mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-12 04:44:52 +00:00
Merge branch 'huggingface:main' into main
This commit is contained in:
commit
6111e9ecd5
5
.github/workflows/autodocs.yaml
vendored
5
.github/workflows/autodocs.yaml
vendored
@ -30,6 +30,10 @@ jobs:
|
||||
id: install-router
|
||||
run: cargo install --path router/
|
||||
|
||||
- uses: actions/setup-node@v4
|
||||
with:
|
||||
node-version: 22
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
@ -37,4 +41,5 @@ jobs:
|
||||
|
||||
- name: Check that documentation is up-to-date
|
||||
run: |
|
||||
npm install -g swagger-cli
|
||||
python update_doc.py --check
|
||||
|
31
.github/workflows/build.yaml
vendored
31
.github/workflows/build.yaml
vendored
@ -27,8 +27,8 @@ jobs:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-build-and-push-image-${{ inputs.hardware }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
# TODO see with @Glegendre to get CPU runner here instead
|
||||
runs-on: [self-hosted, nvidia-gpu , multi-gpu, 4-a10, ci]
|
||||
runs-on:
|
||||
group: aws-r7i-8xlarge-priv
|
||||
permissions:
|
||||
contents: write
|
||||
packages: write
|
||||
@ -49,7 +49,7 @@ jobs:
|
||||
export dockerfile="Dockerfile"
|
||||
export label_extension=""
|
||||
export docker_devices=""
|
||||
export runs_on="nvidia-gpu"
|
||||
export runs_on="aws-g5-12xlarge"
|
||||
;;
|
||||
rocm)
|
||||
export dockerfile="Dockerfile_amd"
|
||||
@ -79,9 +79,15 @@ jobs:
|
||||
uses: docker/setup-buildx-action@v3
|
||||
with:
|
||||
install: true
|
||||
config-inline: |
|
||||
buildkitd-config-inline: |
|
||||
[registry."docker.io"]
|
||||
mirrors = ["registry.github-runners.huggingface.tech"]
|
||||
mirrors = ["registry-us-east-1-mirror.prod.aws.ci.huggingface.tech"]
|
||||
- name: Login to internal Container Registry
|
||||
uses: docker/login-action@v3
|
||||
with:
|
||||
username: ${{ secrets.REGISTRY_USERNAME }}
|
||||
password: ${{ secrets.REGISTRY_PASSWORD }}
|
||||
registry: registry.internal.huggingface.tech
|
||||
- name: Login to GitHub Container Registry
|
||||
if: github.event_name != 'pull_request'
|
||||
uses: docker/login-action@v3
|
||||
@ -103,7 +109,8 @@ jobs:
|
||||
uses: docker/metadata-action@v5
|
||||
with:
|
||||
images: |
|
||||
registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference
|
||||
registry-us-east-1.prod.aws.ci.huggingface.tech/api-inference/community/text-generation-inference
|
||||
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
|
||||
tags: |
|
||||
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
|
||||
# If main, release or tag
|
||||
@ -115,7 +122,8 @@ jobs:
|
||||
flavor: |
|
||||
latest=auto
|
||||
images: |
|
||||
registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference
|
||||
registry-us-east-1.prod.aws.ci.huggingface.tech/api-inference/community/text-generation-inference
|
||||
registry.internal.huggingface.tech/api-inference/community/text-generation-inferenceca
|
||||
ghcr.io/huggingface/text-generation-inference
|
||||
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
|
||||
tags: |
|
||||
@ -136,12 +144,12 @@ jobs:
|
||||
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
|
||||
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
|
||||
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
|
||||
cache-from: type=registry,ref=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
|
||||
cache-to: type=registry,ref=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
|
||||
cache-from: type=s3,region=us-east-1,bucket=ci-docker-buildx-cache,name=text-generation-inference-cache${{ env.LABEL }},mode=min,access_key_id=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_ACCESS_KEY_ID }},secret_access_key=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_SECRET_ACCESS_KEY }},mode=min
|
||||
cache-to: type=s3,region=us-east-1,bucket=ci-docker-buildx-cache,name=text-generation-inference-cache${{ env.LABEL }},mode=min,access_key_id=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_ACCESS_KEY_ID }},secret_access_key=${{ secrets.S3_CI_DOCKER_BUILDX_CACHE_SECRET_ACCESS_KEY }},mode=min
|
||||
- name: Final
|
||||
id: final
|
||||
run: |
|
||||
echo "docker_image=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
|
||||
echo "docker_image=registry-us-east-1.prod.aws.ci.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
|
||||
echo "docker_devices=${{ env.DOCKER_DEVICES }}" >> "$GITHUB_OUTPUT"
|
||||
echo "runs_on=${{ env.RUNS_ON }}" >> "$GITHUB_OUTPUT"
|
||||
echo "label=${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
|
||||
@ -150,7 +158,8 @@ jobs:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ needs.build-and-push.outputs.label }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
needs: build-and-push
|
||||
runs-on: ["self-hosted", "${{ needs.build-and-push.outputs.runs_on }}", "multi-gpu"]
|
||||
runs-on:
|
||||
group: ${{ needs.build-and-push.outputs.runs_on }}
|
||||
if: needs.build-and-push.outputs.runs_on != 'ubuntu-latest'
|
||||
env:
|
||||
PYTEST_FLAGS: ${{ (startsWith(github.ref, 'refs/tags/') || github.ref == 'refs/heads/main' || inputs.release-tests == true) && '--release' || '' }}
|
||||
|
3
.github/workflows/load_test.yaml
vendored
3
.github/workflows/load_test.yaml
vendored
@ -15,7 +15,8 @@ jobs:
|
||||
concurrency:
|
||||
group: ${{ github.workflow }}-${{ github.job }}-${{ github.head_ref || github.run_id }}
|
||||
cancel-in-progress: true
|
||||
runs-on: [self-hosted, nvidia-gpu , multi-gpu, 4-a10, ci]
|
||||
runs-on:
|
||||
group: aws-g5-12xlarge
|
||||
env:
|
||||
DOCKER_VOLUME: /cache
|
||||
steps:
|
||||
|
89
Cargo.lock
generated
89
Cargo.lock
generated
@ -801,6 +801,27 @@ dependencies = [
|
||||
"typenum",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "csv"
|
||||
version = "1.3.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ac574ff4d437a7b5ad237ef331c17ccca63c46479e5b5453eb8e10bb99a759fe"
|
||||
dependencies = [
|
||||
"csv-core",
|
||||
"itoa",
|
||||
"ryu",
|
||||
"serde",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "csv-core"
|
||||
version = "0.1.11"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5efa2b3d7902f4b634a20cae3c9c4e6209dc4779feb6863329607560143efa70"
|
||||
dependencies = [
|
||||
"memchr",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "ctrlc"
|
||||
version = "3.4.4"
|
||||
@ -1935,17 +1956,6 @@ version = "2.7.4"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "78ca9ab1a0babb1e7d5695e3530886289c18cf2f87ec19a575a0abdce112e3a3"
|
||||
|
||||
[[package]]
|
||||
name = "metrics"
|
||||
version = "0.21.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "fde3af1a009ed76a778cb84fdef9e7dbbdf5775ae3e4cc1f434a6a307f6f76c5"
|
||||
dependencies = [
|
||||
"ahash",
|
||||
"metrics-macros",
|
||||
"portable-atomic",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "metrics"
|
||||
version = "0.23.0"
|
||||
@ -1969,7 +1979,7 @@ dependencies = [
|
||||
"hyper-util",
|
||||
"indexmap 2.2.6",
|
||||
"ipnet",
|
||||
"metrics 0.23.0",
|
||||
"metrics",
|
||||
"metrics-util",
|
||||
"quanta",
|
||||
"thiserror",
|
||||
@ -1977,17 +1987,6 @@ dependencies = [
|
||||
"tracing",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "metrics-macros"
|
||||
version = "0.7.1"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "38b4faf00617defe497754acde3024865bc143d44a86799b24e191ecff91354f"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.68",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "metrics-util"
|
||||
version = "0.17.0"
|
||||
@ -1997,7 +1996,7 @@ dependencies = [
|
||||
"crossbeam-epoch",
|
||||
"crossbeam-utils",
|
||||
"hashbrown 0.14.5",
|
||||
"metrics 0.23.0",
|
||||
"metrics",
|
||||
"num_cpus",
|
||||
"quanta",
|
||||
"sketches-ddsketch",
|
||||
@ -3424,9 +3423,9 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "serde_json"
|
||||
version = "1.0.118"
|
||||
version = "1.0.120"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "d947f6b3163d8857ea16c4fa0dd4840d52f3041039a85decd46867eb1abef2e4"
|
||||
checksum = "4e0d21c9a8cae1235ad58a00c11cb40d4b1e5c784f1ef2c537876ed6ffd8b7c5"
|
||||
dependencies = [
|
||||
"itoa",
|
||||
"ryu",
|
||||
@ -3672,15 +3671,16 @@ checksum = "a7065abeca94b6a8a577f9bd45aa0867a2238b74e8eb67cf10d492bc39351394"
|
||||
|
||||
[[package]]
|
||||
name = "sysinfo"
|
||||
version = "0.30.12"
|
||||
version = "0.30.13"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "732ffa00f53e6b2af46208fba5718d9662a421049204e156328b66791ffa15ae"
|
||||
checksum = "0a5b4ddaee55fb2bea2bf0e5000747e5f5c0de765e5a5ff87f4cd106439f4bb3"
|
||||
dependencies = [
|
||||
"cfg-if",
|
||||
"core-foundation-sys",
|
||||
"libc",
|
||||
"ntapi",
|
||||
"once_cell",
|
||||
"rayon",
|
||||
"windows",
|
||||
]
|
||||
|
||||
@ -3762,7 +3762,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "text-generation-benchmark"
|
||||
version = "2.1.1-dev0"
|
||||
version = "2.1.2-dev0"
|
||||
dependencies = [
|
||||
"average",
|
||||
"clap",
|
||||
@ -3783,7 +3783,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "text-generation-client"
|
||||
version = "2.1.1-dev0"
|
||||
version = "2.1.2-dev0"
|
||||
dependencies = [
|
||||
"async-trait",
|
||||
"base64 0.22.1",
|
||||
@ -3801,7 +3801,7 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "text-generation-launcher"
|
||||
version = "2.1.1-dev0"
|
||||
version = "2.1.2-dev0"
|
||||
dependencies = [
|
||||
"clap",
|
||||
"ctrlc",
|
||||
@ -3820,13 +3820,14 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "text-generation-router"
|
||||
version = "2.1.1-dev0"
|
||||
version = "2.1.2-dev0"
|
||||
dependencies = [
|
||||
"async-stream",
|
||||
"axum 0.7.5",
|
||||
"axum-tracing-opentelemetry",
|
||||
"base64 0.22.1",
|
||||
"clap",
|
||||
"csv",
|
||||
"futures",
|
||||
"futures-util",
|
||||
"hf-hub",
|
||||
@ -3834,7 +3835,7 @@ dependencies = [
|
||||
"init-tracing-opentelemetry",
|
||||
"itertools 0.10.5",
|
||||
"jsonschema",
|
||||
"metrics 0.21.1",
|
||||
"metrics",
|
||||
"metrics-exporter-prometheus",
|
||||
"minijinja",
|
||||
"minijinja-contrib",
|
||||
@ -3848,6 +3849,7 @@ dependencies = [
|
||||
"reqwest",
|
||||
"serde",
|
||||
"serde_json",
|
||||
"sysinfo",
|
||||
"text-generation-client",
|
||||
"thiserror",
|
||||
"tokenizers",
|
||||
@ -3859,6 +3861,7 @@ dependencies = [
|
||||
"tracing-subscriber",
|
||||
"utoipa",
|
||||
"utoipa-swagger-ui",
|
||||
"uuid",
|
||||
"vergen",
|
||||
]
|
||||
|
||||
@ -4530,9 +4533,25 @@ dependencies = [
|
||||
|
||||
[[package]]
|
||||
name = "uuid"
|
||||
version = "1.9.1"
|
||||
version = "1.10.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "5de17fd2f7da591098415cff336e12965a28061ddace43b59cb3c430179c9439"
|
||||
checksum = "81dfa00651efa65069b0b6b651f4aaa31ba9e3c3ce0137aaad053604ee7e0314"
|
||||
dependencies = [
|
||||
"getrandom",
|
||||
"rand",
|
||||
"uuid-macro-internal",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "uuid-macro-internal"
|
||||
version = "1.10.0"
|
||||
source = "registry+https://github.com/rust-lang/crates.io-index"
|
||||
checksum = "ee1cd046f83ea2c4e920d6ee9f7c3537ef928d75dce5d84a87c2c5d6b3999a3a"
|
||||
dependencies = [
|
||||
"proc-macro2",
|
||||
"quote",
|
||||
"syn 2.0.68",
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "v_frame"
|
||||
|
24
Dockerfile
24
Dockerfile
@ -40,7 +40,9 @@ RUN cargo build --profile release-opt
|
||||
# Adapted from: https://github.com/pytorch/pytorch/blob/master/Dockerfile
|
||||
FROM nvidia/cuda:12.1.0-devel-ubuntu22.04 AS pytorch-install
|
||||
|
||||
# NOTE: When updating PyTorch version, beware to remove `pip install nvidia-nccl-cu12==2.22.3` below in the Dockerfile. Context: https://github.com/huggingface/text-generation-inference/pull/2099
|
||||
ARG PYTORCH_VERSION=2.3.0
|
||||
|
||||
ARG PYTHON_VERSION=3.10
|
||||
# Keep in sync with `server/pyproject.toml
|
||||
ARG CUDA_VERSION=12.1
|
||||
@ -159,6 +161,17 @@ COPY server/custom_kernels/ .
|
||||
# Build specific version of transformers
|
||||
RUN python setup.py build
|
||||
|
||||
# Build FBGEMM CUDA kernels
|
||||
FROM kernel-builder AS fbgemm-builder
|
||||
|
||||
WORKDIR /usr/src
|
||||
|
||||
COPY server/Makefile-fbgemm Makefile
|
||||
COPY server/fbgemm_remove_unused.patch fbgemm_remove_unused.patch
|
||||
COPY server/fix_torch90a.sh fix_torch90a.sh
|
||||
|
||||
RUN make build-fbgemm
|
||||
|
||||
# Build vllm CUDA kernels
|
||||
FROM kernel-builder AS vllm-builder
|
||||
|
||||
@ -223,10 +236,10 @@ COPY --from=eetq-kernels-builder /usr/src/eetq/build/lib.linux-x86_64-cpython-31
|
||||
# Copy build artifacts from marlin kernels builder
|
||||
COPY --from=marlin-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
||||
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
||||
|
||||
# Copy builds artifacts from vllm builder
|
||||
# Copy build artifacts from fbgemm builder
|
||||
COPY --from=fbgemm-builder /usr/src/fbgemm/fbgemm_gpu/_skbuild/linux-x86_64-3.10/cmake-install /opt/conda/lib/python3.10/site-packages
|
||||
# Copy build artifacts from vllm builder
|
||||
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
|
||||
|
||||
# Copy build artifacts from mamba builder
|
||||
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-310/ /opt/conda/lib/python3.10/site-packages
|
||||
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-310/ /opt/conda/lib/python3.10/site-packages
|
||||
@ -241,7 +254,10 @@ COPY server/Makefile server/Makefile
|
||||
RUN cd server && \
|
||||
make gen-server && \
|
||||
pip install -r requirements_cuda.txt && \
|
||||
pip install ".[bnb, accelerate, quantize, peft, outlines]" --no-cache-dir
|
||||
pip install ".[bnb, accelerate, quantize, peft, outlines]" --no-cache-dir && \
|
||||
pip install nvidia-nccl-cu12==2.22.3
|
||||
|
||||
ENV LD_PRELOAD=/opt/conda/lib/python3.10/site-packages/nvidia/nccl/lib/libnccl.so.2
|
||||
|
||||
# Deps before the binaries
|
||||
# The binaries change on every build given we burn the SHA into them
|
||||
|
11
README.md
11
README.md
@ -21,14 +21,15 @@ to power Hugging Chat, the Inference API and Inference Endpoint.
|
||||
## Table of contents
|
||||
|
||||
- [Get Started](#get-started)
|
||||
- [API Documentation](#api-documentation)
|
||||
- [Docker](#docker)
|
||||
- [API documentation](#api-documentation)
|
||||
- [Using a private or gated model](#using-a-private-or-gated-model)
|
||||
- [A note on Shared Memory](#a-note-on-shared-memory-shm)
|
||||
- [A note on Shared Memory (shm)](#a-note-on-shared-memory-shm)
|
||||
- [Distributed Tracing](#distributed-tracing)
|
||||
- [Local Install](#local-install)
|
||||
- [CUDA Kernels](#cuda-kernels)
|
||||
- [Architecture](#architecture)
|
||||
- [Local install](#local-install)
|
||||
- [Optimized architectures](#optimized-architectures)
|
||||
- [Run Mistral](#run-a-model)
|
||||
- [Run locally](#run-locally)
|
||||
- [Run](#run)
|
||||
- [Quantization](#quantization)
|
||||
- [Develop](#develop)
|
||||
|
@ -61,7 +61,7 @@ class ChoiceDeltaToolCall(BaseModel):
|
||||
class ChoiceDelta(BaseModel):
|
||||
role: str
|
||||
content: Optional[str] = None
|
||||
tool_calls: Optional[ChoiceDeltaToolCall]
|
||||
tool_calls: Optional[ChoiceDeltaToolCall] = None
|
||||
|
||||
|
||||
class Choice(BaseModel):
|
||||
|
@ -492,12 +492,12 @@
|
||||
"content": {
|
||||
"application/json": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/Completion"
|
||||
"$ref": "#/components/schemas/CompletionFinal"
|
||||
}
|
||||
},
|
||||
"text/event-stream": {
|
||||
"schema": {
|
||||
"$ref": "#/components/schemas/CompletionCompleteChunk"
|
||||
"$ref": "#/components/schemas/Chunk"
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -809,7 +809,6 @@
|
||||
"ChatRequest": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"model",
|
||||
"messages"
|
||||
],
|
||||
"properties": {
|
||||
@ -854,7 +853,8 @@
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "[UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.",
|
||||
"example": "mistralai/Mistral-7B-Instruct-v0.2"
|
||||
"example": "mistralai/Mistral-7B-Instruct-v0.2",
|
||||
"nullable": true
|
||||
},
|
||||
"n": {
|
||||
"type": "integer",
|
||||
@ -909,7 +909,7 @@
|
||||
"tool_choice": {
|
||||
"allOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/ToolType"
|
||||
"$ref": "#/components/schemas/ToolChoice"
|
||||
}
|
||||
],
|
||||
"nullable": true
|
||||
@ -1116,7 +1116,6 @@
|
||||
"CompletionRequest": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"model",
|
||||
"prompt"
|
||||
],
|
||||
"properties": {
|
||||
@ -1138,7 +1137,8 @@
|
||||
"model": {
|
||||
"type": "string",
|
||||
"description": "UNUSED\nID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.",
|
||||
"example": "mistralai/Mistral-7B-Instruct-v0.2"
|
||||
"example": "mistralai/Mistral-7B-Instruct-v0.2",
|
||||
"nullable": true
|
||||
},
|
||||
"prompt": {
|
||||
"$ref": "#/components/schemas/Prompt"
|
||||
@ -1324,6 +1324,17 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"FunctionName": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"name"
|
||||
],
|
||||
"properties": {
|
||||
"name": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
},
|
||||
"GenerateParameters": {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
@ -1708,6 +1719,72 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"MessageChunk": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "object",
|
||||
"required": [
|
||||
"text",
|
||||
"type"
|
||||
],
|
||||
"properties": {
|
||||
"text": {
|
||||
"type": "string"
|
||||
},
|
||||
"type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"text"
|
||||
]
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "object",
|
||||
"required": [
|
||||
"image_url",
|
||||
"type"
|
||||
],
|
||||
"properties": {
|
||||
"image_url": {
|
||||
"$ref": "#/components/schemas/Url"
|
||||
},
|
||||
"type": {
|
||||
"type": "string",
|
||||
"enum": [
|
||||
"image_url"
|
||||
]
|
||||
}
|
||||
}
|
||||
}
|
||||
],
|
||||
"discriminator": {
|
||||
"propertyName": "type"
|
||||
}
|
||||
},
|
||||
"MessageContent": {
|
||||
"oneOf": [
|
||||
{
|
||||
"type": "string"
|
||||
},
|
||||
{
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/MessageChunk"
|
||||
}
|
||||
}
|
||||
]
|
||||
},
|
||||
"OutputMessage": {
|
||||
"oneOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/TextMessage"
|
||||
},
|
||||
{
|
||||
"$ref": "#/components/schemas/ToolCallMessage"
|
||||
}
|
||||
]
|
||||
},
|
||||
"PrefillToken": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
@ -1834,6 +1911,23 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"TextMessage": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"role",
|
||||
"content"
|
||||
],
|
||||
"properties": {
|
||||
"content": {
|
||||
"type": "string",
|
||||
"example": "My name is David and I"
|
||||
},
|
||||
"role": {
|
||||
"type": "string",
|
||||
"example": "user"
|
||||
}
|
||||
}
|
||||
},
|
||||
"Token": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
@ -1906,6 +2000,49 @@
|
||||
}
|
||||
}
|
||||
},
|
||||
"ToolCallDelta": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"role",
|
||||
"tool_calls"
|
||||
],
|
||||
"properties": {
|
||||
"role": {
|
||||
"type": "string",
|
||||
"example": "assistant"
|
||||
},
|
||||
"tool_calls": {
|
||||
"$ref": "#/components/schemas/DeltaToolCall"
|
||||
}
|
||||
}
|
||||
},
|
||||
"ToolCallMessage": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"role",
|
||||
"tool_calls"
|
||||
],
|
||||
"properties": {
|
||||
"role": {
|
||||
"type": "string",
|
||||
"example": "assistant"
|
||||
},
|
||||
"tool_calls": {
|
||||
"type": "array",
|
||||
"items": {
|
||||
"$ref": "#/components/schemas/ToolCall"
|
||||
}
|
||||
}
|
||||
}
|
||||
},
|
||||
"ToolChoice": {
|
||||
"allOf": [
|
||||
{
|
||||
"$ref": "#/components/schemas/ToolType"
|
||||
}
|
||||
],
|
||||
"nullable": true
|
||||
},
|
||||
"ToolType": {
|
||||
"oneOf": [
|
||||
{
|
||||
@ -1926,9 +2063,25 @@
|
||||
"$ref": "#/components/schemas/FunctionName"
|
||||
}
|
||||
}
|
||||
},
|
||||
{
|
||||
"type": "object",
|
||||
"default": null,
|
||||
"nullable": true
|
||||
}
|
||||
]
|
||||
},
|
||||
"Url": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
"url"
|
||||
],
|
||||
"properties": {
|
||||
"url": {
|
||||
"type": "string"
|
||||
}
|
||||
}
|
||||
},
|
||||
"Usage": {
|
||||
"type": "object",
|
||||
"required": [
|
||||
|
@ -11,6 +11,8 @@
|
||||
title: Using TGI with Intel Gaudi
|
||||
- local: installation_inferentia
|
||||
title: Using TGI with AWS Inferentia
|
||||
- local: installation_intel
|
||||
title: Using TGI with Intel GPUs
|
||||
- local: installation
|
||||
title: Installation from source
|
||||
- local: supported_models
|
||||
@ -19,6 +21,8 @@
|
||||
title: Messages API
|
||||
- local: architecture
|
||||
title: Internal Architecture
|
||||
- local: usage_statistics
|
||||
title: Usage Statistics
|
||||
title: Getting started
|
||||
- sections:
|
||||
- local: basic_tutorials/consuming_tgi
|
||||
|
@ -103,6 +103,7 @@ Several variants of the model server exist that are actively supported by Huggin
|
||||
|
||||
- By default, the model server will attempt building [a server optimized for Nvidia GPUs with CUDA](https://huggingface.co/docs/text-generation-inference/installation_nvidia). The code for this version is hosted in the [main TGI repository](https://github.com/huggingface/text-generation-inference).
|
||||
- A [version optimized for AMD with ROCm](https://huggingface.co/docs/text-generation-inference/installation_amd) is hosted in the main TGI repository. Some model features differ.
|
||||
- A [version optimized for Intel GPUs](https://huggingface.co/docs/text-generation-inference/installation_intel) is hosted in the main TGI repository. Some model features differ.
|
||||
- The [version for Intel Gaudi](https://huggingface.co/docs/text-generation-inference/installation_gaudi) is maintained on a forked repository, often resynchronized with the main [TGI repository](https://github.com/huggingface/tgi-gaudi).
|
||||
- A [version for Neuron (AWS Inferentia2)](https://huggingface.co/docs/text-generation-inference/installation_inferentia) is maintained as part of [Optimum Neuron](https://github.com/huggingface/optimum-neuron/tree/main/text-generation-inference).
|
||||
- A version for Google TPUs is maintained as part of [Optimum TPU](https://github.com/huggingface/optimum-tpu/tree/main/text-generation-inference).
