: u32) -> Self {
fn new(requires_padding: bool, block_size: u32, window_size: Option<u32>) -> Self {
Self {
entries: VecDeque::with_capacity(128),
next_id: 0,
next_batch_id: 0,
requires_padding,
block_size,
window_size,
}
}
@ -204,11 +215,17 @@ impl State {
if self.requires_padding {
decode_tokens += entry.request.stopping_parameters.max_new_tokens;
} else {
let max_new_tokens = match self.window_size {
None => entry.request.stopping_parameters.max_new_tokens,
Some(window_size) => min(
window_size.saturating_sub(entry.request.input_length),
entry.request.stopping_parameters.max_new_tokens,
),
};
// pad to block size
decode_tokens +=
((entry.request.stopping_parameters.max_new_tokens + self.block_size - 1)
/ self.block_size)
* self.block_size;
((max_new_tokens + self.block_size - 1) / self.block_size) * self.block_size;
}
if prefill_tokens > prefill_token_budget

View File

@ -595,6 +595,7 @@ pub async fn run(
max_waiting_tokens,
max_concurrent_requests,
shard_info.requires_padding,
shard_info.window_size,
generation_health,
);

View File

@ -1,4 +1,4 @@
vllm_commit := e86af624d059969b0fb07b075b1d338bf10c3365
vllm_commit := 25dbff97d5a8f2ba331847237b458b2692e9ae78
vllm:
# Clone vllm

View File

@ -636,12 +636,11 @@ class FlashCausalLM(Model):
device: torch.device,
rank: int = 0,
world_size: int = 1,
repeat_slots: bool = False,
sliding_window: Optional[int] = None,
):
self.num_layers = num_layers
self.num_kv_heads = num_kv_heads
self.head_size = head_size
self.repeat_slots = repeat_slots
super(FlashCausalLM, self).__init__(
model=model,
@ -651,6 +650,7 @@ class FlashCausalLM(Model):
device=device,
rank=rank,
world_size=world_size,
sliding_window=sliding_window,
)
@property
@ -665,7 +665,7 @@ class FlashCausalLM(Model):
self.num_layers,
self.num_kv_heads,
self.head_size,
self.repeat_slots,
self.sliding_window is not None,
self.dtype,
self.device,
)
@ -705,7 +705,7 @@ class FlashCausalLM(Model):
self.num_layers,
self.num_kv_heads,
self.head_size,
self.repeat_slots,
self.sliding_window is not None,
self.dtype,
self.device,
)

View File

@ -331,7 +331,7 @@ class FlashMistral(FlashCausalLM):
device=device,
rank=rank,
world_size=world_size,
repeat_slots=True,
sliding_window=config.sliding_window,
)
@property

View File

@ -21,6 +21,7 @@ class Model(ABC):
device: torch.device,
rank: int = 0,
world_size: int = 1,
sliding_window: Optional[int] = None,
):
self.model = model.eval()
self.tokenizer = tokenizer
@ -30,6 +31,7 @@ class Model(ABC):
self.device = device
self.rank = rank
self.world_size = world_size
self.sliding_window = sliding_window
self.has_position_ids = (
inspect.signature(model.forward).parameters.get("position_ids", None)
@ -40,10 +42,14 @@ class Model(ABC):
@property
def info(self) -> InfoResponse:
if self.requires_padding and self.sliding_window is not None:
raise NotImplementedError("sliding_window is not implemented with padding")
return InfoResponse(
requires_padding=self.requires_padding,
dtype=str(self.dtype),
device_type=self.device.type,
window_size=self.sliding_window,
)
@property