From 619f2f3a36c9ff619aec1b1d41eb11d100cd296a Mon Sep 17 00:00:00 2001 From: ehsanmok <6980212+ehsanmok@users.noreply.github.com> Date: Wed, 26 Apr 2023 18:08:15 -0700 Subject: [PATCH] Unit test watermark --- server/tests/utils/test_watermark.py | 54 ++++++++++++++++++++++++++++ 1 file changed, 54 insertions(+) create mode 100644 server/tests/utils/test_watermark.py diff --git a/server/tests/utils/test_watermark.py b/server/tests/utils/test_watermark.py new file mode 100644 index 00000000..5d0aaf05 --- /dev/null +++ b/server/tests/utils/test_watermark.py @@ -0,0 +1,54 @@ +# test_watermark_logits_processor.py + +import os +import numpy as np +import torch +from text_generation_server.utils.watermark import WatermarkLogitsProcessor + + +GAMMA = os.getenv("WATERMARK_GAMMA", 0.5) +DELTA = os.getenv("WATERMARK_DELTA", 2.0) + + +def test_seed_rng(): + input_ids = [101, 2036, 3731, 102, 2003, 103] + processor = WatermarkLogitsProcessor() + processor._seed_rng(input_ids) + assert isinstance(processor.rng, torch.Generator) + + +def test_get_greenlist_ids(): + input_ids = [101, 2036, 3731, 102, 2003, 103] + processor = WatermarkLogitsProcessor() + result = processor._get_greenlist_ids(input_ids, 10, torch.device("cpu")) + assert max(result) <= 10 + assert len(result) == int(10 * 0.5) + + +def test_calc_greenlist_mask(): + processor = WatermarkLogitsProcessor() + scores = torch.tensor([[0.5, 0.3, 0.2, 0.8], [0.1, 0.2, 0.7, 0.9]]) + greenlist_token_ids = torch.tensor([2, 3]) + result = processor._calc_greenlist_mask(scores, greenlist_token_ids) + assert result.tolist() == [[False, False, False, False], [False, False, True, True]] + assert result.shape == scores.shape + + +def test_bias_greenlist_logits(): + processor = WatermarkLogitsProcessor() + scores = torch.tensor([[0.5, 0.3, 0.2, 0.8], [0.1, 0.2, 0.7, 0.9]]) + green_tokens_mask = torch.tensor( + [[False, False, True, True], [False, False, False, True]] + ) + greenlist_bias = 2.0 + result = processor._bias_greenlist_logits(scores, green_tokens_mask, greenlist_bias) + assert np.allclose(result.tolist(), [[0.5, 0.3, 2.2, 2.8], [0.1, 0.2, 0.7, 2.9]]) + assert result.shape == scores.shape + + +def test_call(): + input_ids = [101, 2036, 3731, 102, 2003, 103] + processor = WatermarkLogitsProcessor() + scores = torch.tensor([[0.5, 0.3, 0.2, 0.8], [0.1, 0.2, 0.7, 0.9]]) + result = processor(input_ids, scores) + assert result.shape == scores.shape