|
||||
|
@ -424,6 +424,22 @@ Options:
|
||||
|
||||
[env: LORA_ADAPTERS=]
|
||||
|
||||
```
|
||||
## DISABLE_USAGE_STATS
|
||||
```shell
|
||||
--disable-usage-stats
|
||||
Disable sending of all usage statistics
|
||||
|
||||
[env: DISABLE_USAGE_STATS=]
|
||||
|
||||
```
|
||||
## DISABLE_CRASH_REPORTS
|
||||
```shell
|
||||
--disable-crash-reports
|
||||
Disable sending of crash reports, but allow anonymous usage statistics
|
||||
|
||||
[env: DISABLE_CRASH_REPORTS=]
|
||||
|
||||
```
|
||||
## HELP
|
||||
```shell
|
||||
|
19
docs/source/installation_intel.md
Normal file
19
docs/source/installation_intel.md
Normal file
@ -0,0 +1,19 @@
|
||||
# Using TGI with Intel GPUs
|
||||
|
||||
TGI optimized models are supported on Intel Data Center GPU [Max1100](https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html), [Max1550](https://www.intel.com/content/www/us/en/products/sku/232873/intel-data-center-gpu-max-1550/specifications.html), the recommended usage is through Docker.
|
||||
|
||||
|
||||
On a server powered by Intel GPUs, TGI can be launched with the following command:
|
||||
|
||||
```bash
|
||||
model=teknium/OpenHermes-2.5-Mistral-7B
|
||||
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
|
||||
|
||||
docker run --rm --privileged --cap-add=sys_nice \
|
||||
--device=/dev/dri \
|
||||
--ipc=host --shm-size 1g --net host -v $volume:/data \
|
||||
ghcr.io/huggingface/text-generation-inference:latest-intel \
|
||||
--model-id $model --cuda-graphs 0
|
||||
```
|
||||
|
||||
The launched TGI server can then be queried from clients, make sure to check out the [Consuming TGI](./basic_tutorials/consuming_tgi) guide.
|
@ -17,7 +17,7 @@ docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data \
|
||||
|
||||
### Supported hardware
|
||||
|
||||
TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on.
|
||||
TGI supports various hardware. Make sure to check the [Using TGI with Nvidia GPUs](./installation_nvidia), [Using TGI with AMD GPUs](./installation_amd), [Using TGI with Intel GPUs](./installation_intel), [Using TGI with Gaudi](./installation_gaudi), [Using TGI with Inferentia](./installation_inferentia) guides depending on which hardware you would like to deploy TGI on.
|
||||
|
||||
## Consuming TGI
|
||||
|
||||
|
@ -5,6 +5,7 @@ Text Generation Inference enables serving optimized models on specific hardware
|
||||
|
||||
## Supported Models
|
||||
|
||||
- [Deepseek V2](https://huggingface.co/deepseek-ai/DeepSeek-V2)
|
||||
- [Idefics 2](https://huggingface.co/HuggingFaceM4/idefics2-8b) (Multimodal)
|
||||
- [Llava Next (1.6)](https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf) (Multimodal)
|
||||
- [Llama](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
||||
|
73
docs/source/usage_statistics.md
Normal file
73
docs/source/usage_statistics.md
Normal file
@ -0,0 +1,73 @@
|
||||
|
||||
# Collection of Usage Statistics
|
||||
|
||||
Text Generation Inference collects anonymous usage statistics to help us improve the service. The collected data is used to improve TGI and to understand what causes failures. The data is collected transparently and any sensitive information is omitted.
|
||||
|
||||
Data is sent twice, once on server startup and once when server stops. Also, usage statistics are only enabled when TGI is running in docker to avoid collecting data then TGI runs directly on the host machine.
|
||||
|
||||
## What data is collected
|
||||
|
||||
The code that collects the data is available [here](https://github.com/huggingface/text-generation-inference/blob/main/router/src/usage_stats.rs).
|
||||
As of release 2.1.2 this is an example of the data collected:
|
||||
|
||||
- From the TGI configuration:
|
||||
```json
|
||||
{
|
||||
"event_type": "start",
|
||||
"disable_grammar_support": false,
|
||||
"max_batch_prefill_tokens": 4096,
|
||||
"max_batch_size": null,
|
||||
"max_batch_total_tokens": null,
|
||||
"max_best_of": 2,
|
||||
"max_client_batch_size": 4,
|
||||
"max_concurrent_requests": 128,
|
||||
"max_input_tokens": 1024,
|
||||
"max_stop_sequences": 4,
|
||||
"max_top_n_tokens": 5,
|
||||
"max_total_tokens": 2048,
|
||||
"max_waiting_tokens": 20,
|
||||
"messages_api_enabled": false,
|
||||
"model_config": {
|
||||
"model_type": "Bloom"
|
||||
},
|
||||
"revision": null,
|
||||
"tokenizer_class": "BloomTokenizerFast",
|
||||
"validation_workers": 2,
|
||||
"waiting_served_ratio": 1.2,
|
||||
"docker_label": "latest",
|
||||
"git_sha": "cfc118704880453d29bcbe4fbbd91dda501cf5fe",
|
||||
"nvidia_env": {
|
||||
"name": "NVIDIA A10G",
|
||||
"pci_bus_id": "00000000:00:1E.0",
|
||||
"driver_version": "535.183.01",
|
||||
"pstate": "P8",
|
||||
"pcie_link_gen_max": "4",
|
||||
"pcie_link_gen_current": "1",
|
||||
"temperature_gpu": "31",
|
||||
"utilization_gpu": "0 %",
|
||||
"utilization_memory": "0 %",
|
||||
"memory_total": "23028 MiB",
|
||||
"memory_free": "22515 MiB",
|
||||
"memory_used": "0 MiB",
|
||||
"reset_status_reset_required": "No",
|
||||
"reset_status_drain_and_reset_recommended": "No",
|
||||
"compute_cap": "8.6",
|
||||
"ecc_errors_corrected_volatile_total": "0",
|
||||
"mig_mode_current": "[N/A]",
|
||||
"power_draw_instant": "10.86 W",
|
||||
"power_limit": "300.00 W"
|
||||
},
|
||||
"system_env": {
|
||||
"cpu_count": 16,
|
||||
"cpu_type": "AMD EPYC 7R32",
|
||||
"total_memory": 66681196544,
|
||||
"architecture": "x86_64",
|
||||
"platform": "linux-unix-x86_64"
|
||||
}
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
## How to opt-out
|
||||
|
||||
You can easily opt out by passing the `--disable-usage-stats` to the text-generation-launcher command. This will disable all usage statistics. You can also pass `--disable-crash-reports` which disables sending specific crash reports, but allows anonymous usage statistics.
|
@ -333,6 +333,8 @@ def launcher(event_loop):
|
||||
max_input_length: Optional[int] = None,
|
||||
max_batch_prefill_tokens: Optional[int] = None,
|
||||
max_total_tokens: Optional[int] = None,
|
||||
lora_adapters: Optional[List[str]] = None,
|
||||
cuda_graphs: Optional[List[int]] = None,
|
||||
):
|
||||
port = random.randint(8000, 10_000)
|
||||
master_port = random.randint(10_000, 20_000)
|
||||
@ -379,6 +381,14 @@ def launcher(event_loop):
|
||||
if max_total_tokens:
|
||||
args.append("--max-total-tokens")
|
||||
args.append(str(max_total_tokens))
|
||||
if lora_adapters:
|
||||
args.append("--lora-adapters")
|
||||
args.append(",".join(lora_adapters))
|
||||
if cuda_graphs:
|
||||
args.append("--cuda-graphs")
|
||||
args.append(",".join(map(str, cuda_graphs)))
|
||||
|
||||
print(" ".join(args), file=sys.stderr)
|
||||
|
||||
env["LOG_LEVEL"] = "info,text_generation_router=debug"
|
||||
|
||||
@ -418,6 +428,8 @@ def launcher(event_loop):
|
||||
max_input_length: Optional[int] = None,
|
||||
max_batch_prefill_tokens: Optional[int] = None,
|
||||
max_total_tokens: Optional[int] = None,
|
||||
lora_adapters: Optional[List[str]] = None,
|
||||
cuda_graphs: Optional[List[int]] = None,
|
||||
):
|
||||
port = random.randint(8000, 10_000)
|
||||
|
||||
@ -447,6 +459,12 @@ def launcher(event_loop):
|
||||
if max_total_tokens:
|
||||
args.append("--max-total-tokens")
|
||||
args.append(str(max_total_tokens))
|
||||
if lora_adapters:
|
||||
args.append("--lora-adapters")
|
||||
args.append(",".join(lora_adapters))
|
||||
if cuda_graphs:
|
||||
args.append("--cuda-graphs")
|
||||
args.append(",".join(map(str, cuda_graphs)))
|
||||
|
||||
client = docker.from_env()
|
||||
|
||||
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.84375,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.34375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.8359375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.0859375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 254,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 1022,
|
||||
"logprob": -1.1875,
|
||||
"special": false,
|
||||
"text": " first"
|
||||
},
|
||||
{
|
||||
"id": 3458,
|
||||
"logprob": -0.35546875,
|
||||
"special": false,
|
||||
"text": " step"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -0.8828125,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
},
|
||||
{
|
||||
"id": 254,
|
||||
"logprob": -0.71484375,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is the first step in the"
|
||||
}
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 2143,
|
||||
"logprob": -1.828125,
|
||||
"special": false,
|
||||
"text": " sent"
|
||||
},
|
||||
{
|
||||
"id": 10081,
|
||||
"logprob": -0.36914062,
|
||||
"special": false,
|
||||
"text": " successfully"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 1380,
|
||||
"logprob": -0.38671875,
|
||||
"special": false,
|
||||
"text": "We"
|
||||
},
|
||||
{
|
||||
"id": 543,
|
||||
"logprob": -0.12695312,
|
||||
"special": false,
|
||||
"text": " will"
|
||||
},
|
||||
{
|
||||
"id": 752,
|
||||
"logprob": -0.20117188,
|
||||
"special": false,
|
||||
"text": " get"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " in"
|
||||
},
|
||||
{
|
||||
"id": 5402,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " touch"
|
||||
},
|
||||
{
|
||||
"id": 366,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " with"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Test request sent successfully.\nWe will get in touch with"
|
||||
}
|
@ -0,0 +1,358 @@
|
||||
[
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.1875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 100000,
|
||||
"logprob": null,
|
||||
"text": "<|begin▁of▁sentence|>"
|
||||
},
|
||||
{
|
||||
"id": 3533,
|
||||
"logprob": -9.625,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -11.25,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 185,
|
||||
"logprob": -1.5546875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 549,
|
||||
"logprob": -2.8125,
|
||||
"special": false,
|
||||
"text": "The"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -2.375,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -0.890625,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 317,
|
||||
"logprob": -1.1484375,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.5390625,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 3102,
|
||||
"logprob": -2.609375,
|
||||
"special": false,
|
||||
"text": " request"
|
||||
},
|
||||
{
|
||||
"id": 327,
|
||||
"logprob": -0.75,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 245,
|
||||
"logprob": -1.1171875,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1727,
|
||||
"logprob": -0.90625,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "\nThe test request is a request for a test"
|
||||
}
|
||||
]
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -2.1816406,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -2.6992188,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -3.6308594,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 679,
|
||||
"logprob": -1.7900391,
|
||||
"special": false,
|
||||
"text": "201"
|
||||
},
|
||||
{
|
||||
"id": 24,
|
||||
"logprob": -1.3554688,
|
||||
"special": false,
|
||||
"text": "9"
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"logprob": -2.0039062,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2366,
|
||||
"logprob": -0.4489746,
|
||||
"special": false,
|
||||
"text": "202"
|
||||
},
|
||||
{
|
||||
"id": 15,
|
||||
"logprob": -0.037109375,
|
||||
"special": false,
|
||||
"text": "0"
|
||||
},
|
||||
{
|
||||
"id": 2978,
|
||||
"logprob": -0.8100586,
|
||||
"special": false,
|
||||
"text": " school"
|
||||
},
|
||||
{
|
||||
"id": 1060,
|
||||
"logprob": -0.013015747,
|
||||
"special": false,
|
||||
"text": " year"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " for the 2019-2020 school year"
|
||||
}
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 25,
|
||||
"logprob": -0.8535156,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 2209,
|
||||
"logprob": -2.4804688,
|
||||
"special": false,
|
||||
"text": " Is"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -0.7167969,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 734,
|
||||
"logprob": -2.625,
|
||||
"special": false,
|
||||
"text": " function"
|
||||
},
|
||||
{
|
||||
"id": 330,
|
||||
"logprob": -0.35131836,
|
||||
"special": false,
|
||||
"text": " \""
|
||||
},
|
||||
{
|
||||
"id": 4110,
|
||||
"logprob": -2.4101562,
|
||||
"special": false,
|
||||
"text": "Create"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.23181152,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 502,
|
||||
"logprob": -0.25512695,
|
||||
"special": false,
|
||||
"text": " new"
|
||||
},
|
||||
{
|
||||
"id": 1052,
|
||||
"logprob": -1.2792969,
|
||||
"special": false,
|
||||
"text": " file"
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": -1.2529297,
|
||||
"special": false,
|
||||
"text": "\""
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Test request: Is the function \"Create a new file\""
|
||||
}
|
@ -0,0 +1,358 @@
|
||||
[
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -2.1816406,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -2.6992188,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -3.6308594,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 679,
|
||||
"logprob": -1.7988281,
|
||||
"special": false,
|
||||
"text": "201"
|
||||
},
|
||||
{
|
||||
"id": 24,
|
||||
"logprob": -1.3535156,
|
||||
"special": false,
|
||||
"text": "9"
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"logprob": -2.0058594,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2366,
|
||||
"logprob": -0.45410156,
|
||||
"special": false,
|
||||
"text": "202"
|
||||
},
|
||||
{
|
||||
"id": 15,
|
||||
"logprob": -0.037109375,
|
||||
"special": false,
|
||||
"text": "0"
|
||||
},
|
||||
{
|
||||
"id": 2978,
|
||||
"logprob": -0.8095703,
|
||||
"special": false,
|
||||
"text": " school"
|
||||
},
|
||||
{
|
||||
"id": 1060,
|
||||
"logprob": -0.013053894,
|
||||
"special": false,
|
||||
"text": " year"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " for the 2019-2020 school year"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -2.1816406,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -2.6992188,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -3.6308594,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 679,
|
||||
"logprob": -1.7988281,
|
||||
"special": false,
|
||||
"text": "201"
|
||||
},
|
||||
{
|
||||
"id": 24,
|
||||
"logprob": -1.3535156,
|
||||
"special": false,
|
||||
"text": "9"
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"logprob": -2.0058594,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2366,
|
||||
"logprob": -0.45410156,
|
||||
"special": false,
|
||||
"text": "202"
|
||||
},
|
||||
{
|
||||
"id": 15,
|
||||
"logprob": -0.037109375,
|
||||
"special": false,
|
||||
"text": "0"
|
||||
},
|
||||
{
|
||||
"id": 2978,
|
||||
"logprob": -0.8095703,
|
||||
"special": false,
|
||||
"text": " school"
|
||||
},
|
||||
{
|
||||
"id": 1060,
|
||||
"logprob": -0.013053894,
|
||||
"special": false,
|
||||
"text": " year"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " for the 2019-2020 school year"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -2.1816406,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -2.6992188,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -3.6308594,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 679,
|
||||
"logprob": -1.7988281,
|
||||
"special": false,
|
||||
"text": "201"
|
||||
},
|
||||
{
|
||||
"id": 24,
|
||||
"logprob": -1.3535156,
|
||||
"special": false,
|
||||
"text": "9"
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"logprob": -2.0058594,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2366,
|
||||
"logprob": -0.45410156,
|
||||
"special": false,
|
||||
"text": "202"
|
||||
},
|
||||
{
|
||||
"id": 15,
|
||||
"logprob": -0.037109375,
|
||||
"special": false,
|
||||
"text": "0"
|
||||
},
|
||||
{
|
||||
"id": 2978,
|
||||
"logprob": -0.8095703,
|
||||
"special": false,
|
||||
"text": " school"
|
||||
},
|
||||
{
|
||||
"id": 1060,
|
||||
"logprob": -0.013053894,
|
||||
"special": false,
|
||||
"text": " year"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " for the 2019-2020 school year"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 128000,
|
||||
"logprob": null,
|
||||
"text": "<|begin_of_text|>"
|
||||
},
|
||||
{
|
||||
"id": 2323,
|
||||
"logprob": -9.421875,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 1715,
|
||||
"logprob": -10.546875,
|
||||
"text": " request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -2.1816406,
|
||||
"special": false,
|
||||
"text": " for"
|
||||
},
|
||||
{
|
||||
"id": 279,
|
||||
"logprob": -2.6992188,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 220,
|
||||
"logprob": -3.6308594,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 679,
|
||||
"logprob": -1.7988281,
|
||||
"special": false,
|
||||
"text": "201"
|
||||
},
|
||||
{
|
||||
"id": 24,
|
||||
"logprob": -1.3535156,
|
||||
"special": false,
|
||||
"text": "9"
|
||||
},
|
||||
{
|
||||
"id": 12,
|
||||
"logprob": -2.0058594,
|
||||
"special": false,
|
||||
"text": "-"
|
||||
},
|
||||
{
|
||||
"id": 2366,
|
||||
"logprob": -0.45410156,
|
||||
"special": false,
|
||||
"text": "202"
|
||||
},
|
||||
{
|
||||
"id": 15,
|
||||
"logprob": -0.037109375,
|
||||
"special": false,
|
||||
"text": "0"
|
||||
},
|
||||
{
|
||||
"id": 2978,
|
||||
"logprob": -0.8095703,
|
||||
"special": false,
|
||||
"text": " school"
|
||||
},
|
||||
{
|
||||
"id": 1060,
|
||||
"logprob": -0.013053894,
|
||||
"special": false,
|
||||
"text": " year"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " for the 2019-2020 school year"
|
||||
}
|
||||
]
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -2.7988281,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": -0.91259766,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 853,
|
||||
"logprob": -2.8496094,
|
||||
"special": false,
|
||||
"text": " Un"
|
||||
},
|
||||
{
|
||||
"id": 23765,
|
||||
"logprob": -1.1894531,
|
||||
"special": false,
|
||||
"text": "supported"
|
||||
},
|
||||
{
|
||||
"id": 4714,
|
||||
"logprob": -1.5917969,
|
||||
"special": false,
|
||||
"text": " browser"
|
||||
},
|
||||
{
|
||||
"id": 29892,
|
||||
"logprob": -0.34765625,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 1873,
|
||||
"logprob": -1.2695312,
|
||||
"special": false,
|
||||
"text": " version"
|
||||
},
|
||||
{
|
||||
"id": 470,
|
||||
"logprob": -0.25170898,
|
||||
"special": false,
|
||||
"text": " or"
|
||||
},
|
||||
{
|
||||
"id": 7481,
|
||||
"logprob": -0.21411133,
|
||||
"special": false,
|
||||
"text": " platform"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.1162109,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " failed: Unsupported browser, version or platform\n"
|
||||
}
|
@ -0,0 +1,89 @@
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": 0,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -0.6645508,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 6527,
|
||||
"logprob": -2.2324219,
|
||||
"special": false,
|
||||
"text": " Could"
|
||||
},
|
||||
{
|
||||
"id": 451,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " not"
|
||||
},
|
||||
{
|
||||
"id": 6088,
|
||||
"logprob": -1.6074219,
|
||||
"special": false,
|
||||
"text": " parse"
|
||||
},
|
||||
{
|
||||
"id": 1243,
|
||||
"logprob": -1.6298828,
|
||||
"special": false,
|
||||
"text": " test"
|
||||
},
|
||||
{
|
||||
"id": 1206,
|
||||
"logprob": -0.72558594,
|
||||
"special": false,
|
||||
"text": " case"
|
||||
},
|
||||
{
|
||||
"id": 1024,
|
||||
"logprob": -0.40429688,
|
||||
"special": false,
|
||||
"text": " name"
|
||||
},
|
||||
{
|
||||
"id": 515,
|
||||
"logprob": 0.0,
|
||||
"special": false,
|
||||
"text": " from"
|
||||
},
|
||||
{
|
||||
"id": 525,
|
||||
"logprob": -1.2519531,
|
||||
"special": false,
|
||||
"text": " '"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": "Test request failed: Could not parse test case name from '"
|
||||
}
|
@ -0,0 +1,358 @@
|
||||
[
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -2.7988281,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": -0.91259766,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 853,
|
||||
"logprob": -2.8496094,
|
||||
"special": false,
|
||||
"text": " Un"
|
||||
},
|
||||
{
|
||||
"id": 23765,
|
||||
"logprob": -1.1894531,
|
||||
"special": false,
|
||||
"text": "supported"
|
||||
},
|
||||
{
|
||||
"id": 4714,
|
||||
"logprob": -1.5917969,
|
||||
"special": false,
|
||||
"text": " browser"
|
||||
},
|
||||
{
|
||||
"id": 29892,
|
||||
"logprob": -0.34765625,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 1873,
|
||||
"logprob": -1.2695312,
|
||||
"special": false,
|
||||
"text": " version"
|
||||
},
|
||||
{
|
||||
"id": 470,
|
||||
"logprob": -0.25170898,
|
||||
"special": false,
|
||||
"text": " or"
|
||||
},
|
||||
{
|
||||
"id": 7481,
|
||||
"logprob": -0.21411133,
|
||||
"special": false,
|
||||
"text": " platform"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.1162109,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " failed: Unsupported browser, version or platform\n"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -2.7988281,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": -0.91259766,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 853,
|
||||
"logprob": -2.8496094,
|
||||
"special": false,
|
||||
"text": " Un"
|
||||
},
|
||||
{
|
||||
"id": 23765,
|
||||
"logprob": -1.1894531,
|
||||
"special": false,
|
||||
"text": "supported"
|
||||
},
|
||||
{
|
||||
"id": 4714,
|
||||
"logprob": -1.5917969,
|
||||
"special": false,
|
||||
"text": " browser"
|
||||
},
|
||||
{
|
||||
"id": 29892,
|
||||
"logprob": -0.34765625,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 1873,
|
||||
"logprob": -1.2695312,
|
||||
"special": false,
|
||||
"text": " version"
|
||||
},
|
||||
{
|
||||
"id": 470,
|
||||
"logprob": -0.25170898,
|
||||
"special": false,
|
||||
"text": " or"
|
||||
},
|
||||
{
|
||||
"id": 7481,
|
||||
"logprob": -0.21411133,
|
||||
"special": false,
|
||||
"text": " platform"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.1162109,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " failed: Unsupported browser, version or platform\n"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -2.7988281,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": -0.91259766,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 853,
|
||||
"logprob": -2.8496094,
|
||||
"special": false,
|
||||
"text": " Un"
|
||||
},
|
||||
{
|
||||
"id": 23765,
|
||||
"logprob": -1.1894531,
|
||||
"special": false,
|
||||
"text": "supported"
|
||||
},
|
||||
{
|
||||
"id": 4714,
|
||||
"logprob": -1.5917969,
|
||||
"special": false,
|
||||
"text": " browser"
|
||||
},
|
||||
{
|
||||
"id": 29892,
|
||||
"logprob": -0.34765625,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 1873,
|
||||
"logprob": -1.2695312,
|
||||
"special": false,
|
||||
"text": " version"
|
||||
},
|
||||
{
|
||||
"id": 470,
|
||||
"logprob": -0.25170898,
|
||||
"special": false,
|
||||
"text": " or"
|
||||
},
|
||||
{
|
||||
"id": 7481,
|
||||
"logprob": -0.21411133,
|
||||
"special": false,
|
||||
"text": " platform"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.1162109,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " failed: Unsupported browser, version or platform\n"
|
||||
},
|
||||
{
|
||||
"details": {
|
||||
"best_of_sequences": null,
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 10,
|
||||
"prefill": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": null,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 4321,
|
||||
"logprob": -9.0859375,
|
||||
"text": "Test"
|
||||
},
|
||||
{
|
||||
"id": 2009,
|
||||
"logprob": -16.359375,
|
||||
"text": "request"
|
||||
}
|
||||
],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 5229,
|
||||
"logprob": -2.7988281,
|
||||
"special": false,
|
||||
"text": " failed"
|
||||
},
|
||||
{
|
||||
"id": 29901,
|
||||
"logprob": -0.91259766,
|
||||
"special": false,
|
||||
"text": ":"
|
||||
},
|
||||
{
|
||||
"id": 853,
|
||||
"logprob": -2.8496094,
|
||||
"special": false,
|
||||
"text": " Un"
|
||||
},
|
||||
{
|
||||
"id": 23765,
|
||||
"logprob": -1.1894531,
|
||||
"special": false,
|
||||
"text": "supported"
|
||||
},
|
||||
{
|
||||
"id": 4714,
|
||||
"logprob": -1.5917969,
|
||||
"special": false,
|
||||
"text": " browser"
|
||||
},
|
||||
{
|
||||
"id": 29892,
|
||||
"logprob": -0.34765625,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 1873,
|
||||
"logprob": -1.2695312,
|
||||
"special": false,
|
||||
"text": " version"
|
||||
},
|
||||
{
|
||||
"id": 470,
|
||||
"logprob": -0.25170898,
|
||||
"special": false,
|
||||
"text": " or"
|
||||
},
|
||||
{
|
||||
"id": 7481,
|
||||
"logprob": -0.21411133,
|
||||
"special": false,
|
||||
"text": " platform"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.1162109,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
],
|
||||
"top_tokens": null
|
||||
},
|
||||
"generated_text": " failed: Unsupported browser, version or platform\n"
|
||||
}
|
||||
]
|
@ -0,0 +1,251 @@
|
||||
{
|
||||
"details": {
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 40,
|
||||
"prefill": [],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.27416992,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.17016602,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28737,
|
||||
"logprob": -2.7109375,
|
||||
"special": false,
|
||||
"text": "I"
|
||||
},
|
||||
{
|
||||
"id": 28809,
|
||||
"logprob": -1.5,
|
||||
"special": false,
|
||||
"text": "’"
|
||||
},
|
||||
{
|
||||
"id": 28719,
|
||||
"logprob": -0.34204102,
|
||||
"special": false,
|
||||
"text": "m"
|
||||
},
|
||||
{
|
||||
"id": 459,
|
||||
"logprob": -1.6914062,
|
||||
"special": false,
|
||||
"text": " not"
|
||||
},
|
||||
{
|
||||
"id": 1864,
|
||||
"logprob": -0.69140625,
|
||||
"special": false,
|
||||
"text": " sure"
|
||||
},
|
||||
{
|
||||
"id": 513,
|
||||
"logprob": -1.6171875,
|
||||
"special": false,
|
||||
"text": " if"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -1.3837891,
|
||||
"special": false,
|
||||
"text": " I"
|
||||
},
|
||||
{
|
||||
"id": 541,
|
||||
"logprob": -1.2226562,
|
||||
"special": false,
|
||||
"text": " can"
|
||||
},
|
||||
{
|
||||
"id": 1567,
|
||||
"logprob": -1.8652344,
|
||||
"special": false,
|
||||
"text": " come"
|
||||
},
|
||||
{
|
||||
"id": 582,
|
||||
"logprob": -0.0070228577,
|
||||
"special": false,
|
||||
"text": " up"
|
||||
},
|
||||
{
|
||||
"id": 395,
|
||||
"logprob": -0.0054092407,
|
||||
"special": false,
|
||||
"text": " with"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.62597656,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28770,
|
||||
"logprob": -0.0035572052,
|
||||
"special": false,
|
||||
"text": "3"
|
||||
},
|
||||
{
|
||||
"id": 4842,
|
||||
"logprob": -0.93603516,
|
||||
"special": false,
|
||||
"text": " unique"
|
||||
},
|
||||
{
|
||||
"id": 3085,
|
||||
"logprob": -0.028411865,
|
||||
"special": false,
|
||||
"text": " words"
|
||||
},
|
||||
{
|
||||
"id": 369,
|
||||
"logprob": -1.0400391,
|
||||
"special": false,
|
||||
"text": " that"
|
||||
},
|
||||
{
|
||||
"id": 6685,
|
||||
"logprob": -0.09710693,
|
||||
"special": false,
|
||||
"text": " describe"
|
||||
},
|
||||
{
|
||||
"id": 528,
|
||||
"logprob": -0.066467285,
|
||||
"special": false,
|
||||
"text": " me"
|
||||
},
|
||||
{
|
||||
"id": 28725,
|
||||
"logprob": -1.0722656,
|
||||
"special": false,
|
||||
"text": ","
|
||||
},
|
||||
{
|
||||
"id": 562,
|
||||
"logprob": -0.33422852,
|
||||
"special": false,
|
||||
"text": " but"
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.5136719,
|
||||
"special": false,
|
||||
"text": " I"
|
||||
},
|
||||
{
|
||||
"id": 28809,
|
||||
"logprob": -0.8989258,
|
||||
"special": false,
|
||||
"text": "’"
|
||||
},
|
||||
{
|
||||
"id": 584,
|
||||
"logprob": -0.2076416,
|
||||
"special": false,
|
||||
"text": "ll"
|
||||
},
|
||||
{
|
||||
"id": 1464,
|
||||
"logprob": -0.8808594,
|
||||
"special": false,
|
||||
"text": " try"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.88427734,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.91064453,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.08105469,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28740,
|
||||
"logprob": -1.8486328,
|
||||
"special": false,
|
||||
"text": "1"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.111572266,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 23626,
|
||||
"logprob": -3.15625,
|
||||
"special": false,
|
||||
"text": " Creative"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.9194336,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28750,
|
||||
"logprob": -0.24841309,
|
||||
"special": false,
|
||||
"text": "2"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -9.393692e-05,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 6785,
|
||||
"logprob": -3.1386719,
|
||||
"special": false,
|
||||
"text": " Fun"
|
||||
},
|
||||
{
|
||||
"id": 1780,
|
||||
"logprob": -0.53564453,
|
||||
"special": false,
|
||||
"text": "ny"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.09033203,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28770,
|
||||
"logprob": -0.00466156,
|
||||
"special": false,
|
||||
"text": "3"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.00016450882,
|
||||
"special": false,
|
||||
"text": "."
|
||||
}
|
||||
]
|
||||
},
|
||||
"generated_text": "\n\nI’m not sure if I can come up with 3 unique words that describe me, but I’ll try.\n\n1. Creative\n2. Funny\n3."
|
||||
}
|
@ -0,0 +1,53 @@
|
||||
{
|
||||
"details": {
|
||||
"finish_reason": "eos_token",
|
||||
"generated_tokens": 7,
|
||||
"prefill": [],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": -0.49658203,
|
||||
"special": true,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.0016384125,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 1,
|
||||
"logprob": -1.4931641,
|
||||
"special": true,
|
||||
"text": "<s>"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.00075769424,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28740,
|
||||
"logprob": -0.25024414,
|
||||
"special": false,
|
||||
"text": "1"
|
||||
},
|
||||
{
|
||||
"id": 28740,
|
||||
"logprob": -0.2631836,
|
||||
"special": false,
|
||||
"text": "1"
|
||||
},
|
||||
{
|
||||
"id": 2,
|
||||
"logprob": -0.0003285408,
|
||||
"special": true,
|
||||
"text": "</s>"
|
||||
}
|
||||
]
|
||||
},
|
||||
"generated_text": " 11"
|
||||
}
|
@ -0,0 +1,251 @@
|
||||
{
|
||||
"details": {
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 40,
|
||||
"prefill": [],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.0488281,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.0800781,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 27332,
|
||||
"logprob": -2.1152344,
|
||||
"special": false,
|
||||
"text": "###"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -1.6748047,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28740,
|
||||
"logprob": -0.097229004,
|
||||
"special": false,
|
||||
"text": "1"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.16467285,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 7615,
|
||||
"logprob": -2.2246094,
|
||||
"special": false,
|
||||
"text": " News"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.0488281,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 27332,
|
||||
"logprob": -0.69189453,
|
||||
"special": false,
|
||||
"text": "###"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.013343811,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28750,
|
||||
"logprob": -0.011230469,
|
||||
"special": false,
|
||||
"text": "2"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.00096845627,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 21095,
|
||||
"logprob": -2.5605469,
|
||||
"special": false,
|
||||
"text": " Blog"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.19458008,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 27332,
|
||||
"logprob": -0.031280518,
|
||||
"special": false,
|
||||
"text": "###"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.0030708313,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28770,
|
||||
"logprob": -0.0029277802,
|
||||
"special": false,
|
||||
"text": "3"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.0012350082,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 20108,
|
||||
"logprob": -2.1582031,
|
||||
"special": false,
|
||||
"text": " Article"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.05810547,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 27332,
|
||||
"logprob": -0.35083008,
|
||||
"special": false,
|
||||
"text": "###"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.034332275,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28781,
|
||||
"logprob": -0.009666443,
|
||||
"special": false,
|
||||
"text": "4"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.0013113022,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 8349,
|
||||
"logprob": -2.6191406,
|
||||
"special": false,
|
||||
"text": " Review"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.04031372,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 27332,
|
||||
"logprob": -0.45239258,
|
||||
"special": false,
|
||||
"text": "###"
|
||||
},
|
||||
{
|
||||
"id": 28705,
|
||||
"logprob": -0.045410156,
|
||||
"special": false,
|
||||
"text": " "
|
||||
},
|
||||
{
|
||||
"id": 28782,
|
||||
"logprob": -0.0041236877,
|
||||
"special": false,
|
||||
"text": "5"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.0010223389,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 5299,
|
||||
"logprob": -2.8066406,
|
||||
"special": false,
|
||||
"text": " Other"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.12054443,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.44580078,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.4921875,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.3574219,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -1.0039062,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.5859375,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.43481445,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.2783203,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.20410156,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
}
|
||||
]
|
||||
},
|
||||
"generated_text": "\n\n### 1. News\n### 2. Blog\n### 3. Article\n### 4. Review\n### 5. Other\n\n\n\n\n\n\n\n\n"
|
||||
}
|
@ -0,0 +1,251 @@
|
||||
{
|
||||
"details": {
|
||||
"finish_reason": "length",
|
||||
"generated_tokens": 40,
|
||||
"prefill": [],
|
||||
"seed": null,
|
||||
"tokens": [
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.31347656,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.27441406,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28737,
|
||||
"logprob": -2.2285156,
|
||||
"special": false,
|
||||
"text": "I"
|
||||
},
|
||||
{
|
||||
"id": 28809,
|
||||
"logprob": -1.4677734,
|
||||
"special": false,
|
||||
"text": "’"
|
||||
},
|
||||
{
|
||||
"id": 28719,
|
||||
"logprob": -0.31762695,
|
||||
"special": false,
|
||||
"text": "m"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -1.6865234,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 1215,
|
||||
"logprob": -3.2695312,
|
||||
"special": false,
|
||||
"text": " very"
|
||||
},
|
||||
{
|
||||
"id": 20640,
|
||||
"logprob": -3.1230469,
|
||||
"special": false,
|
||||
"text": " passionate"
|
||||
},
|
||||
{
|
||||
"id": 1338,
|
||||
"logprob": -0.48339844,
|
||||
"special": false,
|
||||
"text": " person"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.9970703,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.5498047,
|
||||
"special": false,
|
||||
"text": " I"
|
||||
},
|
||||
{
|
||||
"id": 28809,
|
||||
"logprob": -1.1923828,
|
||||
"special": false,
|
||||
"text": "’"
|
||||
},
|
||||
{
|
||||
"id": 28719,
|
||||
"logprob": -0.080444336,
|
||||
"special": false,
|
||||
"text": "m"
|
||||
},
|
||||
{
|
||||
"id": 1215,
|
||||
"logprob": -1.8271484,
|
||||
"special": false,
|
||||
"text": " very"
|
||||
},
|
||||
{
|
||||
"id": 12215,
|
||||
"logprob": -2.8847656,
|
||||
"special": false,
|
||||
"text": " driven"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -1.0927734,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 315,
|
||||
"logprob": -0.4584961,
|
||||
"special": false,
|
||||
"text": " I"
|
||||
},
|
||||
{
|
||||
"id": 28809,
|
||||
"logprob": -0.5019531,
|
||||
"special": false,
|
||||
"text": "’"
|
||||
},
|
||||
{
|
||||
"id": 28719,
|
||||
"logprob": -0.030715942,
|
||||
"special": false,
|
||||
"text": "m"
|
||||
},
|
||||
{
|
||||
"id": 1215,
|
||||
"logprob": -0.96972656,
|
||||
"special": false,
|
||||
"text": " very"
|
||||
},
|
||||
{
|
||||
"id": 7798,
|
||||
"logprob": -2.8847656,
|
||||
"special": false,
|
||||
"text": " determined"
|
||||
},
|
||||
{
|
||||
"id": 28723,
|
||||
"logprob": -0.27319336,
|
||||
"special": false,
|
||||
"text": "."
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.56396484,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.011016846,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 3195,
|
||||
"logprob": -0.7163086,
|
||||
"special": false,
|
||||
"text": "What"
|
||||
},
|
||||
{
|
||||
"id": 349,
|
||||
"logprob": -1.1611328,
|
||||
"special": false,
|
||||
"text": " is"
|
||||
},
|
||||
{
|
||||
"id": 574,
|
||||
"logprob": -0.515625,
|
||||
"special": false,
|
||||
"text": " your"
|
||||
},
|
||||
{
|
||||
"id": 6656,
|
||||
"logprob": -1.0253906,
|
||||
"special": false,
|
||||
"text": " favorite"
|
||||
},
|
||||
{
|
||||
"id": 1970,
|
||||
"logprob": -2.1738281,
|
||||
"special": false,
|
||||
"text": " thing"
|
||||
},
|
||||
{
|
||||
"id": 684,
|
||||
"logprob": -0.48364258,
|
||||
"special": false,
|
||||
"text": " about"
|
||||
},
|
||||
{
|
||||
"id": 1250,
|
||||
"logprob": -1.8876953,
|
||||
"special": false,
|
||||
"text": " being"
|
||||
},
|
||||
{
|
||||
"id": 264,
|
||||
"logprob": -0.41967773,
|
||||
"special": false,
|
||||
"text": " a"
|
||||
},
|
||||
{
|
||||
"id": 8626,
|
||||
"logprob": -2.9160156,
|
||||
"special": false,
|
||||
"text": " teacher"
|
||||
},
|
||||
{
|
||||
"id": 28804,
|
||||
"logprob": -0.11920166,
|
||||
"special": false,
|
||||
"text": "?"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.023727417,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 13,
|
||||
"logprob": -0.010848999,
|
||||
"special": false,
|
||||
"text": "\n"
|
||||
},
|
||||
{
|
||||
"id": 28737,
|
||||
"logprob": -1.0566406,
|
||||
"special": false,
|
||||
"text": "I"
|
||||
},
|
||||
{
|
||||
"id": 2016,
|
||||
"logprob": -0.7163086,
|
||||
"special": false,
|
||||
"text": " love"
|
||||
},
|
||||
{
|
||||
"id": 272,
|
||||
"logprob": -1.9169922,
|
||||
"special": false,
|
||||
"text": " the"
|
||||
},
|
||||
{
|
||||
"id": 1639,
|
||||
"logprob": -2.03125,
|
||||
"special": false,
|
||||
"text": " fact"
|
||||
}
|
||||
]
|
||||
},
|
||||
"generated_text": "\n\nI’m a very passionate person. I’m very driven. I’m very determined.\n\nWhat is your favorite thing about being a teacher?\n\nI love the fact"
|
||||
}
|
@ -100,6 +100,8 @@ async def test_flash_llama_completion_many_prompts_stream(
|
||||
chunk = [c.replace("data:", "") for c in chunk]
|
||||
# remove empty strings
|
||||
chunk = [c for c in chunk if c]
|
||||
# remove completion marking chunk
|
||||
chunk = [c for c in chunk if c != " [DONE]"]
|
||||
# parse json
|
||||
chunk = [json.loads(c) for c in chunk]
|
||||
|
||||
|
63
integration-tests/models/test_flash_deepseek_v2.py
Normal file
63
integration-tests/models/test_flash_deepseek_v2.py
Normal file
@ -0,0 +1,63 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_deepseek_v2_handle(launcher):
|
||||
with launcher("deepseek-ai/DeepSeek-V2-Lite", num_shard=2) as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def flash_deepseek_v2(flash_deepseek_v2_handle):
|
||||
await flash_deepseek_v2_handle.health(300)
|
||||
return flash_deepseek_v2_handle.client
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2(flash_deepseek_v2, response_snapshot):
|
||||
response = await flash_deepseek_v2.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2_all_params(flash_deepseek_v2, response_snapshot):
|
||||
response = await flash_deepseek_v2.generate(
|
||||
"Test request",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
stop_sequences=["test"],
|
||||
temperature=0.5,
|
||||
top_p=0.9,
|
||||
top_k=10,
|
||||
truncate=5,
|
||||
typical_p=0.9,
|
||||
watermark=True,
|
||||
decoder_input_details=True,
|
||||
seed=0,
|
||||
)
|
||||
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_deepseek_v2_load(
|
||||
flash_deepseek_v2, generate_load, response_snapshot
|
||||
):
|
||||
responses = await generate_load(
|
||||
flash_deepseek_v2, "Test request", max_new_tokens=10, n=4
|
||||
)
|
||||
|
||||
assert len(responses) == 4
|
||||
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
||||
|
||||
assert responses == response_snapshot
|
62
integration-tests/models/test_flash_llama_fp8.py
Normal file
62
integration-tests/models/test_flash_llama_fp8.py
Normal file
@ -0,0 +1,62 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_llama_fp8_handle(launcher):
|
||||
with launcher("meta-llama/Meta-Llama-3-8B", num_shard=2, quantize="fp8") as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def flash_llama_fp8(flash_llama_fp8_handle):
|
||||
await flash_llama_fp8_handle.health(300)
|
||||
return flash_llama_fp8_handle.client
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_fp8(flash_llama_fp8, response_snapshot):
|
||||
response = await flash_llama_fp8.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
||||
assert response.details.generated_tokens == 10
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_fp8_all_params(flash_llama_fp8, response_snapshot):
|
||||
response = await flash_llama_fp8.generate(
|
||||
"Test request",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
stop_sequences=["test"],
|
||||
temperature=0.5,
|
||||
top_p=0.9,
|
||||
top_k=10,
|
||||
truncate=5,
|
||||
typical_p=0.9,
|
||||
watermark=True,
|
||||
decoder_input_details=True,
|
||||
seed=0,
|
||||
)
|
||||
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_fp8_load(flash_llama_fp8, generate_load, response_snapshot):
|
||||
responses = await generate_load(
|
||||
flash_llama_fp8, "Test request", max_new_tokens=10, n=4
|
||||
)
|
||||
|
||||
assert len(responses) == 4
|
||||
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
||||
|
||||
assert responses == response_snapshot
|
66
integration-tests/models/test_flash_llama_marlin_24.py
Normal file
66
integration-tests/models/test_flash_llama_marlin_24.py
Normal file
@ -0,0 +1,66 @@
|
||||
import pytest
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def flash_llama_marlin24_handle(launcher):
|
||||
with launcher(
|
||||
"nm-testing/Llama-2-7b-pruned2.4-Marlin_24", quantize="marlin"
|
||||
) as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def flash_llama_marlin(flash_llama_marlin24_handle):
|
||||
await flash_llama_marlin24_handle.health(300)
|
||||
return flash_llama_marlin24_handle.client
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_marlin(flash_llama_marlin, response_snapshot):
|
||||
response = await flash_llama_marlin.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
|
||||
assert response.details.generated_tokens == 10
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_marlin24_all_params(flash_llama_marlin, response_snapshot):
|
||||
response = await flash_llama_marlin.generate(
|
||||
"Test request",
|
||||
max_new_tokens=10,
|
||||
repetition_penalty=1.2,
|
||||
return_full_text=True,
|
||||
temperature=0.5,
|
||||
top_p=0.9,
|
||||
top_k=10,
|
||||
truncate=5,
|
||||
typical_p=0.9,
|
||||
watermark=True,
|
||||
decoder_input_details=True,
|
||||
seed=0,
|
||||
)
|
||||
|
||||
assert response.details.generated_tokens == 10
|
||||
assert response == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.release
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_flash_llama_marlin24_load(
|
||||
flash_llama_marlin, generate_load, response_snapshot
|
||||
):
|
||||
responses = await generate_load(
|
||||
flash_llama_marlin, "Test request", max_new_tokens=10, n=4
|
||||
)
|
||||
|
||||
assert len(responses) == 4
|
||||
assert all([r.generated_text == responses[0].generated_text for r in responses])
|
||||
|
||||
assert responses == response_snapshot
|
134
integration-tests/models/test_lora_mistral.py
Normal file
134
integration-tests/models/test_lora_mistral.py
Normal file
@ -0,0 +1,134 @@
|
||||
import pytest
|
||||
import requests
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
def lora_mistral_handle(launcher):
|
||||
with launcher(
|
||||
"mistralai/Mistral-7B-v0.1",
|
||||
lora_adapters=[
|
||||
"predibase/dbpedia",
|
||||
"predibase/customer_support",
|
||||
],
|
||||
cuda_graphs=[0],
|
||||
) as handle:
|
||||
yield handle
|
||||
|
||||
|
||||
@pytest.fixture(scope="module")
|
||||
async def lora_mistral(lora_mistral_handle):
|
||||
await lora_mistral_handle.health(300)
|
||||
return lora_mistral_handle.client
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_lora_mistral(lora_mistral, response_snapshot):
|
||||
response = await lora_mistral.generate(
|
||||
"Test request", max_new_tokens=10, decoder_input_details=True
|
||||
)
|
||||
assert response.details.generated_tokens == 10
|
||||
|
||||
|
||||
classification_prompt = """You are given the title and the body of an article below. Please determine the type of the article.\n### Title: Great White Whale\n\n### Body: Great White Whale is the debut album by the Canadian rock band Secret and Whisper. The album was in the works for about a year and was released on February 12 2008. A music video was shot in Pittsburgh for the album's first single XOXOXO. The album reached number 17 on iTunes's top 100 albums in its first week on sale.\n\n### Article Type:"""
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_lora_mistral_without_adapter(lora_mistral, response_snapshot):
|
||||
response = requests.post(
|
||||
f"{lora_mistral.base_url}/generate",
|
||||
headers=lora_mistral.headers,
|
||||
json={
|
||||
"inputs": classification_prompt,
|
||||
"parameters": {
|
||||
"max_new_tokens": 40,
|
||||
"details": True,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert (
|
||||
data["generated_text"]
|
||||
== "\n\n### 1. News\n### 2. Blog\n### 3. Article\n### 4. Review\n### 5. Other\n\n\n\n\n\n\n\n\n"
|
||||
)
|
||||
assert data == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_lora_mistral_with_dbpedia_adapter(lora_mistral, response_snapshot):
|
||||
response = requests.post(
|
||||
f"{lora_mistral.base_url}/generate",
|
||||
headers=lora_mistral.headers,
|
||||
json={
|
||||
"inputs": classification_prompt,
|
||||
"parameters": {
|
||||
"max_new_tokens": 40,
|
||||
"adapter_id": "predibase/dbpedia",
|
||||
"details": True,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert data["generated_text"] == " 11"
|
||||
assert data == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_lora_mistral_with_customer_support_adapter(
|
||||
lora_mistral, response_snapshot
|
||||
):
|
||||
print(lora_mistral.base_url)
|
||||
print(lora_mistral.headers)
|
||||
response = requests.post(
|
||||
f"{lora_mistral.base_url}/generate",
|
||||
headers=lora_mistral.headers,
|
||||
json={
|
||||
"inputs": "What are 3 unique words that describe you?",
|
||||
"parameters": {
|
||||
"max_new_tokens": 40,
|
||||
"adapter_id": "predibase/customer_support",
|
||||
"details": True,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert (
|
||||
data["generated_text"]
|
||||
== "\n\nI’m not sure if I can come up with 3 unique words that describe me, but I’ll try.\n\n1. Creative\n2. Funny\n3."
|
||||
)
|
||||
assert data == response_snapshot
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@pytest.mark.private
|
||||
async def test_lora_mistral_without_customer_support_adapter(
|
||||
lora_mistral, response_snapshot
|
||||
):
|
||||
response = requests.post(
|
||||
f"{lora_mistral.base_url}/generate",
|
||||
headers=lora_mistral.headers,
|
||||
json={
|
||||
"inputs": "What are 3 unique words that describe you?",
|
||||
"parameters": {
|
||||
"max_new_tokens": 40,
|
||||
"details": True,
|
||||
},
|
||||
},
|
||||
)
|
||||
|
||||
assert response.status_code == 200
|
||||
data = response.json()
|
||||
assert (
|
||||
data["generated_text"]
|
||||
== "\n\nI’m a very passionate person. I’m very driven. I’m very determined.\n\nWhat is your favorite thing about being a teacher?\n\nI love the fact"
|
||||
)
|
||||
assert data == response_snapshot
|
@ -457,6 +457,14 @@ struct Args {
|
||||
/// startup that will be available to callers via the `adapter_id` field in a request.
|
||||
#[clap(long, env)]
|
||||
lora_adapters: Option<String>,
|
||||
|
||||
/// Disable sending of all usage statistics
|
||||
#[clap(default_value = "false", long, env)]
|
||||
disable_usage_stats: bool,
|
||||
|
||||
/// Disable sending of crash reports, but allow anonymous usage statistics
|
||||
#[clap(default_value = "false", long, env)]
|
||||
disable_crash_reports: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug)]
|
||||
@ -1201,6 +1209,14 @@ fn spawn_webserver(
|
||||
args.model_id,
|
||||
];
|
||||
|
||||
// Pass usage stats flags to router
|
||||
if args.disable_usage_stats {
|
||||
router_args.push("--disable-usage-stats".to_string());
|
||||
}
|
||||
if args.disable_crash_reports {
|
||||
router_args.push("--disable-crash-reports".to_string());
|
||||
}
|
||||
|
||||
// Grammar support
|
||||
if args.disable_grammar_support {
|
||||
router_args.push("--disable-grammar-support".to_string());
|
||||
|
@ -24,7 +24,7 @@ futures = "0.3.28"
|
||||
hf-hub = { workspace = true }
|
||||
itertools = "0.10"
|
||||
jsonschema = { version = "0.17.1", features = ["draft202012"] }
|
||||
metrics = "0.21.1"
|
||||
metrics = "0.23.0"
|
||||
metrics-exporter-prometheus = { version = "0.15.1", features = [] }
|
||||
nohash-hasher = "0.2.0"
|
||||
opentelemetry = { version = "0.20.0", features = ["rt-tokio"] }
|
||||
@ -52,6 +52,10 @@ regex = "1.10.3"
|
||||
once_cell = "1.19.0"
|
||||
image = "0.25.1"
|
||||
base64 = { workspace = true }
|
||||
sysinfo = "0.30.13"
|
||||
uuid = { version = "1.9.1", default-features = false, features = ["v4", "fast-rng", "macro-diagnostics"] }
|
||||
csv = "1.3.0"
|
||||
|
||||
|
||||
[build-dependencies]
|
||||
vergen = { version = "8.2.5", features = ["build", "git", "gitcl"] }
|
||||
|
@ -7,7 +7,7 @@ pub(crate) use health::HealthCheck;
|
||||
use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
|
||||
use crate::{
|
||||
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig,
|
||||
HubTokenizerConfig, Message, MessageChunk, PrefillToken, TextMessage, Token,
|
||||
HubTokenizerConfig, Message, MessageChunk, PrefillToken, TextMessage, Token, ToolChoice,
|
||||
};
|
||||
use crate::{
|
||||
FunctionRef, FunctionsMap, GrammarType, Properties, TokenizerConfigToken, Tool, ToolType, Tools,
|
||||
@ -91,14 +91,14 @@ impl Infer {
|
||||
.limit_concurrent_requests
|
||||
.try_acquire_owned()
|
||||
.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "overloaded");
|
||||
metrics::counter!("tgi_request_failure", "err" => "overloaded").increment(1);
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
|
||||
// Validate request
|
||||
let valid_request = self.validation.validate(request).await.map_err(|err| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
err
|
||||
})?;
|
||||
@ -140,7 +140,7 @@ impl Infer {
|
||||
.ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
|
||||
.apply(messages, grammar_with_prompt)
|
||||
.map_err(|e| {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "template");
|
||||
metrics::counter!("tgi_request_failure", "err" => "template").increment(1);
|
||||
tracing::error!("{e}");
|
||||
e
|
||||
})
|
||||
@ -214,7 +214,7 @@ impl Infer {
|
||||
})
|
||||
} else {
|
||||
let err = InferError::IncompleteGeneration;
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
||||
metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
|
||||
tracing::error!("{err}");
|
||||
Err(err)
|
||||
}
|
||||
@ -332,29 +332,37 @@ impl ChatTemplate {
|
||||
pub struct ToolGrammar {}
|
||||
|
||||
impl ToolGrammar {
|
||||
// find a tool by name
|
||||
fn find_tool_by_name(tools: &[Tool], name: &str) -> Result<Tool, InferError> {
|
||||
tools
|
||||
.iter()
|
||||
.find(|tool| tool.function.name == name)
|
||||
.cloned()
|
||||
.ok_or_else(|| InferError::ToolError(format!("Tool with name {} not found", name)))
|
||||
}
|
||||
|
||||
pub fn apply(
|
||||
tools: Option<Vec<Tool>>,
|
||||
tool_choice: Option<ToolType>,
|
||||
tool_choice: ToolChoice,
|
||||
) -> Result<Option<Tools>, InferError> {
|
||||
if let Some((req_tools, tool_choice)) = tools.zip(tool_choice) {
|
||||
// let tool_prompt = tool_prompt.unwrap_or_default();
|
||||
// if no tools are provided, we return None
|
||||
let tools = match tools {
|
||||
Some(tools) if !tools.is_empty() => tools,
|
||||
_ => return Ok(None),
|
||||
};
|
||||
|
||||
let tool_choice = tool_choice.0.unwrap_or(ToolType::OneOf);
|
||||
|
||||
// if tools are provided and no tool_choice we default to the OneOf
|
||||
let tools_to_use = match tool_choice {
|
||||
ToolType::FunctionName(name) => {
|
||||
vec![req_tools
|
||||
.iter()
|
||||
.find(|tool| tool.function.name == *name)
|
||||
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
|
||||
.clone()]
|
||||
vec![Self::find_tool_by_name(&tools, &name)?]
|
||||
}
|
||||
ToolType::Function { function } => {
|
||||
let tool = req_tools
|
||||
.iter()
|
||||
.find(|tool| tool.function.name == function.name)
|
||||
.unwrap_or_else(|| panic!("Tool with name {} not found", function.name))
|
||||
.clone();
|
||||
vec![tool]
|
||||
vec![Self::find_tool_by_name(&tools, &function.name)?]
|
||||
}
|
||||
ToolType::OneOf => req_tools.to_owned(),
|
||||
ToolType::OneOf => tools,
|
||||
ToolType::NoTool => return Ok(None),
|
||||
};
|
||||
|
||||
// adds the error notification function for LLM feedback if required
|
||||
@ -448,10 +456,7 @@ impl ToolGrammar {
|
||||
},
|
||||
};
|
||||
|
||||
return Ok(Some(tools));
|
||||
}
|
||||
// Err(InferError::ToolError("No tools provided".to_string()))
|
||||
Ok(None)
|
||||
Ok(Some(tools))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -111,7 +111,7 @@ async fn queue_task(
|
||||
match cmd {
|
||||
QueueCommand::Append(entry, span) => {
|
||||
span.in_scope(|| state.append(*entry));
|
||||
metrics::increment_gauge!("tgi_queue_size", 1.0);
|
||||
metrics::gauge!("tgi_queue_size").increment(1.0);
|
||||
}
|
||||
QueueCommand::NextBatch {
|
||||
min_size,
|
||||
@ -124,7 +124,7 @@ async fn queue_task(
|
||||
let next_batch =
|
||||
state.next_batch(min_size, max_size, prefill_token_budget, token_budget);
|
||||
response_sender.send(next_batch).unwrap();
|
||||
metrics::gauge!("tgi_queue_size", state.entries.len() as f64);
|
||||
metrics::gauge!("tgi_queue_size").set(state.entries.len() as f64);
|
||||
}),
|
||||
}
|
||||
}
|
||||
@ -226,7 +226,7 @@ impl State {
|
||||
// Filter entries where the response receiver was dropped (== entries where the request
|
||||
// was dropped by the client)
|
||||
if entry.response_tx.is_closed() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
tracing::debug!("Dropping entry");
|
||||
continue;
|
||||
}
|
||||
@ -336,7 +336,7 @@ impl State {
|
||||
// Increment batch id
|
||||
self.next_batch_id += 1;
|
||||
|
||||
metrics::histogram!("tgi_batch_next_size", batch.size as f64);
|
||||
metrics::histogram!("tgi_batch_next_size").record(batch.size as f64);
|
||||
|
||||
Some((batch_entries, batch, next_batch_span))
|
||||
}
|
||||
|
@ -148,8 +148,8 @@ pub(crate) async fn batching_task(
|
||||
let batch_size = batch.size;
|
||||
let batch_max_tokens = batch.max_tokens;
|
||||
let mut batches = vec![batch];
|
||||
metrics::gauge!("tgi_batch_current_size", batch_size as f64);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);
|
||||
metrics::gauge!("tgi_batch_current_size").set(batch_size as f64);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64);
|
||||
|
||||
let min_size = if waiting_tokens >= max_waiting_tokens {
|
||||
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
|
||||
@ -170,9 +170,11 @@ pub(crate) async fn batching_task(
|
||||
{
|
||||
// Tracking metrics
|
||||
if min_size.is_some() {
|
||||
metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
|
||||
metrics::counter!("tgi_batch_concat", "reason" => "backpressure")
|
||||
.increment(1);
|
||||
} else {
|
||||
metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
|
||||
metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded")
|
||||
.increment(1);
|
||||
}
|
||||
|
||||
entries.iter_mut().for_each(|(_, entry)| {
|
||||
@ -219,8 +221,8 @@ pub(crate) async fn batching_task(
|
||||
.await;
|
||||
waiting_tokens += 1;
|
||||
}
|
||||
metrics::gauge!("tgi_batch_current_size", 0.0);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
|
||||
metrics::gauge!("tgi_batch_current_size").set(0.0);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens").set(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -234,7 +236,7 @@ async fn prefill(
|
||||
) -> Option<CachedBatch> {
|
||||
let start_time = Instant::now();
|
||||
let batch_id = batch.id;
|
||||
metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
|
||||
metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1);
|
||||
|
||||
match client.prefill(batch).await {
|
||||
Ok((generations, next_batch, timings)) => {
|
||||
@ -248,11 +250,15 @@ async fn prefill(
|
||||
// Filter next batch and remove requests that were stopped
|
||||
let next_batch = filter_batch(client, next_batch, entries).await;
|
||||
|
||||
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_forward_duration","method" => "prefill")
|
||||
.record(timings.forward.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill")
|
||||
.record(timings.decode.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill")
|
||||
.record(start_filtering_time.elapsed().as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_inference_duration","method" => "prefill")
|
||||
.record(start_time.elapsed().as_secs_f64());
|
||||
metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1);
|
||||
next_batch
|
||||
}
|
||||
// If we have an error, we discard the whole batch
|
||||
@ -261,7 +267,7 @@ async fn prefill(
|
||||
generation_health.store(false, Ordering::SeqCst);
|
||||
let _ = client.clear_cache(Some(batch_id)).await;
|
||||
send_errors(err, entries);
|
||||
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
|
||||
metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1);
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -276,7 +282,7 @@ async fn decode(
|
||||
) -> Option<CachedBatch> {
|
||||
let start_time = Instant::now();
|
||||
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
|
||||
metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
|
||||
metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1);
|
||||
|
||||
match client.decode(batches).await {
|
||||
Ok((generations, next_batch, timings)) => {
|
||||
@ -291,13 +297,18 @@ async fn decode(
|
||||
let next_batch = filter_batch(client, next_batch, entries).await;
|
||||
|
||||
if let Some(concat_duration) = timings.concat {
|
||||
metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_concat_duration", "method" => "decode")
|
||||
.record(concat_duration.as_secs_f64());
|
||||
}
|
||||
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_forward_duration", "method" => "decode")
|
||||
.record(timings.forward.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_decode_duration", "method" => "decode")
|
||||
.record(timings.decode.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_filter_duration", "method" => "decode")
|
||||
.record(start_filtering_time.elapsed().as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_inference_duration", "method" => "decode")
|
||||
.record(start_time.elapsed().as_secs_f64());
|
||||
metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1);
|
||||
next_batch
|
||||
}
|
||||
// If we have an error, we discard the whole batch
|
||||
@ -307,7 +318,7 @@ async fn decode(
|
||||
let _ = client.clear_cache(Some(id)).await;
|
||||
}
|
||||
send_errors(err, entries);
|
||||
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
|
||||
metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1);
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -365,7 +376,7 @@ fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u6
|
||||
// request and we need to stop generating hence why we unwrap_or(true)
|
||||
let stopped = send_responses(generation, entry).map_err(|err| {
|
||||
tracing::error!("Entry response channel error.");
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
err
|
||||
}).unwrap_or(true);
|
||||
if stopped {
|
||||
@ -381,7 +392,7 @@ fn send_responses(
|
||||
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
|
||||
// Return directly if the channel is disconnected
|
||||
if entry.response_tx.is_closed() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
return Ok(true);
|
||||
}
|
||||
|
||||
@ -407,7 +418,7 @@ fn send_responses(
|
||||
// Create last Token
|
||||
let tokens_ = generation.tokens.expect("Non empty tokens in generation");
|
||||
let n = tokens_.ids.len();
|
||||
metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
|
||||
metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64);
|
||||
let mut iterator = tokens_
|
||||
.ids
|
||||
.into_iter()
|
||||
@ -472,7 +483,7 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||||
// Create and enter a span to link this function back to the entry
|
||||
let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
|
||||
let err = InferError::GenerationError(error.to_string());
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "generation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "generation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
|
||||
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||||
|
@ -126,7 +126,7 @@ async fn queue_task(
|
||||
match cmd {
|
||||
QueueCommand::Append(entry, span) => {
|
||||
span.in_scope(|| state.append(*entry));
|
||||
metrics::increment_gauge!("tgi_queue_size", 1.0);
|
||||
metrics::gauge!("tgi_queue_size").increment(1.0);
|
||||
}
|
||||
QueueCommand::NextBatch {
|
||||
min_size,
|
||||
@ -141,7 +141,7 @@ async fn queue_task(
|
||||
.instrument(span)
|
||||
.await;
|
||||
response_sender.send(next_batch).unwrap();
|
||||
metrics::gauge!("tgi_queue_size", state.entries.len() as f64);
|
||||
metrics::gauge!("tgi_queue_size").set(state.entries.len() as f64);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -248,7 +248,7 @@ impl State {
|
||||
// Filter entries where the response receiver was dropped (== entries where the request
|
||||
// was dropped by the client)
|
||||
if entry.response_tx.is_closed() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
tracing::debug!("Dropping entry");
|
||||
continue;
|
||||
}
|
||||
@ -399,7 +399,7 @@ impl State {
|
||||
// Increment batch id
|
||||
self.next_batch_id += 1;
|
||||
|
||||
metrics::histogram!("tgi_batch_next_size", batch.size as f64);
|
||||
metrics::histogram!("tgi_batch_next_size").record(batch.size as f64);
|
||||
|
||||
Some((batch_entries, batch, next_batch_span))
|
||||
}
|
||||
|
@ -154,8 +154,8 @@ pub(crate) async fn batching_task(
|
||||
let batch_size = batch.size;
|
||||
let batch_max_tokens = batch.max_tokens;
|
||||
let mut batches = vec![batch];
|
||||
metrics::gauge!("tgi_batch_current_size", batch_size as f64);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens", batch_max_tokens as f64);
|
||||
metrics::gauge!("tgi_batch_current_size").set(batch_size as f64);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens").set(batch_max_tokens as f64);
|
||||
|
||||
let min_size = if waiting_tokens >= max_waiting_tokens {
|
||||
// If we didn't onboard any new requests since >= max_waiting_tokens, we try
|
||||
@ -176,9 +176,11 @@ pub(crate) async fn batching_task(
|
||||
{
|
||||
// Tracking metrics
|
||||
if min_size.is_some() {
|
||||
metrics::increment_counter!("tgi_batch_concat", "reason" => "backpressure");
|
||||
metrics::counter!("tgi_batch_concat", "reason" => "backpressure")
|
||||
.increment(1);
|
||||
} else {
|
||||
metrics::increment_counter!("tgi_batch_concat", "reason" => "wait_exceeded");
|
||||
metrics::counter!("tgi_batch_concat", "reason" => "wait_exceeded")
|
||||
.increment(1);
|
||||
}
|
||||
|
||||
entries.iter_mut().for_each(|(_, entry)| {
|
||||
@ -225,8 +227,8 @@ pub(crate) async fn batching_task(
|
||||
.await;
|
||||
waiting_tokens += 1;
|
||||
}
|
||||
metrics::gauge!("tgi_batch_current_size", 0.0);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens", 0.0);
|
||||
metrics::gauge!("tgi_batch_current_size").set(0.0);
|
||||
metrics::gauge!("tgi_batch_current_max_tokens").set(0.0);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -240,7 +242,7 @@ async fn prefill(
|
||||
) -> Option<CachedBatch> {
|
||||
let start_time = Instant::now();
|
||||
let batch_id = batch.id;
|
||||
metrics::increment_counter!("tgi_batch_inference_count", "method" => "prefill");
|
||||
metrics::counter!("tgi_batch_inference_count", "method" => "prefill").increment(1);
|
||||
|
||||
match client.prefill(batch).await {
|
||||
Ok((generations, next_batch, timings)) => {
|
||||
@ -254,11 +256,15 @@ async fn prefill(
|
||||
// Filter next batch and remove requests that were stopped
|
||||
let next_batch = filter_batch(client, next_batch, entries).await;
|
||||
|
||||
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "prefill");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "prefill");
|
||||
metrics::histogram!("tgi_batch_forward_duration","method" => "prefill")
|
||||
.record(timings.forward.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_decode_duration", "method" => "prefill")
|
||||
.record(timings.decode.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_filter_duration", "method" => "prefill")
|
||||
.record(start_filtering_time.elapsed().as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_inference_duration", "method" => "prefill")
|
||||
.record(start_time.elapsed().as_secs_f64());
|
||||
metrics::counter!("tgi_batch_inference_success", "method" => "prefill").increment(1);
|
||||
next_batch
|
||||
}
|
||||
// If we have an error, we discard the whole batch
|
||||
@ -267,7 +273,7 @@ async fn prefill(
|
||||
generation_health.store(false, Ordering::SeqCst);
|
||||
let _ = client.clear_cache(Some(batch_id)).await;
|
||||
send_errors(err, entries);
|
||||
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "prefill");
|
||||
metrics::counter!("tgi_batch_inference_failure", "method" => "prefill").increment(1);
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -282,7 +288,7 @@ async fn decode(
|
||||
) -> Option<CachedBatch> {
|
||||
let start_time = Instant::now();
|
||||
let batch_ids: Vec<u64> = batches.iter().map(|b| b.id).collect();
|
||||
metrics::increment_counter!("tgi_batch_inference_count", "method" => "decode");
|
||||
metrics::counter!("tgi_batch_inference_count", "method" => "decode").increment(1);
|
||||
|
||||
match client.decode(batches).await {
|
||||
Ok((generations, next_batch, timings)) => {
|
||||
@ -297,13 +303,18 @@ async fn decode(
|
||||
let next_batch = filter_batch(client, next_batch, entries).await;
|
||||
|
||||
if let Some(concat_duration) = timings.concat {
|
||||
metrics::histogram!("tgi_batch_concat_duration", concat_duration.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_concat_duration", "method" => "decode")
|
||||
.record(concat_duration.as_secs_f64());
|
||||
}
|
||||
metrics::histogram!("tgi_batch_forward_duration", timings.forward.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_decode_duration", timings.decode.as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_filter_duration", start_filtering_time.elapsed().as_secs_f64(), "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_inference_duration", start_time.elapsed().as_secs_f64(), "method" => "decode");
|
||||
metrics::increment_counter!("tgi_batch_inference_success", "method" => "decode");
|
||||
metrics::histogram!("tgi_batch_forward_duration", "method" => "decode")
|
||||
.record(timings.forward.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_decode_duration", "method" => "decode")
|
||||
.record(timings.decode.as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_filter_duration", "method" => "decode")
|
||||
.record(start_filtering_time.elapsed().as_secs_f64());
|
||||
metrics::histogram!("tgi_batch_inference_duration", "method" => "decode")
|
||||
.record(start_time.elapsed().as_secs_f64());
|
||||
metrics::counter!("tgi_batch_inference_success", "method" => "decode").increment(1);
|
||||
next_batch
|
||||
}
|
||||
// If we have an error, we discard the whole batch
|
||||
@ -313,7 +324,7 @@ async fn decode(
|
||||
let _ = client.clear_cache(Some(id)).await;
|
||||
}
|
||||
send_errors(err, entries);
|
||||
metrics::increment_counter!("tgi_batch_inference_failure", "method" => "decode");
|
||||
metrics::counter!("tgi_batch_inference_failure", "method" => "decode").increment(1);
|
||||
None
|
||||
}
|
||||
}
|
||||
@ -371,7 +382,7 @@ fn filter_send_generations(generations: Vec<Generation>, entries: &mut IntMap<u6
|
||||
// request and we need to stop generating hence why we unwrap_or(true)
|
||||
let stopped = send_responses(generation, entry).map_err(|err| {
|
||||
tracing::error!("Entry response channel error.");
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
err
|
||||
}).unwrap_or(true);
|
||||
if stopped {
|
||||
@ -387,7 +398,7 @@ fn send_responses(
|
||||
) -> Result<bool, Box<SendError<Result<InferStreamResponse, InferError>>>> {
|
||||
// Return directly if the channel is disconnected
|
||||
if entry.response_tx.is_closed() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "dropped");
|
||||
metrics::counter!("tgi_request_failure", "err" => "dropped").increment(1);
|
||||
return Ok(true);
|
||||
}
|
||||
|
||||
@ -413,7 +424,7 @@ fn send_responses(
|
||||
// Create last Token
|
||||
let tokens_ = generation.tokens.expect("Non empty tokens in generation");
|
||||
let n = tokens_.ids.len();
|
||||
metrics::histogram!("tgi_request_skipped_tokens", (n - 1) as f64);
|
||||
metrics::histogram!("tgi_request_skipped_tokens").record((n - 1) as f64);
|
||||
let mut iterator = tokens_
|
||||
.ids
|
||||
.into_iter()
|
||||
@ -478,7 +489,7 @@ fn send_errors(error: ClientError, entries: &mut IntMap<u64, Entry>) {
|
||||
// Create and enter a span to link this function back to the entry
|
||||
let _send_error_span = info_span!(parent: entry.temp_span.as_ref().expect("batch_span is None. This is a bug."), "send_error").entered();
|
||||
let err = InferError::GenerationError(error.to_string());
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "generation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "generation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
|
||||
// unwrap_or is valid here as we don't care if the receiver is gone.
|
||||
|
@ -7,6 +7,8 @@ mod validation;
|
||||
#[cfg(feature = "kserve")]
|
||||
mod kserve;
|
||||
|
||||
pub mod usage_stats;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use tracing::warn;
|
||||
use utoipa::ToSchema;
|
||||
@ -40,13 +42,13 @@ pub struct HubModelInfo {
|
||||
pub pipeline_tag: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Deserialize, PartialEq)]
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
pub struct ChatTemplate {
|
||||
name: String,
|
||||
template: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Deserialize, PartialEq)]
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
|
||||
#[serde(untagged)]
|
||||
pub enum ChatTemplateVersions {
|
||||
Single(String),
|
||||
@ -55,7 +57,7 @@ pub enum ChatTemplateVersions {
|
||||
|
||||
use std::path::Path;
|
||||
|
||||
#[derive(Debug, Clone, Deserialize, Default)]
|
||||
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
|
||||
pub struct HubTokenizerConfig {
|
||||
pub chat_template: Option<ChatTemplateVersions>,
|
||||
pub completion_template: Option<String>,
|
||||
@ -384,7 +386,7 @@ pub struct CompletionRequest {
|
||||
/// UNUSED
|
||||
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
|
||||
/// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
|
||||
pub model: String,
|
||||
pub model: Option<String>,
|
||||
|
||||
/// The prompt to generate completions for.
|
||||
#[schema(example = "What is Deep Learning?")]
|
||||
@ -731,7 +733,7 @@ impl ChatCompletionChunk {
|
||||
pub(crate) struct ChatRequest {
|
||||
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
|
||||
/// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
|
||||
pub model: String,
|
||||
pub model: Option<String>,
|
||||
|
||||
/// A list of messages comprising the conversation so far.
|
||||
#[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
|
||||
@ -824,7 +826,7 @@ pub(crate) struct ChatRequest {
|
||||
/// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
|
||||
#[serde(default)]
|
||||
#[schema(nullable = true, example = "null")]
|
||||
pub tool_choice: Option<ToolType>,
|
||||
pub tool_choice: ToolChoice,
|
||||
|
||||
/// Response format constraints for the generation.
|
||||
///
|
||||
@ -846,34 +848,34 @@ pub enum ToolType {
|
||||
OneOf,
|
||||
FunctionName(String),
|
||||
Function { function: FunctionName },
|
||||
NoTool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
|
||||
pub struct FunctionName {
|
||||
pub name: String,
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
|
||||
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
|
||||
#[serde(from = "ToolTypeDeserializer")]
|
||||
pub struct ToolChoice(pub Option<ToolType>);
|
||||
|
||||
#[derive(Deserialize)]
|
||||
#[serde(untagged)]
|
||||
enum ToolTypeDeserializer {
|
||||
None(Option<String>),
|
||||
Some(ToolType),
|
||||
String(String),
|
||||
ToolType(ToolType),
|
||||
}
|
||||
|
||||
impl From<ToolTypeDeserializer> for ToolChoice {
|
||||
fn from(value: ToolTypeDeserializer) -> Self {
|
||||
match value {
|
||||
ToolTypeDeserializer::None(opt) => match opt.as_deref() {
|
||||
Some("none") => ToolChoice(None),
|
||||
Some("auto") => ToolChoice(Some(ToolType::OneOf)),
|
||||
Some(s) => ToolChoice(Some(ToolType::FunctionName(s.to_string()))),
|
||||
None => ToolChoice(Some(ToolType::OneOf)),
|
||||
ToolTypeDeserializer::String(s) => match s.as_str() {
|
||||
"none" => ToolChoice(Some(ToolType::NoTool)),
|
||||
"auto" => ToolChoice(Some(ToolType::OneOf)),
|
||||
_ => ToolChoice(Some(ToolType::FunctionName(s))),
|
||||
},
|
||||
ToolTypeDeserializer::Some(tool_type) => ToolChoice(Some(tool_type)),
|
||||
ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -14,6 +14,7 @@ use std::io::BufReader;
|
||||
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
|
||||
use std::path::{Path, PathBuf};
|
||||
use text_generation_router::config::Config;
|
||||
use text_generation_router::usage_stats;
|
||||
use text_generation_router::{
|
||||
server, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig, HubTokenizerConfig,
|
||||
};
|
||||
@ -87,6 +88,10 @@ struct Args {
|
||||
disable_grammar_support: bool,
|
||||
#[clap(default_value = "4", long, env)]
|
||||
max_client_batch_size: usize,
|
||||
#[clap(long, env, default_value_t)]
|
||||
disable_usage_stats: bool,
|
||||
#[clap(long, env, default_value_t)]
|
||||
disable_crash_reports: bool,
|
||||
}
|
||||
|
||||
#[derive(Debug, Subcommand)]
|
||||
@ -128,6 +133,8 @@ async fn main() -> Result<(), RouterError> {
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
disable_usage_stats,
|
||||
disable_crash_reports,
|
||||
command,
|
||||
} = args;
|
||||
|
||||
@ -210,7 +217,11 @@ async fn main() -> Result<(), RouterError> {
|
||||
}
|
||||
let api = if use_api {
|
||||
if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
|
||||
let cache = Cache::default();
|
||||
let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
|
||||
.map_err(|_| ())
|
||||
.map(|cache_dir| Cache::new(cache_dir.into()))
|
||||
.unwrap_or_else(|_| Cache::default());
|
||||
|
||||
tracing::warn!("Offline mode active using cache defaults");
|
||||
Type::Cache(cache)
|
||||
} else {
|
||||
@ -320,6 +331,7 @@ async fn main() -> Result<(), RouterError> {
|
||||
tracing::warn!("Could not find tokenizer config locally and no API specified");
|
||||
HubTokenizerConfig::default()
|
||||
});
|
||||
let tokenizer_class = tokenizer_config.tokenizer_class.clone();
|
||||
|
||||
let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
|
||||
let mut tokenizer = Tokenizer::from_file(filename).ok();
|
||||
@ -374,8 +386,47 @@ async fn main() -> Result<(), RouterError> {
|
||||
}
|
||||
};
|
||||
|
||||
// Only send usage stats when TGI is run in container and the function returns Some
|
||||
let is_container = matches!(usage_stats::is_container(), Ok(true));
|
||||
|
||||
let user_agent = if !disable_usage_stats && is_container {
|
||||
let reduced_args = usage_stats::Args::new(
|
||||
config.clone(),
|
||||
tokenizer_class,
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
revision,
|
||||
validation_workers,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
disable_usage_stats,
|
||||
disable_crash_reports,
|
||||
);
|
||||
Some(usage_stats::UserAgent::new(reduced_args))
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
if let Some(ref ua) = user_agent {
|
||||
let start_event =
|
||||
usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
|
||||
tokio::spawn(async move {
|
||||
start_event.send().await;
|
||||
});
|
||||
};
|
||||
|
||||
// Run server
|
||||
server::run(
|
||||
let result = server::run(
|
||||
master_shard_uds_path,
|
||||
model_info,
|
||||
compat_return_full_text,
|
||||
@ -406,9 +457,42 @@ async fn main() -> Result<(), RouterError> {
|
||||
max_client_batch_size,
|
||||
print_schema_command,
|
||||
)
|
||||
.await?;
|
||||
.await;
|
||||
|
||||
match result {
|
||||
Ok(_) => {
|
||||
if let Some(ref ua) = user_agent {
|
||||
let stop_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Stop,
|
||||
None,
|
||||
);
|
||||
stop_event.send().await;
|
||||
};
|
||||
Ok(())
|
||||
}
|
||||
Err(e) => {
|
||||
if let Some(ref ua) = user_agent {
|
||||
if !disable_crash_reports {
|
||||
let error_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Error,
|
||||
Some(e.to_string()),
|
||||
);
|
||||
error_event.send().await;
|
||||
} else {
|
||||
let unknow_error_event = usage_stats::UsageStatsEvent::new(
|
||||
ua.clone(),
|
||||
usage_stats::EventType::Error,
|
||||
Some("unknow_error".to_string()),
|
||||
);
|
||||
unknow_error_event.send().await;
|
||||
}
|
||||
};
|
||||
Err(RouterError::WebServer(e))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Init logging using env variables LOG_LEVEL and LOG_FORMAT:
|
||||
/// - otlp_endpoint is an optional URL to an Open Telemetry collector
|
||||
|
@ -11,10 +11,11 @@ use crate::kserve::{
|
||||
};
|
||||
use crate::validation::ValidationError;
|
||||
use crate::{
|
||||
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
|
||||
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
|
||||
Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
|
||||
Usage, Validation,
|
||||
BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName, GenerateParameters,
|
||||
GenerateRequest, GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig,
|
||||
HubTokenizerConfig, Info, Message, MessageChunk, MessageContent, OutputMessage, PrefillToken,
|
||||
SimpleToken, StreamDetails, StreamResponse, TextMessage, Token, TokenizeResponse,
|
||||
ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
|
||||
};
|
||||
use crate::{
|
||||
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
|
||||
@ -23,7 +24,7 @@ use crate::{
|
||||
CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool, VertexRequest,
|
||||
VertexResponse,
|
||||
};
|
||||
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolType};
|
||||
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
|
||||
use async_stream::__private::AsyncStream;
|
||||
use axum::extract::Extension;
|
||||
use axum::http::{HeaderMap, Method, StatusCode};
|
||||
@ -185,7 +186,7 @@ pub(crate) async fn generate_internal(
|
||||
span: tracing::Span,
|
||||
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
|
||||
let start_time = Instant::now();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
|
||||
// Do not long ultra long inputs, like image payloads.
|
||||
tracing::debug!("Input: {}", &req.inputs[..1000.min(req.inputs.len())]);
|
||||
@ -301,25 +302,15 @@ pub(crate) async fn generate_internal(
|
||||
);
|
||||
|
||||
// Metrics
|
||||
metrics::increment_counter!("tgi_request_success");
|
||||
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
|
||||
metrics::histogram!(
|
||||
"tgi_request_validation_duration",
|
||||
validation_time.as_secs_f64()
|
||||
);
|
||||
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
|
||||
metrics::histogram!(
|
||||
"tgi_request_inference_duration",
|
||||
inference_time.as_secs_f64()
|
||||
);
|
||||
metrics::histogram!(
|
||||
"tgi_request_mean_time_per_token_duration",
|
||||
time_per_token.as_secs_f64()
|
||||
);
|
||||
metrics::histogram!(
|
||||
"tgi_request_generated_tokens",
|
||||
response.generated_text.generated_tokens as f64
|
||||
);
|
||||
metrics::counter!("tgi_request_success").increment(1);
|
||||
metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_mean_time_per_token_duration")
|
||||
.record(time_per_token.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_generated_tokens")
|
||||
.record(response.generated_text.generated_tokens as f64);
|
||||
|
||||
// Send response
|
||||
let mut output_text = response.generated_text.text;
|
||||
@ -399,7 +390,7 @@ async fn generate_stream_internal(
|
||||
span: tracing::Span,
|
||||
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
|
||||
let start_time = Instant::now();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
|
||||
tracing::debug!("Input: {}", req.inputs);
|
||||
|
||||
@ -427,12 +418,12 @@ async fn generate_stream_internal(
|
||||
let best_of = req.parameters.best_of.unwrap_or(1);
|
||||
if best_of != 1 {
|
||||
let err = InferError::from(ValidationError::BestOfStream);
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
} else if req.parameters.decoder_input_details {
|
||||
let err = InferError::from(ValidationError::PrefillDetailsStream);
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
} else {
|
||||
@ -500,13 +491,13 @@ async fn generate_stream_internal(
|
||||
span.record("seed", format!("{:?}", generated_text.seed));
|
||||
|
||||
// Metrics
|
||||
metrics::increment_counter!("tgi_request_success");
|
||||
metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);
|
||||
metrics::counter!("tgi_request_success").increment(1);
|
||||
metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
|
||||
metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
|
||||
|
||||
// StreamResponse
|
||||
end_reached = true;
|
||||
@ -553,7 +544,7 @@ async fn generate_stream_internal(
|
||||
// Skip if we already sent an error
|
||||
if !end_reached && !error {
|
||||
let err = InferError::IncompleteGeneration;
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
|
||||
metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
|
||||
tracing::error!("{err}");
|
||||
yield Ok(Event::from(err));
|
||||
}
|
||||
@ -572,8 +563,8 @@ request_body = CompletionRequest,
|
||||
responses(
|
||||
(status = 200, description = "Generated Chat Completion",
|
||||
content(
|
||||
("application/json" = Completion),
|
||||
("text/event-stream" = CompletionCompleteChunk),
|
||||
("application/json" = CompletionFinal),
|
||||
("text/event-stream" = Chunk),
|
||||
)),
|
||||
(status = 424, description = "Generation Error", body = ErrorResponse,
|
||||
example = json ! ({"error": "Request failed during generation"})),
|
||||
@ -604,9 +595,10 @@ async fn completions(
|
||||
Json(req): Json<CompletionRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let span = tracing::Span::current();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
|
||||
let CompletionRequest {
|
||||
model,
|
||||
max_tokens,
|
||||
seed,
|
||||
stop,
|
||||
@ -625,7 +617,7 @@ async fn completions(
|
||||
|
||||
// if suffix is present throw an error
|
||||
if req.suffix.is_some() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
return Err((
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
Json(ErrorResponse {
|
||||
@ -637,7 +629,7 @@ async fn completions(
|
||||
}
|
||||
|
||||
if req.prompt.0.len() > info.max_client_batch_size {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
return Err((
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
Json(ErrorResponse {
|
||||
@ -675,7 +667,7 @@ async fn completions(
|
||||
seed,
|
||||
top_n_tokens: None,
|
||||
grammar: None,
|
||||
..Default::default()
|
||||
adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
|
||||
},
|
||||
})
|
||||
.collect();
|
||||
@ -820,6 +812,10 @@ async fn completions(
|
||||
}
|
||||
};
|
||||
|
||||
let stream = stream.chain(futures::stream::once(async {
|
||||
Ok(Event::default().data("[DONE]"))
|
||||
}));
|
||||
|
||||
let sse = Sse::new(stream).keep_alive(KeepAlive::default());
|
||||
Ok((headers, sse).into_response())
|
||||
} else {
|
||||
@ -1009,8 +1005,9 @@ async fn chat_completions(
|
||||
Json(req): Json<ChatRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let span = tracing::Span::current();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
let ChatRequest {
|
||||
model,
|
||||
logprobs,
|
||||
max_tokens,
|
||||
messages,
|
||||
@ -1039,7 +1036,7 @@ async fn chat_completions(
|
||||
|
||||
// response_format and tools are mutually exclusive
|
||||
if response_format.is_some() && tools.as_ref().is_some() {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
return Err((
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
Json(ErrorResponse {
|
||||
@ -1053,7 +1050,7 @@ async fn chat_completions(
|
||||
let tool_grammar = match ToolGrammar::apply(tools, tool_choice) {
|
||||
Ok(grammar) => grammar,
|
||||
Err(err) => {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
return Err((
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
@ -1082,7 +1079,7 @@ async fn chat_completions(
|
||||
let inputs = match infer.apply_chat_template(messages, tools_grammar_prompt) {
|
||||
Ok(inputs) => inputs,
|
||||
Err(err) => {
|
||||
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
|
||||
metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
|
||||
tracing::error!("{err}");
|
||||
return Err((
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
@ -1116,7 +1113,7 @@ async fn chat_completions(
|
||||
seed,
|
||||
top_n_tokens: req.top_logprobs,
|
||||
grammar,
|
||||
..Default::default()
|
||||
adapter_id: model.filter(|m| *m != "tgi").map(String::from),
|
||||
},
|
||||
};
|
||||
|
||||
@ -1178,6 +1175,11 @@ async fn chat_completions(
|
||||
span,
|
||||
)
|
||||
.await;
|
||||
|
||||
let response_stream = response_stream.chain(futures::stream::once(async {
|
||||
Ok(Event::default().data("[DONE]"))
|
||||
}));
|
||||
|
||||
let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
|
||||
Ok((headers, sse).into_response())
|
||||
} else {
|
||||
@ -1190,39 +1192,33 @@ async fn chat_completions(
|
||||
.as_secs();
|
||||
|
||||
let (tool_calls, output) = if tool_grammar.is_some() {
|
||||
// gen_text should be valid json
|
||||
let gen_text_value: Value =
|
||||
serde_json::from_str(&generation.generated_text).map_err(|e| {
|
||||
(
|
||||
StatusCode::UNPROCESSABLE_ENTITY,
|
||||
Json(ErrorResponse {
|
||||
error: e.to_string(),
|
||||
error_type: "Input validation error".to_string(),
|
||||
}),
|
||||
)
|
||||
})?;
|
||||
let gen_text_value: Value = serde_json::from_str(&generation.generated_text)
|
||||
.map_err(|e| InferError::ToolError(e.to_string()))?;
|
||||
|
||||
let function = gen_text_value.get("function").ok_or(InferError::ToolError(
|
||||
"No function found in generated text".to_string(),
|
||||
))?;
|
||||
|
||||
let name = function
|
||||
.get("_name")
|
||||
.and_then(Value::as_str)
|
||||
.ok_or(InferError::ToolError(
|
||||
"No _name found in generated text".to_string(),
|
||||
))?
|
||||
.to_string();
|
||||
|
||||
let mut arguments = function.clone();
|
||||
if let Value::Object(ref mut props) = arguments {
|
||||
props.remove("_name");
|
||||
}
|
||||
|
||||
let tool_calls = vec![ToolCall {
|
||||
id: "0".to_string(),
|
||||
r#type: "function".to_string(),
|
||||
function: FunctionDefinition {
|
||||
description: None,
|
||||
name: gen_text_value
|
||||
.get("function")
|
||||
.and_then(|f| f.get("_name"))
|
||||
.and_then(|name| name.as_str())
|
||||
.unwrap_or("default_function_name")
|
||||
.to_string(),
|
||||
// Serialize the JSON object obtained from "function" to an escaped JSON string
|
||||
arguments: gen_text_value
|
||||
.get("function")
|
||||
.map(|f| {
|
||||
let mut f_cloned = f.clone();
|
||||
if let Value::Object(ref mut props) = f_cloned {
|
||||
props.remove("_name");
|
||||
}
|
||||
f_cloned
|
||||
})
|
||||
.unwrap_or_default(),
|
||||
name,
|
||||
arguments,
|
||||
},
|
||||
}];
|
||||
(Some(tool_calls), None)
|
||||
@ -1280,7 +1276,7 @@ async fn vertex_compatibility(
|
||||
Json(req): Json<VertexRequest>,
|
||||
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
|
||||
let span = tracing::Span::current();
|
||||
metrics::increment_counter!("tgi_request_count");
|
||||
metrics::counter!("tgi_request_count").increment(1);
|
||||
|
||||
// check that theres at least one instance
|
||||
if req.instances.is_empty() {
|
||||
@ -1454,6 +1450,14 @@ pub async fn run(
|
||||
GrammarType,
|
||||
ChatRequest,
|
||||
Message,
|
||||
MessageContent,
|
||||
MessageChunk,
|
||||
Url,
|
||||
FunctionName,
|
||||
OutputMessage,
|
||||
TextMessage,
|
||||
ToolCallMessage,
|
||||
ToolCallDelta,
|
||||
ChatCompletionComplete,
|
||||
ChatCompletionChoice,
|
||||
ChatCompletionDelta,
|
||||
@ -1488,6 +1492,7 @@ pub async fn run(
|
||||
ToolCall,
|
||||
Function,
|
||||
FunctionDefinition,
|
||||
ToolChoice,
|
||||
)
|
||||
),
|
||||
tags(
|
||||
|
355
router/src/usage_stats.rs
Normal file
355
router/src/usage_stats.rs
Normal file
@ -0,0 +1,355 @@
|
||||
use crate::config::Config;
|
||||
use csv::ReaderBuilder;
|
||||
use reqwest::header::HeaderMap;
|
||||
use serde::Serialize;
|
||||
use std::{
|
||||
fs::File,
|
||||
io::{self, BufRead},
|
||||
path::Path,
|
||||
process::Command,
|
||||
time::Duration,
|
||||
};
|
||||
use uuid::Uuid;
|
||||
|
||||
const TELEMETRY_URL: &str = "https://huggingface.co/api/telemetry/tgi";
|
||||
|
||||
#[derive(Debug, Clone, Serialize)]
|
||||
pub struct UserAgent {
|
||||
pub uid: String,
|
||||
pub args: Args,
|
||||
pub env: Env,
|
||||
}
|
||||
|
||||
impl UserAgent {
|
||||
pub fn new(reduced_args: Args) -> Self {
|
||||
Self {
|
||||
uid: Uuid::new_v4().to_string(),
|
||||
args: reduced_args,
|
||||
env: Env::new(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug)]
|
||||
pub enum EventType {
|
||||
Start,
|
||||
Stop,
|
||||
Error,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize)]
|
||||
pub struct UsageStatsEvent {
|
||||
user_agent: UserAgent,
|
||||
event_type: EventType,
|
||||
#[serde(skip_serializing_if = "Option::is_none")]
|
||||
error_reason: Option<String>,
|
||||
}
|
||||
|
||||
impl UsageStatsEvent {
|
||||
pub fn new(user_agent: UserAgent, event_type: EventType, error_reason: Option<String>) -> Self {
|
||||
Self {
|
||||
user_agent,
|
||||
event_type,
|
||||
error_reason,
|
||||
}
|
||||
}
|
||||
pub async fn send(&self) {
|
||||
let mut headers = HeaderMap::new();
|
||||
headers.insert("Content-Type", "application/json".parse().unwrap());
|
||||
let body = serde_json::to_string(&self).unwrap();
|
||||
let client = reqwest::Client::new();
|
||||
let _ = client
|
||||
.post(TELEMETRY_URL)
|
||||
.headers(headers)
|
||||
.body(body)
|
||||
.timeout(Duration::from_secs(5))
|
||||
.send()
|
||||
.await;
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Clone, Serialize)]
|
||||
pub struct Args {
|
||||
model_config: Option<Config>,
|
||||
tokenizer_config: Option<String>,
|
||||
max_concurrent_requests: usize,
|
||||
max_best_of: usize,
|
||||
max_stop_sequences: usize,
|
||||
max_top_n_tokens: u32,
|
||||
max_input_tokens: usize,
|
||||
max_total_tokens: usize,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: Option<u32>,
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
revision: Option<String>,
|
||||
validation_workers: usize,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
disable_usage_stats: bool,
|
||||
disable_crash_reports: bool,
|
||||
}
|
||||
|
||||
impl Args {
|
||||
#[allow(clippy::too_many_arguments)]
|
||||
pub fn new(
|
||||
model_config: Option<Config>,
|
||||
tokenizer_config: Option<String>,
|
||||
max_concurrent_requests: usize,
|
||||
max_best_of: usize,
|
||||
max_stop_sequences: usize,
|
||||
max_top_n_tokens: u32,
|
||||
max_input_tokens: usize,
|
||||
max_total_tokens: usize,
|
||||
waiting_served_ratio: f32,
|
||||
max_batch_prefill_tokens: u32,
|
||||
max_batch_total_tokens: Option<u32>,
|
||||
max_waiting_tokens: usize,
|
||||
max_batch_size: Option<usize>,
|
||||
revision: Option<String>,
|
||||
validation_workers: usize,
|
||||
messages_api_enabled: bool,
|
||||
disable_grammar_support: bool,
|
||||
max_client_batch_size: usize,
|
||||
disable_usage_stats: bool,
|
||||
disable_crash_reports: bool,
|
||||
) -> Self {
|
||||
Self {
|
||||
model_config,
|
||||
tokenizer_config,
|
||||
max_concurrent_requests,
|
||||
max_best_of,
|
||||
max_stop_sequences,
|
||||
max_top_n_tokens,
|
||||
max_input_tokens,
|
||||
max_total_tokens,
|
||||
waiting_served_ratio,
|
||||
max_batch_prefill_tokens,
|
||||
max_batch_total_tokens,
|
||||
max_waiting_tokens,
|
||||
max_batch_size,
|
||||
revision,
|
||||
validation_workers,
|
||||
messages_api_enabled,
|
||||
disable_grammar_support,
|
||||
max_client_batch_size,
|
||||
disable_usage_stats,
|
||||
disable_crash_reports,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// This is more or less a copy of the code from the `text-generation-launcher` crate to avoid a dependency
|
||||
#[derive(Serialize, Debug, Clone)]
|
||||
pub struct Env {
|
||||
git_sha: &'static str,
|
||||
docker_label: &'static str,
|
||||
nvidia_info: Option<Vec<NvidiaSmiInfo>>,
|
||||
xpu_info: Option<Vec<XpuSmiInfo>>,
|
||||
system_env: SystemInfo,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Clone)]
|
||||
struct NvidiaSmiInfo {
|
||||
name: String,
|
||||
pci_bus_id: String,
|
||||
driver_version: String,
|
||||
pstate: String,
|
||||
pcie_link_gen_max: String,
|
||||
pcie_link_gen_current: String,
|
||||
temperature_gpu: String,
|
||||
utilization_gpu: String,
|
||||
utilization_memory: String,
|
||||
memory_total: String,
|
||||
memory_free: String,
|
||||
memory_used: String,
|
||||
reset_status_reset_required: String,
|
||||
reset_status_drain_and_reset_recommended: String,
|
||||
compute_cap: String,
|
||||
ecc_errors_corrected_volatile_total: String,
|
||||
mig_mode_current: String,
|
||||
power_draw_instant: String,
|
||||
power_limit: String,
|
||||
}
|
||||
|
||||
impl NvidiaSmiInfo {
|
||||
fn new() -> Option<Vec<NvidiaSmiInfo>> {
|
||||
let output = Command::new("nvidia-smi")
|
||||
.args([
|
||||
"--query-gpu=name,pci.bus_id,driver_version,pstate,pcie.link.gen.max,pcie.link.gen.gpucurrent,temperature.gpu,utilization.gpu,utilization.memory,memory.total,memory.free,memory.used,reset_status.reset_required,reset_status.drain_and_reset_recommended,compute_cap,ecc.errors.corrected.volatile.total,mig.mode.current,power.draw.instant,power.limit",
|
||||
"--format=csv"
|
||||
])
|
||||
.output()
|
||||
.ok()?;
|
||||
|
||||
if !output.status.success() {
|
||||
return None;
|
||||
}
|
||||
|
||||
let stdout = String::from_utf8(output.stdout).ok()?;
|
||||
|
||||
let mut rdr = ReaderBuilder::new()
|
||||
.has_headers(true)
|
||||
.from_reader(stdout.as_bytes());
|
||||
|
||||
let mut infos = Vec::new();
|
||||
|
||||
for result in rdr.records() {
|
||||
let record = result.ok()?;
|
||||
infos.push(NvidiaSmiInfo {
|
||||
name: record[0].to_string(),
|
||||
pci_bus_id: record[1].to_string(),
|
||||
driver_version: record[2].to_string(),
|
||||
pstate: record[3].to_string(),
|
||||
pcie_link_gen_max: record[4].to_string(),
|
||||
pcie_link_gen_current: record[5].to_string(),
|
||||
temperature_gpu: record[6].to_string(),
|
||||
utilization_gpu: record[7].to_string(),
|
||||
utilization_memory: record[8].to_string(),
|
||||
memory_total: record[9].to_string(),
|
||||
memory_free: record[10].to_string(),
|
||||
memory_used: record[11].to_string(),
|
||||
reset_status_reset_required: record[12].to_string(),
|
||||
reset_status_drain_and_reset_recommended: record[13].to_string(),
|
||||
compute_cap: record[14].to_string(),
|
||||
ecc_errors_corrected_volatile_total: record[15].to_string(),
|
||||
mig_mode_current: record[16].to_string(),
|
||||
power_draw_instant: record[17].to_string(),
|
||||
power_limit: record[18].to_string(),
|
||||
});
|
||||
}
|
||||
|
||||
Some(infos)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Clone)]
|
||||
struct XpuSmiInfo {
|
||||
device_id: usize,
|
||||
gpu_utilization: f32,
|
||||
gpu_power: f32,
|
||||
gpu_core_temperature: f32,
|
||||
gpu_memory_bandwidth_utilization: f32,
|
||||
}
|
||||
|
||||
impl XpuSmiInfo {
|
||||
/// based on this https://github.com/intel/xpumanager/blob/master/doc/smi_user_guide.md#dump-the-device-statistics-in-csv-format
|
||||
fn new() -> Option<Vec<XpuSmiInfo>> {
|
||||
let output = Command::new("xpu-smi")
|
||||
.args([
|
||||
"dump", "-d", "-1", "-m",
|
||||
"0,1,3,17", // Metrics IDs: GPU Utilization, GPU Power, GPU Core Temperature, GPU Memory Bandwidth Utilization
|
||||
"-n", "1", "-j",
|
||||
])
|
||||
.output()
|
||||
.ok()?;
|
||||
|
||||
if !output.status.success() {
|
||||
return None;
|
||||
}
|
||||
|
||||
let stdout = String::from_utf8(output.stdout).ok()?;
|
||||
let mut infos = Vec::new();
|
||||
|
||||
let json_data: serde_json::Value = match serde_json::from_str(&stdout) {
|
||||
Ok(data) => data,
|
||||
Err(_) => return None,
|
||||
};
|
||||
|
||||
if let Some(metrics_data) = json_data.as_array() {
|
||||
for entry in metrics_data {
|
||||
let device_id = entry["deviceId"].as_u64()? as usize;
|
||||
let gpu_utilization = entry["metrics"][0].as_f64()? as f32;
|
||||
let gpu_power = entry["metrics"][1].as_f64()? as f32;
|
||||
let gpu_core_temperature = entry["metrics"][2].as_f64()? as f32;
|
||||
let gpu_memory_bandwidth_utilization = entry["metrics"][3].as_f64()? as f32;
|
||||
|
||||
infos.push(XpuSmiInfo {
|
||||
device_id,
|
||||
gpu_utilization,
|
||||
gpu_power,
|
||||
gpu_core_temperature,
|
||||
gpu_memory_bandwidth_utilization,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
Some(infos)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Serialize, Debug, Clone)]
|
||||
pub struct SystemInfo {
|
||||
cpu_count: usize,
|
||||
cpu_type: String,
|
||||
total_memory: u64,
|
||||
architecture: String,
|
||||
platform: String,
|
||||
}
|
||||
|
||||
impl SystemInfo {
|
||||
fn new() -> Self {
|
||||
let mut system = sysinfo::System::new_all();
|
||||
system.refresh_all();
|
||||
|
||||
let cpu_count = system.cpus().len();
|
||||
let cpu_type = system.cpus()[0].brand().to_string();
|
||||
let total_memory = system.total_memory();
|
||||
let architecture = std::env::consts::ARCH.to_string();
|
||||
let platform = format!(
|
||||
"{}-{}-{}",
|
||||
std::env::consts::OS,
|
||||
std::env::consts::FAMILY,
|
||||
std::env::consts::ARCH
|
||||
);
|
||||
Self {
|
||||
cpu_count,
|
||||
cpu_type,
|
||||
total_memory,
|
||||
architecture,
|
||||
platform,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Default for Env {
|
||||
fn default() -> Self {
|
||||
Self::new()
|
||||
}
|
||||
}
|
||||
|
||||
impl Env {
|
||||
pub fn new() -> Self {
|
||||
Self {
|
||||
system_env: SystemInfo::new(),
|
||||
nvidia_info: NvidiaSmiInfo::new(),
|
||||
xpu_info: XpuSmiInfo::new(),
|
||||
git_sha: option_env!("VERGEN_GIT_SHA").unwrap_or("N/A"),
|
||||
docker_label: option_env!("DOCKER_LABEL").unwrap_or("N/A"),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
pub fn is_container() -> io::Result<bool> {
|
||||
let path = Path::new("/proc/self/cgroup");
|
||||
let file = File::open(path)?;
|
||||
let reader = io::BufReader::new(file);
|
||||
|
||||
for line in reader.lines() {
|
||||
let line = line?;
|
||||
// Check for common container runtimes
|
||||
if line.contains("/docker/")
|
||||
|| line.contains("/docker-")
|
||||
|| line.contains("/kubepods/")
|
||||
|| line.contains("/kubepods-")
|
||||
|| line.contains("containerd")
|
||||
|| line.contains("crio")
|
||||
|| line.contains("podman")
|
||||
{
|
||||
return Ok(true);
|
||||
}
|
||||
}
|
||||
Ok(false)
|
||||
}
|
@ -157,7 +157,7 @@ impl Validation {
|
||||
));
|
||||
}
|
||||
|
||||
metrics::histogram!("tgi_request_input_length", input_length as f64);
|
||||
metrics::histogram!("tgi_request_input_length").record(input_length as f64);
|
||||
Ok((inputs, input_length, max_new_tokens))
|
||||
}
|
||||
// Return inputs without validation
|
||||
@ -384,7 +384,7 @@ impl Validation {
|
||||
ignore_eos_token: false,
|
||||
};
|
||||
|
||||
metrics::histogram!("tgi_request_max_new_tokens", max_new_tokens as f64);
|
||||
metrics::histogram!("tgi_request_max_new_tokens").record(max_new_tokens as f64);
|
||||
|
||||
Ok(ValidGenerateRequest {
|
||||
inputs,
|
||||
|
@ -5,6 +5,7 @@ include Makefile-awq
|
||||
include Makefile-eetq
|
||||
include Makefile-selective-scan
|
||||
include Makefile-lorax-punica
|
||||
include Makefile-fbgemm
|
||||
|
||||
unit-tests:
|
||||
pytest -s -vv -m "not private" tests
|
||||
@ -21,13 +22,15 @@ gen-server:
|
||||
install-server: gen-server
|
||||
pip install pip --upgrade
|
||||
pip install -r requirements_cuda.txt
|
||||
pip install -e ".[bnb, accelerate, quantize, peft, outlines]"
|
||||
pip install -e ".[accelerate, quantize, peft, outlines]"
|
||||
|
||||
|
||||
install: install-cuda
|
||||
echo "Installed server"
|
||||
|
||||
install-cuda: install-server install-flash-attention-v2-cuda install-vllm-cuda install-flash-attention
|
||||
install-cuda: install-server install-flash-attention-v2-cuda install-vllm-cuda install-flash-attention install-fbgemm
|
||||
pip install -e ".[bnb]"
|
||||
pip install nvidia-nccl-cu12==2.22.3
|
||||
|
||||
install-rocm: install-server install-flash-attention-v2-rocm install-vllm-rocm
|
||||
|
||||
@ -37,3 +40,4 @@ run-dev:
|
||||
export-requirements:
|
||||
poetry export -o requirements_cuda.txt --without-hashes
|
||||
poetry export -o requirements_rocm.txt --without-hashes
|
||||
poetry export -o requirements_intel.txt --without-hashes
|
||||
|
15
server/Makefile-fbgemm
Normal file
15
server/Makefile-fbgemm
Normal file
@ -0,0 +1,15 @@
|
||||
fbgemm_commit := 9cf0429b726931cfab72b8264730bea682f32fca
|
||||
|
||||
build-fbgemm:
|
||||
chmod +x fix_torch90a.sh && ./fix_torch90a.sh && \
|
||||
git clone https://github.com/pytorch/FBGEMM.git fbgemm && \
|
||||
cp fbgemm_remove_unused.patch fbgemm && \
|
||||
cd fbgemm && git fetch && git checkout $(fbgemm_commit) && git apply fbgemm_remove_unused.patch && \
|
||||
git submodule update --init --recursive && \
|
||||
cd fbgemm_gpu && \
|
||||
pip install -r requirements.txt && \
|
||||
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py --package_variant genai build
|
||||
|
||||
install-fbgemm: build-fbgemm
|
||||
cd fbgemm/fbgemm_gpu && \
|
||||
CUDA_ARCH_LIST="8.0;9.0a" NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80 -gencode=arch=compute_90a,code=sm_90a" TORCH_CUDA_ARCH_LIST="8.0;9.0a" python setup.py --package_variant genai install
|
@ -1,14 +1,14 @@
|
||||
commit_cuda := b5dfc61db88a81069e45b44f7cc99bd9e62a60fa
|
||||
commit_cuda := d243e9dc7e2c9c2e36a4150ec8e64809cb55c01b
|
||||
commit_rocm := c6ee53b1be97e3bbc791b95f22827501297f8921
|
||||
build-vllm-cuda:
|
||||
if [ ! -d 'vllm' ]; then \
|
||||
pip install -U ninja packaging --no-cache-dir && \
|
||||
git clone https://github.com/Narsil/vllm.git vllm; \
|
||||
fi
|
||||
cd vllm && git fetch && git checkout $(commit_cuda) && python setup.py build
|
||||
cd vllm && git fetch origin && git checkout $(commit_cuda) && python setup.py build
|
||||
|
||||
install-vllm-cuda: build-vllm-cuda
|
||||
cd vllm && git fetch && git checkout $(commit_cuda) && pip install -e .
|
||||
cd vllm && git fetch origin && git checkout $(commit_cuda) && pip install -e .
|
||||
|
||||
build-vllm-rocm:
|
||||
if [ ! -d 'vllm' ]; then \
|
||||
|
306
server/fbgemm_remove_unused.patch
Normal file
306
server/fbgemm_remove_unused.patch
Normal file
@ -0,0 +1,306 @@
|
||||
diff --git a/fbgemm_gpu/CMakeLists.txt b/fbgemm_gpu/CMakeLists.txt
|
||||
index 2244ea6f..96265a48 100644
|
||||
--- a/fbgemm_gpu/CMakeLists.txt
|
||||
+++ b/fbgemm_gpu/CMakeLists.txt
|
||||
@@ -94,14 +94,14 @@ endif()
|
||||
# Build Experimental Modules
|
||||
################################################################################
|
||||
|
||||
-if(NOT FBGEMM_CPU_ONLY AND NOT USE_ROCM)
|
||||
- # TODO: Figure out NCCL/RCCL integration with ROCm
|
||||
- add_subdirectory(experimental/example)
|
||||
-endif()
|
||||
-
|
||||
-if(NOT FBGEMM_CPU_ONLY)
|
||||
- add_subdirectory(experimental/gemm)
|
||||
-endif()
|
||||
+# if(NOT FBGEMM_CPU_ONLY AND NOT USE_ROCM)
|
||||
+# # TODO: Figure out NCCL/RCCL integration with ROCm
|
||||
+# add_subdirectory(experimental/example)
|
||||
+# endif()
|
||||
+
|
||||
+# if(NOT FBGEMM_CPU_ONLY)
|
||||
+# add_subdirectory(experimental/gemm)
|
||||
+# endif()
|
||||
|
||||
if(NOT FBGEMM_CPU_ONLY AND NOT USE_ROCM)
|
||||
# CUTLASS currently doesn't build on ROCm and CK hasnt yet been added:
|
||||
diff --git a/fbgemm_gpu/FbgemmGpu.cmake b/fbgemm_gpu/FbgemmGpu.cmake
|
||||
index c56773fe..0c0d349e 100644
|
||||
--- a/fbgemm_gpu/FbgemmGpu.cmake
|
||||
+++ b/fbgemm_gpu/FbgemmGpu.cmake
|
||||
@@ -446,53 +446,55 @@ set_source_files_properties(${fbgemm_sources}
|
||||
################################################################################
|
||||
|
||||
set(fbgemm_gpu_sources_static_cpu
|
||||
- codegen/training/forward/embedding_forward_split_cpu.cpp
|
||||
- codegen/inference/embedding_forward_quantized_host_cpu.cpp
|
||||
- codegen/training/backward/embedding_backward_dense_host_cpu.cpp
|
||||
- codegen/utils/embedding_bounds_check_host_cpu.cpp
|
||||
- src/merge_pooled_embedding_ops/merge_pooled_embedding_ops_cpu.cpp
|
||||
- src/permute_multi_embedding_ops/permute_multi_embedding_function.cpp
|
||||
- src/permute_multi_embedding_ops/permute_multi_embedding_ops_cpu.cpp
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_function.cpp
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_cpu.cpp
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split_cpu.cpp
|
||||
- src/jagged_tensor_ops/jagged_tensor_ops_autograd.cpp
|
||||
- src/jagged_tensor_ops/jagged_tensor_ops_meta.cpp
|
||||
- src/jagged_tensor_ops/jagged_tensor_ops_cpu.cpp
|
||||
- src/input_combine_ops/input_combine_cpu.cpp
|
||||
- src/layout_transform_ops/layout_transform_ops_cpu.cpp
|
||||
+ # codegen/training/forward/embedding_forward_split_cpu.cpp
|
||||
+ # codegen/inference/embedding_forward_quantized_host_cpu.cpp
|
||||
+ # codegen/training/backward/embedding_backward_dense_host_cpu.cpp
|
||||
+ # codegen/utils/embedding_bounds_check_host_cpu.cpp
|
||||
+ # src/merge_pooled_embedding_ops/merge_pooled_embedding_ops_cpu.cpp
|
||||
+ # src/permute_multi_embedding_ops/permute_multi_embedding_function.cpp
|
||||
+ # src/permute_multi_embedding_ops/permute_multi_embedding_ops_cpu.cpp
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_function.cpp
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_cpu.cpp
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split_cpu.cpp
|
||||
+ # src/jagged_tensor_ops/jagged_tensor_ops_autograd.cpp
|
||||
+ # src/jagged_tensor_ops/jagged_tensor_ops_meta.cpp
|
||||
+ # src/jagged_tensor_ops/jagged_tensor_ops_cpu.cpp
|
||||
+ # src/input_combine_ops/input_combine_cpu.cpp
|
||||
+ # src/layout_transform_ops/layout_transform_ops_cpu.cpp
|
||||
src/quantize_ops/quantize_ops_cpu.cpp
|
||||
src/quantize_ops/quantize_ops_meta.cpp
|
||||
- src/sparse_ops/sparse_ops_cpu.cpp
|
||||
- src/sparse_ops/sparse_ops_meta.cpp
|
||||
- src/embedding_inplace_ops/embedding_inplace_update_cpu.cpp
|
||||
- src/split_embeddings_cache/linearize_cache_indices.cpp
|
||||
- src/split_embeddings_cache/lfu_cache_populate_byte.cpp
|
||||
- src/split_embeddings_cache/lru_cache_populate_byte.cpp
|
||||
- src/split_embeddings_cache/lxu_cache.cpp
|
||||
- src/split_embeddings_cache/split_embeddings_cache_ops.cpp
|
||||
- codegen/training/index_select/batch_index_select_dim0_ops.cpp
|
||||
- codegen/training/index_select/batch_index_select_dim0_cpu_host.cpp)
|
||||
+ # src/sparse_ops/sparse_ops_cpu.cpp
|
||||
+ # src/sparse_ops/sparse_ops_meta.cpp
|
||||
+ # src/embedding_inplace_ops/embedding_inplace_update_cpu.cpp
|
||||
+ # src/split_embeddings_cache/linearize_cache_indices.cpp
|
||||
+ # src/split_embeddings_cache/lfu_cache_populate_byte.cpp
|
||||
+ # src/split_embeddings_cache/lru_cache_populate_byte.cpp
|
||||
+ # src/split_embeddings_cache/lxu_cache.cpp
|
||||
+ # src/split_embeddings_cache/split_embeddings_cache_ops.cpp
|
||||
+ # codegen/training/index_select/batch_index_select_dim0_ops.cpp
|
||||
+ # codegen/training/index_select/batch_index_select_dim0_cpu_host.cpp)
|
||||
+)
|
||||
|
||||
if(NOT FBGEMM_CPU_ONLY)
|
||||
list(APPEND fbgemm_gpu_sources_static_cpu
|
||||
- codegen/inference/embedding_forward_quantized_host.cpp
|
||||
- codegen/utils/embedding_bounds_check_host.cpp
|
||||
- src/intraining_embedding_pruning_ops/intraining_embedding_pruning_gpu.cpp
|
||||
- src/layout_transform_ops/layout_transform_ops_gpu.cpp
|
||||
- src/memory_utils/memory_utils.cpp
|
||||
- src/memory_utils/memory_utils_ops.cpp
|
||||
- src/memory_utils/memory_utils_ops_cpu.cpp
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_gpu.cpp
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split_gpu.cpp
|
||||
+ # codegen/inference/embedding_forward_quantized_host.cpp
|
||||
+ # codegen/utils/embedding_bounds_check_host.cpp
|
||||
+ # src/intraining_embedding_pruning_ops/intraining_embedding_pruning_gpu.cpp
|
||||
+ # src/layout_transform_ops/layout_transform_ops_gpu.cpp
|
||||
+ # src/memory_utils/memory_utils.cpp
|
||||
+ # src/memory_utils/memory_utils_ops.cpp
|
||||
+ # src/memory_utils/memory_utils_ops_cpu.cpp
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_gpu.cpp
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split_gpu.cpp
|
||||
src/quantize_ops/quantize_ops_gpu.cpp
|
||||
- src/sparse_ops/sparse_ops_gpu.cpp
|
||||
- src/split_embeddings_utils/split_embeddings_utils.cpp
|
||||
- src/split_embeddings_cache/split_embeddings_cache_ops.cu
|
||||
- src/metric_ops/metric_ops_host.cpp
|
||||
- src/embedding_inplace_ops/embedding_inplace_update_gpu.cpp
|
||||
- src/input_combine_ops/input_combine_gpu.cpp
|
||||
- codegen/training/index_select/batch_index_select_dim0_host.cpp)
|
||||
+ # src/sparse_ops/sparse_ops_gpu.cpp
|
||||
+ # src/split_embeddings_utils/split_embeddings_utils.cpp
|
||||
+ # src/split_embeddings_cache/split_embeddings_cache_ops.cu
|
||||
+ # src/metric_ops/metric_ops_host.cpp
|
||||
+ # src/embedding_inplace_ops/embedding_inplace_update_gpu.cpp
|
||||
+ # src/input_combine_ops/input_combine_gpu.cpp
|
||||
+ # codegen/training/index_select/batch_index_select_dim0_host.cpp)
|
||||
+ )
|
||||
|
||||
if(NVML_LIB_PATH OR USE_ROCM)
|
||||
message(STATUS "Adding merge_pooled_embeddings sources")
|
||||
@@ -516,36 +518,36 @@ endif()
|
||||
|
||||
if(NOT FBGEMM_CPU_ONLY)
|
||||
set(fbgemm_gpu_sources_static_gpu
|
||||
- codegen/utils/embedding_bounds_check.cu
|
||||
- codegen/inference/embedding_forward_quantized_split_lookup.cu
|
||||
- src/embedding_inplace_ops/embedding_inplace_update.cu
|
||||
- src/histogram_binning_calibration_ops.cu
|
||||
- src/input_combine_ops/input_combine.cu
|
||||
- src/intraining_embedding_pruning_ops/intraining_embedding_pruning.cu
|
||||
- src/memory_utils/memory_utils.cu
|
||||
- src/memory_utils/memory_utils_ops.cu
|
||||
- src/jagged_tensor_ops/batched_dense_vec_jagged_2d_mul_backward.cu
|
||||
- src/jagged_tensor_ops/batched_dense_vec_jagged_2d_mul_forward.cu
|
||||
- src/jagged_tensor_ops/dense_to_jagged_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_dense_bmm_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_dense_dense_elementwise_add_jagged_output_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_dense_elementwise_mul_backward.cu
|
||||
- src/jagged_tensor_ops/jagged_dense_elementwise_mul_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_index_add_2d_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_index_select_2d_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_jagged_bmm_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_softmax_backward.cu
|
||||
- src/jagged_tensor_ops/jagged_softmax_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_tensor_ops.cu
|
||||
- src/jagged_tensor_ops/jagged_to_padded_dense_backward.cu
|
||||
- src/jagged_tensor_ops/jagged_to_padded_dense_forward.cu
|
||||
- src/jagged_tensor_ops/jagged_unique_indices.cu
|
||||
- src/jagged_tensor_ops/keyed_jagged_index_select_dim1.cu
|
||||
- src/layout_transform_ops/layout_transform_ops.cu
|
||||
- src/metric_ops/metric_ops.cu
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split.cu
|
||||
- src/permute_pooled_embedding_ops/permute_pooled_embedding_ops.cu
|
||||
- src/permute_multi_embedding_ops/permute_multi_embedding_ops.cu
|
||||
+ # codegen/utils/embedding_bounds_check.cu
|
||||
+ # codegen/inference/embedding_forward_quantized_split_lookup.cu
|
||||
+ # src/embedding_inplace_ops/embedding_inplace_update.cu
|
||||
+ # src/histogram_binning_calibration_ops.cu
|
||||
+ # src/input_combine_ops/input_combine.cu
|
||||
+ # src/intraining_embedding_pruning_ops/intraining_embedding_pruning.cu
|
||||
+ # src/memory_utils/memory_utils.cu
|
||||
+ # src/memory_utils/memory_utils_ops.cu
|
||||
+ # src/jagged_tensor_ops/batched_dense_vec_jagged_2d_mul_backward.cu
|
||||
+ # src/jagged_tensor_ops/batched_dense_vec_jagged_2d_mul_forward.cu
|
||||
+ # src/jagged_tensor_ops/dense_to_jagged_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_dense_bmm_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_dense_dense_elementwise_add_jagged_output_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_dense_elementwise_mul_backward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_dense_elementwise_mul_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_index_add_2d_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_index_select_2d_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_jagged_bmm_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_softmax_backward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_softmax_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_tensor_ops.cu
|
||||
+ # src/jagged_tensor_ops/jagged_to_padded_dense_backward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_to_padded_dense_forward.cu
|
||||
+ # src/jagged_tensor_ops/jagged_unique_indices.cu
|
||||
+ # src/jagged_tensor_ops/keyed_jagged_index_select_dim1.cu
|
||||
+ # src/layout_transform_ops/layout_transform_ops.cu
|
||||
+ # src/metric_ops/metric_ops.cu
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops_split.cu
|
||||
+ # src/permute_pooled_embedding_ops/permute_pooled_embedding_ops.cu
|
||||
+ # src/permute_multi_embedding_ops/permute_multi_embedding_ops.cu
|
||||
src/quantize_ops/quantize_bfloat16.cu
|
||||
src/quantize_ops/quantize_fp8_rowwise.cu
|
||||
src/quantize_ops/quantize_fused_8bit_rowwise.cu
|
||||
@@ -554,39 +556,40 @@ if(NOT FBGEMM_CPU_ONLY)
|
||||
src/quantize_ops/quantize_msfp.cu
|
||||
src/quantize_ops/quantize_padded_fp8_rowwise.cu
|
||||
src/quantize_ops/quantize_mx.cu
|
||||
- src/sparse_ops/sparse_async_cumsum.cu
|
||||
- src/sparse_ops/sparse_block_bucketize_features.cu
|
||||
- src/sparse_ops/sparse_bucketize_features.cu
|
||||
- src/sparse_ops/sparse_batched_unary_embeddings.cu
|
||||
- src/sparse_ops/sparse_compute_frequency_sequence.cu
|
||||
- src/sparse_ops/sparse_expand_into_jagged_permute.cu
|
||||
- src/sparse_ops/sparse_group_index.cu
|
||||
- src/sparse_ops/sparse_index_add.cu
|
||||
- src/sparse_ops/sparse_index_select.cu
|
||||
- src/sparse_ops/sparse_invert_permute.cu
|
||||
- src/sparse_ops/sparse_pack_segments_backward.cu
|
||||
- src/sparse_ops/sparse_pack_segments_forward.cu
|
||||
- src/sparse_ops/sparse_permute_1d.cu
|
||||
- src/sparse_ops/sparse_permute_2d.cu
|
||||
- src/sparse_ops/sparse_permute102.cu
|
||||
- src/sparse_ops/sparse_permute_embeddings.cu
|
||||
- src/sparse_ops/sparse_range.cu
|
||||
- src/sparse_ops/sparse_reorder_batched_ad.cu
|
||||
- src/sparse_ops/sparse_segment_sum_csr.cu
|
||||
- src/sparse_ops/sparse_zipf.cu
|
||||
- src/split_embeddings_cache/lfu_cache_find.cu
|
||||
- src/split_embeddings_cache/lfu_cache_populate.cu
|
||||
- src/split_embeddings_cache/lfu_cache_populate_byte.cu
|
||||
- src/split_embeddings_cache/lru_cache_find.cu
|
||||
- src/split_embeddings_cache/lru_cache_populate.cu
|
||||
- src/split_embeddings_cache/lru_cache_populate_byte.cu
|
||||
- src/split_embeddings_cache/lxu_cache.cu
|
||||
- src/split_embeddings_cache/linearize_cache_indices.cu
|
||||
- src/split_embeddings_cache/reset_weight_momentum.cu
|
||||
- src/split_embeddings_utils/generate_vbe_metadata.cu
|
||||
- src/split_embeddings_utils/get_infos_metadata.cu
|
||||
- src/split_embeddings_utils/radix_sort_pairs.cu
|
||||
- src/split_embeddings_utils/transpose_embedding_input.cu)
|
||||
+ # src/sparse_ops/sparse_async_cumsum.cu
|
||||
+ # src/sparse_ops/sparse_block_bucketize_features.cu
|
||||
+ # src/sparse_ops/sparse_bucketize_features.cu
|
||||
+ # src/sparse_ops/sparse_batched_unary_embeddings.cu
|
||||
+ # src/sparse_ops/sparse_compute_frequency_sequence.cu
|
||||
+ # src/sparse_ops/sparse_expand_into_jagged_permute.cu
|
||||
+ # src/sparse_ops/sparse_group_index.cu
|
||||
+ # src/sparse_ops/sparse_index_add.cu
|
||||
+ # src/sparse_ops/sparse_index_select.cu
|
||||
+ # src/sparse_ops/sparse_invert_permute.cu
|
||||
+ # src/sparse_ops/sparse_pack_segments_backward.cu
|
||||
+ # src/sparse_ops/sparse_pack_segments_forward.cu
|
||||
+ # src/sparse_ops/sparse_permute_1d.cu
|
||||
+ # src/sparse_ops/sparse_permute_2d.cu
|
||||
+ # src/sparse_ops/sparse_permute102.cu
|
||||
+ # src/sparse_ops/sparse_permute_embeddings.cu
|
||||
+ # src/sparse_ops/sparse_range.cu
|
||||
+ # src/sparse_ops/sparse_reorder_batched_ad.cu
|
||||
+ # src/sparse_ops/sparse_segment_sum_csr.cu
|
||||
+ # src/sparse_ops/sparse_zipf.cu
|
||||
+ # src/split_embeddings_cache/lfu_cache_find.cu
|
||||
+ # src/split_embeddings_cache/lfu_cache_populate.cu
|
||||
+ # src/split_embeddings_cache/lfu_cache_populate_byte.cu
|
||||
+ # src/split_embeddings_cache/lru_cache_find.cu
|
||||
+ # src/split_embeddings_cache/lru_cache_populate.cu
|
||||
+ # src/split_embeddings_cache/lru_cache_populate_byte.cu
|
||||
+ # src/split_embeddings_cache/lxu_cache.cu
|
||||
+ # src/split_embeddings_cache/linearize_cache_indices.cu
|
||||
+ # src/split_embeddings_cache/reset_weight_momentum.cu
|
||||
+ # src/split_embeddings_utils/generate_vbe_metadata.cu
|
||||
+ # src/split_embeddings_utils/get_infos_metadata.cu
|
||||
+ # src/split_embeddings_utils/radix_sort_pairs.cu
|
||||
+ # src/split_embeddings_utils/transpose_embedding_input.cu)
|
||||
+ )
|
||||
|
||||
set_source_files_properties(${fbgemm_gpu_sources_static_gpu}
|
||||
PROPERTIES COMPILE_OPTIONS
|
||||
diff --git a/fbgemm_gpu/experimental/gen_ai/CMakeLists.txt b/fbgemm_gpu/experimental/gen_ai/CMakeLists.txt
|
||||
index 01f1d6ab..a6b8d7a8 100644
|
||||
--- a/fbgemm_gpu/experimental/gen_ai/CMakeLists.txt
|
||||
+++ b/fbgemm_gpu/experimental/gen_ai/CMakeLists.txt
|
||||
@@ -25,23 +25,24 @@ set(fbgemm_sources_include_directories
|
||||
${THIRDPARTY}/json/include
|
||||
${NCCL_INCLUDE_DIRS})
|
||||
|
||||
-set(attention_ops_sources
|
||||
- src/attention/attention.cpp
|
||||
- src/attention/gqa_attn_splitk.cu)
|
||||
+# set(attention_ops_sources
|
||||
+# src/attention/attention.cpp
|
||||
+# src/attention/gqa_attn_splitk.cu)
|
||||
|
||||
set(quantize_ops_sources
|
||||
src/quantize/cutlass_extensions.cu
|
||||
src/quantize/quantize.cu
|
||||
src/quantize/quantize.cpp)
|
||||
|
||||
-set(comm_ops_sources
|
||||
- src/comm/car.cu
|
||||
- src/comm/car.cpp)
|
||||
+# set(comm_ops_sources
|
||||
+# src/comm/car.cu
|
||||
+# src/comm/car.cpp)
|
||||
|
||||
set(experimental_gen_ai_cpp_source_files
|
||||
- ${attention_ops_sources}
|
||||
+ # ${attention_ops_sources}
|
||||
${quantize_ops_sources}
|
||||
- ${comm_ops_sources})
|
||||
+ # ${comm_ops_sources}
|
||||
+)
|
||||
|
||||
set_source_files_properties(${experimental_gen_ai_cpp_source_files}
|
||||
PROPERTIES INCLUDE_DIRECTORIES
|
11
server/fix_torch90a.sh
Executable file
11
server/fix_torch90a.sh
Executable file
@ -0,0 +1,11 @@
|
||||
#!/bin/bash
|
||||
|
||||
# This script is required to patch torch < 2.4
|
||||
# It adds the 90a cuda target (H100)
|
||||
# This target is required to build FBGEMM kernels
|
||||
|
||||
torch_cuda_arch=$(python -c "import torch; print(torch.__file__)" | sed 's/\/__init__.py//; s|$|/share/cmake/Caffe2/Modules_CUDA_fix/upstream/FindCUDA/select_compute_arch.cmake|')
|
||||
|
||||
sed -i '189s/\[0-9]\\\\\.\[0-9](/[0-9]\\\\.[0-9]a?(/' $torch_cuda_arch
|
||||
sed -i '245s/\[0-9()]+\+"/[0-9()]+a?"/' $torch_cuda_arch
|
||||
sed -i '246s/\[0-9]+\+"/[0-9]+a?"/' $torch_cuda_arch
|
@ -59,3 +59,18 @@ def marlin_gemm(
|
||||
Matrix multiplication using Marlin kernels.
|
||||
"""
|
||||
...
|
||||
|
||||
# fp8 marlin
|
||||
def fp8_marlin_gemm(
|
||||
a: torch.Tensor,
|
||||
b_q_weight: torch.Tensor,
|
||||
b_scales: torch.Tensor,
|
||||
workspace: torch.Tensor,
|
||||
num_bits: int,
|
||||
size_m: int,
|
||||
size_n: int,
|
||||
size_k: int,
|
||||
) -> torch.Tensor:
|
||||
return torch.ops._C.fp8_marlin_gemm(
|
||||
a, b_q_weight, b_scales, workspace, num_bits, size_m, size_n, size_k
|
||||
)
|
||||
|
@ -9,4 +9,6 @@ PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def("gptq_marlin_repack", &gptq_marlin_repack,
|
||||
"Repack GPTQ parameters for Marlin");
|
||||
m.def("marlin_gemm", &marlin_gemm, "Marlin gemm");
|
||||
// fp8_marlin Optimized Quantized GEMM for FP8 weight-only.
|
||||
m.def("fp8_marlin_gemm", &fp8_marlin_gemm);
|
||||
}
|
||||
|
@ -27,4 +27,9 @@ torch::Tensor marlin_gemm(torch::Tensor &a, torch::Tensor &b_q_weight,
|
||||
torch::Tensor &b_scales, torch::Tensor &workspace,
|
||||
int64_t size_m, int64_t size_n, int64_t size_k);
|
||||
|
||||
torch::Tensor fp8_marlin_gemm(torch::Tensor& a, torch::Tensor& b_q_weight,
|
||||
torch::Tensor& b_scales, torch::Tensor& workspace,
|
||||
int64_t num_bits, int64_t size_m, int64_t size_n,
|
||||
int64_t size_k);
|
||||
|
||||
#endif
|
||||
|
1308
server/marlin/marlin_kernels/fp8_marlin.cu
Normal file
1308
server/marlin/marlin_kernels/fp8_marlin.cu
Normal file
File diff suppressed because it is too large
Load Diff
@ -9,6 +9,7 @@ setup(
|
||||
CUDAExtension(
|
||||
name="marlin_kernels",
|
||||
sources=[
|
||||
"marlin_kernels/fp8_marlin.cu",
|
||||
"marlin_kernels/gptq_marlin.cu",
|
||||
"marlin_kernels/gptq_marlin_repack.cu",
|
||||
"marlin_kernels/marlin_cuda_kernel.cu",
|
||||
|
@ -2,6 +2,7 @@ import torch
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
)
|
||||
from text_generation_server.utils.weights import DefaultWeightsLoader
|
||||
|
||||
|
||||
class ProcessGroup:
|
||||
@ -42,7 +43,12 @@ class Weights:
|
||||
def test_weight_hub_files_offline_error():
|
||||
|
||||
vocab_size = 17
|
||||
weights = Weights(rank=0, world_size=1, vocab_size=vocab_size, hidden_dim=256)
|
||||
weights = Weights(
|
||||
rank=0,
|
||||
world_size=1,
|
||||
vocab_size=vocab_size,
|
||||
hidden_dim=256,
|
||||
)
|
||||
embeddings = TensorParallelEmbedding("", weights)
|
||||
|
||||
input_ids = torch.arange(vocab_size)
|
||||
|
@ -1,13 +1,48 @@
|
||||
import pytest
|
||||
import torch
|
||||
from text_generation_server.utils.weights import Weights
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.exl2 import Exl2Weight
|
||||
from text_generation_server.layers.marlin import MarlinWeight
|
||||
from text_generation_server.utils.weights import (
|
||||
DefaultWeightsLoader,
|
||||
UnquantizedWeight,
|
||||
Weights,
|
||||
WeightsLoader,
|
||||
)
|
||||
from text_generation_server.layers.gptq import GPTQWeight, GPTQWeightsLoader
|
||||
from text_generation_server.layers.exl2 import Exl2Weight, Exl2WeightsLoader
|
||||
from text_generation_server.layers.marlin import MarlinWeight, MarlinWeightsLoader
|
||||
from types import SimpleNamespace
|
||||
from typing import List, Optional, Dict, Union
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def gptq_weights_loader():
|
||||
return GPTQWeightsLoader(
|
||||
bits=4,
|
||||
groupsize=-1,
|
||||
desc_act=False,
|
||||
quant_method="gptq",
|
||||
quantize="gptq",
|
||||
sym=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def gptq_weights_loader_awq():
|
||||
return GPTQWeightsLoader(
|
||||
bits=4,
|
||||
groupsize=-1,
|
||||
desc_act=False,
|
||||
quant_method="awq",
|
||||
quantize="awq",
|
||||
sym=True,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def marlin_weights_loader():
|
||||
return MarlinWeightsLoader(bits=4, is_marlin_24=False)
|
||||
|
||||
|
||||
dummy_file_system = {
|
||||
"test_weights": {
|
||||
"layer.0.weight": torch.tensor(
|
||||
@ -58,7 +93,7 @@ dummy_file_system = {
|
||||
dtype=torch.float32,
|
||||
),
|
||||
},
|
||||
"test_get_multi_weights_row": {
|
||||
"test_get_weights_row": {
|
||||
"weight.weight": torch.tensor(
|
||||
[
|
||||
[1, 2],
|
||||
@ -101,7 +136,7 @@ dummy_file_system = {
|
||||
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
|
||||
"weight.s": torch.tensor([[0.5000], [0.2500]], dtype=torch.float16),
|
||||
},
|
||||
"test_get_multi_weights_row_gptq": {
|
||||
"test_get_weights_row_gptq": {
|
||||
"weight.qweight": torch.tensor(
|
||||
[
|
||||
[1, 2],
|
||||
@ -200,7 +235,7 @@ dummy_file_system = {
|
||||
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
|
||||
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
|
||||
},
|
||||
"test_get_multi_weights_row_exl2": {
|
||||
"test_get_weights_row_exl2": {
|
||||
"weight.q_weight": torch.tensor(
|
||||
[
|
||||
[1, 2],
|
||||
@ -245,7 +280,7 @@ dummy_file_system = {
|
||||
"weight.q_scale_max": torch.tensor([100], dtype=torch.float16),
|
||||
"weight.q_groups": torch.tensor([4], dtype=torch.int16),
|
||||
},
|
||||
"test_get_multi_weights_row_marlin": {
|
||||
"test_get_weights_row_marlin": {
|
||||
"weight.B": torch.tensor([[1, 2], [3, 4]], dtype=torch.int32),
|
||||
"weight.s": torch.tensor([[0.5], [0.25]], dtype=torch.float16),
|
||||
},
|
||||
@ -308,6 +343,7 @@ class MockWeights(Weights):
|
||||
dummy_fs,
|
||||
aliases: Optional[Dict[str, List[str]]] = None,
|
||||
prefix: Optional[str] = None,
|
||||
weights_loader: Optional[WeightsLoader] = None,
|
||||
):
|
||||
routing = {}
|
||||
self.dummy_fs = dummy_fs
|
||||
@ -327,6 +363,12 @@ class MockWeights(Weights):
|
||||
self.dtype = dtype
|
||||
self.process_group = process_group
|
||||
self.prefix = prefix
|
||||
self.weights_loader = (
|
||||
# We don't need to get linear layers, so just wrap raw tensors.
|
||||
DefaultWeightsLoader(lambda x: x)
|
||||
if weights_loader is None
|
||||
else weights_loader
|
||||
)
|
||||
self._handles = {}
|
||||
|
||||
def _get_handle(self, filename: Union[Path, str]):
|
||||
@ -412,12 +454,10 @@ def test_get_weights_col_packed():
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = None
|
||||
block_sizes = 1
|
||||
|
||||
w = weights.get_weights_col_packed(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
block_sizes=block_sizes,
|
||||
)
|
||||
|
||||
@ -448,12 +488,10 @@ def test_get_weights_col_packed_block_size():
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = None
|
||||
block_sizes = 2
|
||||
|
||||
w = weights.get_weights_col_packed(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
block_sizes=block_sizes,
|
||||
)
|
||||
|
||||
@ -484,12 +522,10 @@ def test_get_weights_col_packed_block_size_arr():
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = None
|
||||
block_sizes = [1, 1]
|
||||
|
||||
w = weights.get_weights_col_packed(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
block_sizes=block_sizes,
|
||||
)
|
||||
|
||||
@ -519,11 +555,9 @@ def test_get_multi_weights_col():
|
||||
)
|
||||
|
||||
prefixes = ["weight", "weight"]
|
||||
quantize = None
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=prefixes,
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -545,10 +579,10 @@ def test_get_multi_weights_col():
|
||||
)
|
||||
|
||||
|
||||
def test_get_multi_weights_row():
|
||||
def test_get_weights_row():
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_row",
|
||||
"test_get_weights_row",
|
||||
],
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
@ -557,11 +591,9 @@ def test_get_multi_weights_row():
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = None
|
||||
|
||||
w = weights.get_multi_weights_row(
|
||||
w = weights.get_weights_row(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
assert torch.allclose(
|
||||
@ -576,7 +608,7 @@ def test_get_multi_weights_row():
|
||||
# test_get_weights_col
|
||||
|
||||
|
||||
def test_get_weights_col_awq():
|
||||
def test_get_weights_col_awq(gptq_weights_loader_awq):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_gptq",
|
||||
@ -585,14 +617,13 @@ def test_get_weights_col_awq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader_awq,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "awq"
|
||||
|
||||
w = weights.get_weights_col(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = GPTQWeight(
|
||||
@ -605,6 +636,7 @@ def test_get_weights_col_awq():
|
||||
g_idx=None,
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=True,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -614,10 +646,11 @@ def test_get_weights_col_awq():
|
||||
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
def test_get_weights_col_gtpq():
|
||||
def test_get_weights_col_gtpq(gptq_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_gptq",
|
||||
@ -626,14 +659,13 @@ def test_get_weights_col_gtpq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "gptq"
|
||||
|
||||
w = weights.get_weights_col(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = GPTQWeight(
|
||||
@ -643,6 +675,7 @@ def test_get_weights_col_gtpq():
|
||||
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=False,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -652,6 +685,7 @@ def test_get_weights_col_gtpq():
|
||||
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
@ -664,14 +698,13 @@ def test_get_weights_col_exl2():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=Exl2WeightsLoader(),
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "exl2"
|
||||
|
||||
w = weights.get_weights_col(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
scaled_scale_max = 0.3906 * 256
|
||||
@ -692,7 +725,7 @@ def test_get_weights_col_exl2():
|
||||
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
|
||||
|
||||
|
||||
def test_get_weights_col_marlin():
|
||||
def test_get_weights_col_marlin(marlin_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_marlin",
|
||||
@ -701,14 +734,13 @@ def test_get_weights_col_marlin():
|
||||
dtype=torch.float16,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=marlin_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "marlin"
|
||||
|
||||
w = weights.get_weights_col(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = MarlinWeight(
|
||||
@ -723,7 +755,7 @@ def test_get_weights_col_marlin():
|
||||
# test_get_weights_col_packed
|
||||
|
||||
|
||||
def test_get_weights_col_packed_awq():
|
||||
def test_get_weights_col_packed_awq(gptq_weights_loader_awq):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_packed_gptq",
|
||||
@ -732,15 +764,14 @@ def test_get_weights_col_packed_awq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader_awq,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "awq"
|
||||
block_sizes = 1
|
||||
|
||||
w = weights.get_weights_col_packed(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
block_sizes=block_sizes,
|
||||
)
|
||||
|
||||
@ -751,6 +782,7 @@ def test_get_weights_col_packed_awq():
|
||||
g_idx=None,
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=True,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -760,6 +792,7 @@ def test_get_weights_col_packed_awq():
|
||||
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
@ -773,15 +806,14 @@ def test_get_weights_col_packed_exl2():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=Exl2WeightsLoader(),
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "exl2"
|
||||
block_sizes = 1
|
||||
|
||||
w = weights.get_weights_col_packed(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
block_sizes=block_sizes,
|
||||
)
|
||||
|
||||
@ -803,7 +835,7 @@ def test_get_weights_col_packed_exl2():
|
||||
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
|
||||
|
||||
|
||||
def test_get_weights_col_packed_gptq():
|
||||
def test_get_weights_col_packed_gptq(gptq_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_packed_gptq",
|
||||
@ -812,14 +844,13 @@ def test_get_weights_col_packed_gptq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader,
|
||||
)
|
||||
|
||||
prefixes = ["weight"]
|
||||
quantize = "gptq"
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=prefixes,
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -830,6 +861,7 @@ def test_get_weights_col_packed_gptq():
|
||||
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=False,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -839,10 +871,11 @@ def test_get_weights_col_packed_gptq():
|
||||
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
def test_get_weights_col_packed_marlin():
|
||||
def test_get_weights_col_packed_marlin(marlin_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_weights_col_packed_marlin",
|
||||
@ -851,14 +884,13 @@ def test_get_weights_col_packed_marlin():
|
||||
dtype=torch.float16,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=marlin_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "marlin"
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=[prefix],
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -876,7 +908,7 @@ def test_get_weights_col_packed_marlin():
|
||||
# test_get_multi_weights_col
|
||||
|
||||
|
||||
def test_get_multi_weights_col_awq():
|
||||
def test_get_multi_weights_col_awq(gptq_weights_loader_awq):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_col_gptq",
|
||||
@ -885,14 +917,13 @@ def test_get_multi_weights_col_awq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader_awq,
|
||||
)
|
||||
|
||||
prefixes = ["weight"]
|
||||
quantize = "awq"
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=prefixes,
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -903,6 +934,7 @@ def test_get_multi_weights_col_awq():
|
||||
g_idx=None,
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=True,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -912,6 +944,7 @@ def test_get_multi_weights_col_awq():
|
||||
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
@ -924,22 +957,21 @@ def test_get_multi_weights_col_exl2():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=Exl2WeightsLoader(),
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "exl2"
|
||||
|
||||
try:
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=[prefix],
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
except ValueError as e:
|
||||
assert e.args[0] == "get_multi_weights_col is not supported for exl2"
|
||||
|
||||
|
||||
def test_get_multi_weights_col_gptq():
|
||||
def test_get_multi_weights_col_gptq(gptq_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_col_gptq",
|
||||
@ -948,14 +980,13 @@ def test_get_multi_weights_col_gptq():
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader,
|
||||
)
|
||||
|
||||
prefixes = ["weight"]
|
||||
quantize = "gptq"
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=prefixes,
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -966,6 +997,7 @@ def test_get_multi_weights_col_gptq():
|
||||
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=False,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -975,10 +1007,11 @@ def test_get_multi_weights_col_gptq():
|
||||
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
def test_get_multi_weights_col_marlin():
|
||||
def test_get_multi_weights_col_marlin(marlin_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_col_marlin",
|
||||
@ -987,14 +1020,13 @@ def test_get_multi_weights_col_marlin():
|
||||
dtype=torch.float16,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=marlin_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "marlin"
|
||||
|
||||
w = weights.get_multi_weights_col(
|
||||
prefixes=[prefix],
|
||||
quantize=quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -1007,26 +1039,25 @@ def test_get_multi_weights_col_marlin():
|
||||
assert torch.allclose(w.s, expected_weight.s), "s mismatch"
|
||||
|
||||
|
||||
# test_get_multi_weights_row
|
||||
# test_get_weights_row
|
||||
|
||||
|
||||
def test_get_multi_weights_row_awq():
|
||||
def test_get_weights_row_awq(gptq_weights_loader_awq):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_row_gptq",
|
||||
"test_get_weights_row_gptq",
|
||||
],
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader_awq,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "awq"
|
||||
|
||||
w = weights.get_multi_weights_row(
|
||||
w = weights.get_weights_row(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = GPTQWeight(
|
||||
@ -1036,6 +1067,7 @@ def test_get_multi_weights_row_awq():
|
||||
g_idx=None,
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=True,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -1045,26 +1077,26 @@ def test_get_multi_weights_row_awq():
|
||||
assert w.g_idx == expected_weight.g_idx, "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
def test_get_multi_weights_row_exl2():
|
||||
def test_get_weights_row_exl2():
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_row_exl2",
|
||||
"test_get_weights_row_exl2",
|
||||
],
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=Exl2WeightsLoader(),
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "exl2"
|
||||
|
||||
w = weights.get_multi_weights_row(
|
||||
w = weights.get_weights_row(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
print(w)
|
||||
|
||||
@ -1086,23 +1118,22 @@ def test_get_multi_weights_row_exl2():
|
||||
assert torch.allclose(w.q_groups, expected_weight.q_groups), "q_groups mismatch"
|
||||
|
||||
|
||||
def test_get_multi_weights_row_gptq():
|
||||
def test_get_weights_row_gptq(gptq_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_row_gptq",
|
||||
"test_get_weights_row_gptq",
|
||||
],
|
||||
device="cpu",
|
||||
dtype=torch.float32,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=gptq_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "gptq"
|
||||
|
||||
w = weights.get_multi_weights_row(
|
||||
w = weights.get_weights_row(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = GPTQWeight(
|
||||
@ -1112,6 +1143,7 @@ def test_get_multi_weights_row_gptq():
|
||||
g_idx=torch.tensor([0, 1, 0, 1], dtype=torch.int32),
|
||||
bits=8.0,
|
||||
groupsize=2.0,
|
||||
use_awq_kernel=False,
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
@ -1121,26 +1153,26 @@ def test_get_multi_weights_row_gptq():
|
||||
assert torch.allclose(w.g_idx, expected_weight.g_idx), "g_idx mismatch"
|
||||
assert w.bits == expected_weight.bits, "bits mismatch"
|
||||
assert w.groupsize == expected_weight.groupsize, "groupsize mismatch"
|
||||
assert w.use_awq_kernel == expected_weight.use_awq_kernel, "use_awq_kernel mismatch"
|
||||
assert w.use_exllama == expected_weight.use_exllama, "use_exllama mismatch"
|
||||
|
||||
|
||||
def test_get_multi_weights_row_marlin():
|
||||
def test_get_weights_row_marlin(marlin_weights_loader):
|
||||
weights = MockWeights(
|
||||
[
|
||||
"test_get_multi_weights_row_marlin",
|
||||
"test_get_weights_row_marlin",
|
||||
],
|
||||
device="cpu",
|
||||
dtype=torch.float16,
|
||||
process_group=dummy_process_group,
|
||||
dummy_fs=dummy_file_system,
|
||||
weights_loader=marlin_weights_loader,
|
||||
)
|
||||
|
||||
prefix = "weight"
|
||||
quantize = "marlin"
|
||||
|
||||
w = weights.get_multi_weights_row(
|
||||
w = weights.get_weights_row(
|
||||
prefix=prefix,
|
||||
quantize=quantize,
|
||||
)
|
||||
|
||||
expected_weight = MarlinWeight(
|
||||
|
@ -8,6 +8,7 @@ from typing import Optional
|
||||
from enum import Enum
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
app = typer.Typer()
|
||||
|
||||
@ -87,10 +88,21 @@ def serve(
|
||||
)
|
||||
|
||||
if len(lora_adapter_ids) > 0:
|
||||
logger.warning(
|
||||
f"LoRA adapters are enabled. This is an experimental feature and may not work as expected."
|
||||
log_master(
|
||||
logger.warning,
|
||||
f"LoRA adapters are enabled. This is an experimental feature and may not work as expected.",
|
||||
)
|
||||
|
||||
# TODO: enable lora with cuda graphs. for now disable cuda graphs if lora is enabled
|
||||
# and warn the user
|
||||
if len(lora_adapter_ids) > 0 and os.getenv("CUDA_GRAPHS", None) is not None:
|
||||
log_master(
|
||||
logger.warning,
|
||||
f"LoRa adapter are not supported with CUDA Graphs. Disabling CUDA Graphs.",
|
||||
)
|
||||
global CUDA_GRAPHS
|
||||
CUDA_GRAPHS = None
|
||||
|
||||
# Downgrade enum into str for easier management later on
|
||||
quantize = None if quantize is None else quantize.value
|
||||
dtype = None if dtype is None else dtype.value
|
||||
@ -332,6 +344,7 @@ def quantize(
|
||||
upload_to_model_id: Optional[str] = None,
|
||||
percdamp: float = 0.01,
|
||||
act_order: bool = False,
|
||||
groupsize: int = 128,
|
||||
):
|
||||
if revision is None:
|
||||
revision = "main"
|
||||
@ -346,13 +359,14 @@ def quantize(
|
||||
quantize(
|
||||
model_id=model_id,
|
||||
bits=4,
|
||||
groupsize=128,
|
||||
groupsize=groupsize,
|
||||
output_dir=output_dir,
|
||||
revision=revision,
|
||||
trust_remote_code=trust_remote_code,
|
||||
upload_to_model_id=upload_to_model_id,
|
||||
percdamp=percdamp,
|
||||
act_order=act_order,
|
||||
sym=True,
|
||||
)
|
||||
|
||||
|
||||
|
@ -3,6 +3,7 @@ import torch
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
from text_generation_server.utils.log import log_master
|
||||
from loguru import logger
|
||||
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
@ -136,7 +137,10 @@ if ENGINE != "triton":
|
||||
try:
|
||||
import flash_attn_2_cuda
|
||||
|
||||
logger.info("ROCm: using Flash Attention 2 Composable Kernel implementation.")
|
||||
log_master(
|
||||
logger.info,
|
||||
"ROCm: using Flash Attention 2 Composable Kernel implementation.",
|
||||
)
|
||||
except ImportError as e:
|
||||
if major >= 8:
|
||||
architecture_suffix = f"-{SYSTEM}"
|
||||
|
@ -1,15 +1,18 @@
|
||||
import torch
|
||||
from loguru import logger
|
||||
from dataclasses import dataclass
|
||||
from functools import lru_cache
|
||||
|
||||
import bitsandbytes as bnb
|
||||
import torch
|
||||
from bitsandbytes.nn import Int8Params, Params4bit
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
@lru_cache(1)
|
||||
def warn_deprecate_bnb():
|
||||
logger.warning(
|
||||
"Bitsandbytes 8bit is deprecated, using `eetq` is a drop-in replacement, and has much better performnce"
|
||||
)
|
||||
@dataclass
|
||||
class BNBWeight(UnquantizedWeight):
|
||||
weight: torch.Tensor
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return Linear8bitLt(self.weight, bias, has_fp16_weights=False, threshold=6.0)
|
||||
|
||||
|
||||
class Linear8bitLt(torch.nn.Module):
|
||||
@ -70,6 +73,22 @@ class Linear8bitLt(torch.nn.Module):
|
||||
return out
|
||||
|
||||
|
||||
@dataclass
|
||||
class BNBFP4Weight(UnquantizedWeight):
|
||||
weight: torch.Tensor
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return Linear4bit(self.weight, bias, quant_type="fp4")
|
||||
|
||||
|
||||
@dataclass
|
||||
class BNBNF4Weight(UnquantizedWeight):
|
||||
weight: torch.Tensor
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return Linear4bit(self.weight, bias, quant_type="nf4")
|
||||
|
||||
|
||||
class Linear4bit(torch.nn.Module):
|
||||
def __init__(self, weight, bias, quant_type):
|
||||
super().__init__()
|
||||
|
@ -1,5 +1,23 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
from EETQ import quant_weights, w8_a16_gemm
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
@dataclass
|
||||
class EETQWeight(UnquantizedWeight):
|
||||
weight: torch.Tensor
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
try:
|
||||
from text_generation_server.layers.eetq import EETQLinear
|
||||
|
||||
return EETQLinear(self.weight, bias)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
||||
)
|
||||
|
||||
|
||||
class EETQLinear(torch.nn.Module):
|
||||
|
@ -1,9 +1,12 @@
|
||||
import torch
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import torch
|
||||
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
|
||||
|
||||
|
||||
@dataclass
|
||||
class Exl2Weight:
|
||||
class Exl2Weight(Weight):
|
||||
"""
|
||||
Exllama2 exl2 quantized weights.
|
||||
"""
|
||||
@ -21,3 +24,55 @@ class Exl2Weight:
|
||||
@property
|
||||
def device(self) -> torch.device:
|
||||
return self.q_weight.device
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
from text_generation_server.layers.gptq import ExllamaQuantLinear
|
||||
|
||||
return ExllamaQuantLinear(self, bias)
|
||||
|
||||
|
||||
class Exl2WeightsLoader(WeightsLoader):
|
||||
"""Loader for exl2-quantized weights."""
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
try:
|
||||
q_weight = weights.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = weights.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = weights.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
raise RuntimeError("Column-packed weights are not supported for exl")
|
||||
|
||||
def get_weights_col(self, weights: Weights, prefix: str):
|
||||
# Sharding is not yet supported, so we return the weights as-is.
|
||||
return self.get_weights(weights, prefix)
|
||||
|
||||
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
|
||||
raise ValueError("get_multi_weights_col is not supported for exl2")
|
||||
|
||||
def get_weights_row(self, weights: Weights, prefix: str):
|
||||
# Sharding is not yet supported, so we return the weights as-is.
|
||||
return self.get_weights(weights, prefix)
|
||||
|
@ -1,12 +1,58 @@
|
||||
import torch
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional, Union, List
|
||||
from loguru import logger
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.weights import (
|
||||
Weight,
|
||||
WeightsLoader,
|
||||
UnquantizedWeight,
|
||||
Weights,
|
||||
)
|
||||
from text_generation_server.utils.log import log_master, log_once
|
||||
|
||||
FBGEMM_MM_AVAILABLE = False
|
||||
FBGEMM_DYN_AVAILABLE = False
|
||||
try:
|
||||
import fbgemm_gpu.experimental.gen_ai
|
||||
|
||||
if SYSTEM == "cuda":
|
||||
major, _ = torch.cuda.get_device_capability()
|
||||
FBGEMM_MM_AVAILABLE = major == 9
|
||||
FBGEMM_DYN_AVAILABLE = major >= 8
|
||||
except (ImportError, ModuleNotFoundError):
|
||||
log_master(logger.warning, "FBGEMM fp8 kernels are not installed.")
|
||||
|
||||
|
||||
def get_fp8_linear() -> torch.nn.Module:
|
||||
"""
|
||||
Return an FP8 linear `Module` that is compatible with the current system.
|
||||
"""
|
||||
|
||||
if SYSTEM == "cuda":
|
||||
major, minor = torch.cuda.get_device_capability()
|
||||
if major == 8 and minor < 9:
|
||||
from text_generation_server.layers.marlin import GPTQMarlinFP8Linear
|
||||
|
||||
return GPTQMarlinFP8Linear
|
||||
|
||||
# On other systems let Torch decide if the hardware supports FP8.
|
||||
return Fp8Linear
|
||||
|
||||
|
||||
def fp8_quantize(weight, scale_upper_bound=None, qdtype=torch.float8_e4m3fn):
|
||||
if FBGEMM_DYN_AVAILABLE:
|
||||
qweight, scale = torch.ops.fbgemm.quantize_fp8_per_row(
|
||||
weight, bs=None, scale_ub=scale_upper_bound, output_dtype=qdtype
|
||||
)
|
||||
return qweight, scale
|
||||
|
||||
def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
|
||||
device = weight.device
|
||||
# weight, scale = quant_weights(weight, torch.int8, False)
|
||||
finfo = torch.finfo(qdtype)
|
||||
# Calculate the scale as dtype max divided by absmax
|
||||
scale = finfo.max / weight.abs().max().clamp(min=1e-12)
|
||||
scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
|
||||
# scale and clamp the tensor to bring it to
|
||||
# the representative range of float8 data type
|
||||
# (as default cast is unsaturated)
|
||||
@ -18,19 +64,166 @@ def fp8_quantize(weight, qdtype=torch.float8_e4m3fn):
|
||||
return qweight, scale
|
||||
|
||||
|
||||
class HybridFP8UnquantLoader(WeightsLoader):
|
||||
"""Weight loader that loads FP8 and unquantized Torch tensors."""
|
||||
|
||||
def __init__(self, activation_scale_ub: Optional[float], to_fp8: bool):
|
||||
self.activation_scale_ub = activation_scale_ub
|
||||
self.to_fp8 = to_fp8
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
w = weights.get_tensor(f"{prefix}.weight")
|
||||
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
# FP8 branch
|
||||
scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
if self.to_fp8:
|
||||
return Fp8Weight(weight=w, dtype=weights.dtype)
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
w = weights.get_packed_sharded(
|
||||
f"{prefix}.weight", dim=0, block_sizes=block_sizes
|
||||
)
|
||||
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
# FP8 branch
|
||||
scale = weights.get_packed_sharded(
|
||||
f"{prefix}.weight_scale", dim=0, block_sizes=block_sizes, to_dtype=False
|
||||
)
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
if self.to_fp8:
|
||||
return Fp8Weight(weight=w, dtype=weights.dtype)
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
|
||||
w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
|
||||
w = torch.cat(w, dim=dim)
|
||||
|
||||
# FP8 branch
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
scale = [
|
||||
weights.get_sharded(f"{p}.weight_scale", dim=0, to_dtype=False)
|
||||
for p in prefixes
|
||||
]
|
||||
scale = torch.cat(scale, dim=0)
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
if self.to_fp8:
|
||||
return Fp8Weight(weight=w, dtype=weights.dtype)
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
def get_weights_row(self, weights: "Weights", prefix: str):
|
||||
w = weights.get_sharded(f"{prefix}.weight", dim=1)
|
||||
# FP8 branch
|
||||
if w.dtype == torch.float8_e4m3fn:
|
||||
scale = weights.get_sharded(f"{prefix}.weight_scale", dim=0, to_dtype=False)
|
||||
return Fp8Weight(
|
||||
weight=w,
|
||||
weight_scale=scale,
|
||||
activation_scale_ub=self.activation_scale_ub,
|
||||
dtype=weights.dtype,
|
||||
)
|
||||
if self.to_fp8:
|
||||
return Fp8Weight(weight=w, dtype=weights.dtype)
|
||||
|
||||
return UnquantizedWeight(w)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Fp8Weight(Weight):
|
||||
weight: torch.Tensor
|
||||
dtype: torch.dtype
|
||||
weight_scale: Optional[torch.Tensor] = None
|
||||
activation_scale_ub: Optional[float] = None
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
if self.weight_scale is None:
|
||||
return get_fp8_linear().from_unquant(self.weight, bias, self.dtype)
|
||||
return get_fp8_linear().from_fp8(
|
||||
self.weight, self.weight_scale, self.activation_scale_ub, bias, self.dtype
|
||||
)
|
||||
|
||||
|
||||
class Fp8Linear(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
weight,
|
||||
qweight,
|
||||
scale,
|
||||
scale_upper_bound,
|
||||
bias,
|
||||
dtype,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.dtype = weight.dtype
|
||||
self.qweight, self.scale = fp8_quantize(weight)
|
||||
self.dtype = dtype
|
||||
self.qweight = qweight
|
||||
self.scale = scale
|
||||
self.scale_upper_bound = (
|
||||
torch.tensor(
|
||||
[scale_upper_bound], dtype=torch.float32, device=qweight.device
|
||||
)
|
||||
if scale_upper_bound is not None
|
||||
else None
|
||||
)
|
||||
|
||||
self.bias = bias if bias is not None else None
|
||||
|
||||
@classmethod
|
||||
def from_unquant(cls, weight, bias, dtype):
|
||||
qweight, scale = fp8_quantize(weight)
|
||||
return cls(
|
||||
qweight=qweight, scale=scale, scale_upper_bound=None, bias=bias, dtype=dtype
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_fp8(cls, weight, scale, input_scale, bias, dtype):
|
||||
return cls(
|
||||
qweight=weight,
|
||||
scale=scale,
|
||||
scale_upper_bound=input_scale,
|
||||
bias=bias,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if FBGEMM_MM_AVAILABLE:
|
||||
qinput, scale = fp8_quantize(
|
||||
input, scale_upper_bound=self.scale_upper_bound
|
||||
)
|
||||
|
||||
y = torch.ops.fbgemm.f8f8bf16_rowwise(
|
||||
qinput,
|
||||
self.qweight,
|
||||
scale,
|
||||
self.scale,
|
||||
use_fast_accum=True,
|
||||
bias=self.bias,
|
||||
)
|
||||
return y.to(self.dtype)
|
||||
|
||||
qinput, scale = fp8_quantize(input)
|
||||
output, _ = torch._scaled_mm(
|
||||
qinput,
|
||||
|
@ -1,30 +1,23 @@
|
||||
from dataclasses import dataclass
|
||||
import os
|
||||
from typing import Optional
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Union
|
||||
|
||||
import torch
|
||||
from text_generation_server.utils.import_utils import (
|
||||
SYSTEM,
|
||||
)
|
||||
from loguru import logger
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.log import log_once
|
||||
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
|
||||
|
||||
|
||||
@dataclass
|
||||
class GPTQParams:
|
||||
bits: int
|
||||
checkpoint_format: Optional[str]
|
||||
groupsize: int
|
||||
desc_act: bool
|
||||
quant_method: str
|
||||
sym: bool
|
||||
|
||||
|
||||
@dataclass
|
||||
class GPTQWeight:
|
||||
class GPTQWeight(Weight):
|
||||
qweight: torch.Tensor
|
||||
qzeros: torch.Tensor
|
||||
scales: torch.Tensor
|
||||
g_idx: Optional[torch.Tensor]
|
||||
bits: int
|
||||
groupsize: int
|
||||
use_awq_kernel: bool
|
||||
use_exllama: bool
|
||||
|
||||
def __post_init__(self):
|
||||
@ -35,6 +28,50 @@ class GPTQWeight:
|
||||
def device(self) -> torch.device:
|
||||
return self.qweight.device
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
if self.use_awq_kernel:
|
||||
if SYSTEM == "rocm":
|
||||
raise NotImplementedError(
|
||||
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
|
||||
"to use Exllama/GPTQ kernels for AWQ inference."
|
||||
)
|
||||
try:
|
||||
from text_generation_server.layers.awq.quantize.qmodule import WQLinear
|
||||
|
||||
return WQLinear(
|
||||
w_bit=self.bits,
|
||||
group_size=self.groupsize,
|
||||
qweight=self.qweight,
|
||||
qzeros=self.qzeros,
|
||||
scales=self.scales,
|
||||
bias=bias,
|
||||
)
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
|
||||
)
|
||||
elif self.use_exllama:
|
||||
try:
|
||||
from text_generation_server.layers.gptq import ExllamaQuantLinear
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
|
||||
)
|
||||
|
||||
return ExllamaQuantLinear(self, bias)
|
||||
else:
|
||||
from text_generation_server.layers.gptq.quant_linear import QuantLinear
|
||||
|
||||
return QuantLinear(
|
||||
self.qweight,
|
||||
self.qzeros,
|
||||
self.scales,
|
||||
self.g_idx,
|
||||
bias,
|
||||
self.bits,
|
||||
self.groupsize,
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
major, _minor = torch.cuda.get_device_capability()
|
||||
@ -51,6 +88,8 @@ elif CAN_EXLLAMA:
|
||||
if V2:
|
||||
from text_generation_server.layers.gptq.exllamav2 import (
|
||||
QuantLinear as ExllamaQuantLinear,
|
||||
)
|
||||
from text_generation_server.layers.gptq.exllamav2 import (
|
||||
create_exllama_buffers,
|
||||
set_device,
|
||||
)
|
||||
@ -59,6 +98,8 @@ elif CAN_EXLLAMA:
|
||||
else:
|
||||
from text_generation_server.layers.gptq.exllama import (
|
||||
Ex4bitLinear as ExllamaQuantLinear,
|
||||
)
|
||||
from text_generation_server.layers.gptq.exllama import (
|
||||
create_exllama_buffers,
|
||||
set_device,
|
||||
)
|
||||
@ -69,3 +110,457 @@ elif CAN_EXLLAMA:
|
||||
pass
|
||||
|
||||
from text_generation_server.layers.gptq.quant_linear import QuantLinear
|
||||
|
||||
|
||||
class GPTQWeightsLoader(WeightsLoader):
|
||||
"""
|
||||
Loader for GPTQ- and AWQ-quantized weights.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
*,
|
||||
bits: int,
|
||||
desc_act: bool,
|
||||
groupsize: int,
|
||||
quant_method: str,
|
||||
quantize: str,
|
||||
sym: bool,
|
||||
):
|
||||
self.bits = bits
|
||||
self.desc_act = desc_act
|
||||
self.groupsize = groupsize
|
||||
self.quant_method = quant_method
|
||||
self.quantize = quantize
|
||||
self.sym = sym
|
||||
|
||||
def get_weights(self, weights: Weights, prefix: str):
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
self._get_gptq_params(weights)
|
||||
if can_use_gptq_marlin(
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
quant_method=self.quant_method,
|
||||
quantize=self.quantize,
|
||||
sym=self.sym,
|
||||
):
|
||||
log_once(logger.info, "Using GPTQ-Marlin kernels")
|
||||
try:
|
||||
qweight = weights.get_tensor(f"{prefix}.qweight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
desc_act=self.desc_act,
|
||||
groupsize=self.groupsize,
|
||||
sym=self.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
use_exllama = True
|
||||
if self.bits != 4:
|
||||
use_exllama = False
|
||||
|
||||
if self.desc_act:
|
||||
log_once(logger.warning, "Disabling exllama because desc_act=True")
|
||||
use_exllama = False
|
||||
|
||||
try:
|
||||
qweight = weights.get_tensor(f"{prefix}.qweight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "gptq":
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
from text_generation_server.layers.gptq import (
|
||||
HAS_EXLLAMA,
|
||||
CAN_EXLLAMA,
|
||||
GPTQWeight,
|
||||
)
|
||||
|
||||
if use_exllama:
|
||||
if not HAS_EXLLAMA:
|
||||
if CAN_EXLLAMA:
|
||||
log_once(
|
||||
logger.warning,
|
||||
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
|
||||
)
|
||||
use_exllama = False
|
||||
else:
|
||||
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||
|
||||
qzeros = weights.get_tensor(f"{prefix}.qzeros")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
|
||||
if use_exllama and g_idx is not None:
|
||||
g_idx = g_idx - g_idx[0]
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // self.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// self.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
|
||||
return GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
try:
|
||||
qweight = weights.get_packed_sharded(
|
||||
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized."
|
||||
)
|
||||
scales = weights.get_packed_sharded(
|
||||
f"{prefix}.scales", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
scales = scales.to(dtype=weights.dtype)
|
||||
|
||||
self._get_gptq_params(weights)
|
||||
if can_use_gptq_marlin(
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
quant_method=self.quant_method,
|
||||
quantize=self.quantize,
|
||||
sym=self.sym,
|
||||
):
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
desc_act=self.desc_act,
|
||||
groupsize=self.groupsize,
|
||||
sym=self.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
qzeros = weights.get_packed_sharded(
|
||||
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
if self.quantize == "gptq" and self.quant_method == "gptq":
|
||||
g_idx = weights.get_tensor(f"{prefix}.g_idx")
|
||||
elif self.quantize == "gptq" and self.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // self.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// self.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
return GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
use_awq_kernel=self.quantize == "awq",
|
||||
use_exllama=False,
|
||||
)
|
||||
|
||||
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
try:
|
||||
qweight = torch.cat(
|
||||
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{self.quantize}` weight, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
scales = torch.cat(
|
||||
[weights.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
self._get_gptq_params(weights)
|
||||
if can_use_gptq_marlin(
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
quant_method=self.quant_method,
|
||||
quantize=self.quantize,
|
||||
sym=self.sym,
|
||||
):
|
||||
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
g_idx = w[0]
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
desc_act=self.desc_act,
|
||||
groupsize=self.groupsize,
|
||||
sym=self.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
qzeros = torch.cat(
|
||||
[weights.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
from text_generation_server.layers.gptq import HAS_EXLLAMA
|
||||
|
||||
use_exllama = (
|
||||
self.bits == 4
|
||||
and HAS_EXLLAMA
|
||||
and self.quantize == "gptq"
|
||||
and not self.desc_act
|
||||
)
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "gptq":
|
||||
w = [weights.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
g_idx = w[0]
|
||||
elif self.quantize == "gptq" and self.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // self.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// self.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
return GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
use_awq_kernel=self.quantize == "awq",
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
|
||||
def get_weights_row(self, weights: Weights, prefix: str):
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
self._get_gptq_params(weights)
|
||||
if can_use_gptq_marlin(
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
quant_method=self.quant_method,
|
||||
quantize=self.quantize,
|
||||
sym=self.sym,
|
||||
):
|
||||
log_once(logger.info, "Using GPTQ-Marlin kernels")
|
||||
try:
|
||||
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{self.quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
if self.desc_act or self.groupsize == -1:
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
else:
|
||||
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
|
||||
|
||||
sharded_in_features = weights.process_group.size() > 1
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
desc_act=self.desc_act,
|
||||
groupsize=self.groupsize,
|
||||
sym=self.sym,
|
||||
sharded_infeatures=sharded_in_features,
|
||||
)
|
||||
|
||||
use_exllama = True
|
||||
if self.bits != 4:
|
||||
use_exllama = False
|
||||
|
||||
if self.desc_act:
|
||||
log_once(logger.warning, "Disabling exllama because desc_act=True")
|
||||
use_exllama = False
|
||||
|
||||
try:
|
||||
qweight = weights.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "gptq":
|
||||
g_idx = weights.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
if weights.process_group.size() > 1:
|
||||
if g_idx is not None:
|
||||
if (
|
||||
not torch.equal(
|
||||
g_idx.cpu(),
|
||||
torch.tensor(
|
||||
[i // self.groupsize for i in range(g_idx.shape[0])],
|
||||
dtype=torch.int32,
|
||||
),
|
||||
)
|
||||
and not (g_idx == 0).all()
|
||||
):
|
||||
# Exllama implementation does not support row tensor parallelism with act-order, as
|
||||
# it would require to reorder input activations that are split unto several GPUs
|
||||
use_exllama = False
|
||||
|
||||
from text_generation_server.layers.gptq import (
|
||||
CAN_EXLLAMA,
|
||||
HAS_EXLLAMA,
|
||||
GPTQWeight,
|
||||
)
|
||||
|
||||
if use_exllama:
|
||||
if not HAS_EXLLAMA:
|
||||
if CAN_EXLLAMA:
|
||||
log_once(
|
||||
logger.warning,
|
||||
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
|
||||
)
|
||||
use_exllama = False
|
||||
else:
|
||||
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||
|
||||
if use_exllama and self.groupsize != -1:
|
||||
qzeros = weights.get_sharded(f"{prefix}.qzeros", dim=0)
|
||||
scales = weights.get_sharded(f"{prefix}.scales", dim=0)
|
||||
else:
|
||||
qzeros = weights.get_tensor(f"{prefix}.qzeros")
|
||||
scales = weights.get_tensor(f"{prefix}.scales")
|
||||
|
||||
if use_exllama and g_idx is not None:
|
||||
g_idx = g_idx - g_idx[0]
|
||||
|
||||
if self.quantize == "gptq" and self.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // self.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// self.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
|
||||
return GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=self.bits,
|
||||
groupsize=self.groupsize,
|
||||
use_awq_kernel=self.quantize == "awq",
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
|
||||
def _get_gptq_params(self, weights: Weights):
|
||||
if weights._has_tensor("gptq_bits") and weights._has_tensor("gptq_groupsize"):
|
||||
self.bits = weights.get_tensor("gptq_bits").item()
|
||||
self.groupsize = weights.get_tensor("gptq_groupsize").item()
|
||||
self.desc_act = False
|
||||
# `server quantize` used asymmetric quantization unconditionally
|
||||
# before the `gptq_sym` setting tensor was added.
|
||||
self.sym = (
|
||||
weights.get_tensor("gptq_sym").item()
|
||||
if weights._has_tensor("gptq_sym")
|
||||
else False
|
||||
)
|
||||
self.quant_method = "gptq"
|
||||
|
@ -9,11 +9,12 @@ from loguru import logger
|
||||
|
||||
from text_generation_server.layers.exl2 import Exl2Weight
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
try:
|
||||
from exllamav2_kernels import make_q_matrix, gemm_half_q_half
|
||||
except ImportError:
|
||||
logger.error("exllamav2_kernels not installed.")
|
||||
log_master(logger.warning, "exllamav2_kernels not installed.")
|
||||
raise
|
||||
|
||||
# Dummy tensor to pass instead of g_idx since there is no way to pass "None" to a C++ extension
|
||||
|
@ -16,6 +16,8 @@ from text_generation_server.layers.gptq.quant_linear import QuantLinear
|
||||
from loguru import logger
|
||||
from typing import Optional
|
||||
|
||||
from text_generation_server.utils.weights import DefaultWeightsLoader
|
||||
|
||||
DEV = torch.device("cuda:0")
|
||||
|
||||
|
||||
@ -869,6 +871,7 @@ def quantize(
|
||||
upload_to_model_id: Optional[str],
|
||||
percdamp: float,
|
||||
act_order: bool,
|
||||
sym: bool,
|
||||
):
|
||||
print("loading model")
|
||||
config = AutoConfig.from_pretrained(
|
||||
@ -891,6 +894,7 @@ def quantize(
|
||||
dtype=torch.float16,
|
||||
process_group=process_group,
|
||||
aliases={"embed_tokens.weight": ["lm_head.weight"]},
|
||||
weights_loader=DefaultWeightsLoader(),
|
||||
)
|
||||
hooks = []
|
||||
for name, module in model.named_modules():
|
||||
@ -943,6 +947,7 @@ def quantize(
|
||||
percdamp=percdamp,
|
||||
act_order=act_order,
|
||||
hooks=hooks,
|
||||
sym=sym,
|
||||
)
|
||||
print(time.time() - tick)
|
||||
|
||||
@ -954,6 +959,7 @@ def quantize(
|
||||
state_dict = {k: v.cpu().contiguous() for k, v in state_dict.items()}
|
||||
state_dict["gptq_bits"] = torch.LongTensor([bits])
|
||||
state_dict["gptq_groupsize"] = torch.LongTensor([groupsize])
|
||||
state_dict["gptq_sym"] = torch.BoolTensor([sym])
|
||||
|
||||
max_shard_size = "10GB"
|
||||
shards, index = shard_checkpoint(
|
||||
|
@ -1,7 +1,8 @@
|
||||
from typing import Optional
|
||||
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from torch.nn import functional as F
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
try:
|
||||
@ -90,167 +91,14 @@ class FastLinearROCm(torch.nn.Module):
|
||||
return F.linear(inp, self.weight, self.bias)
|
||||
|
||||
|
||||
def get_linear(weight, bias, quantize):
|
||||
if quantize is None:
|
||||
def get_linear(weight, bias):
|
||||
# Weights that are loaded through methods that are not
|
||||
# quantization-aware are still bare tensors. We may want
|
||||
# to change this in the future.
|
||||
if isinstance(weight, torch.Tensor):
|
||||
if SYSTEM == "rocm":
|
||||
linear = FastLinearROCm(weight, bias)
|
||||
return FastLinearROCm(weight, bias)
|
||||
else:
|
||||
linear = FastLinear(weight, bias)
|
||||
elif quantize == "eetq":
|
||||
try:
|
||||
from text_generation_server.layers.eetq import EETQLinear
|
||||
return FastLinear(weight, bias)
|
||||
|
||||
linear = EETQLinear(weight, bias)
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
||||
)
|
||||
elif quantize == "fp8":
|
||||
from text_generation_server.layers.fp8 import Fp8Linear
|
||||
|
||||
linear = Fp8Linear(weight, bias)
|
||||
elif quantize == "bitsandbytes":
|
||||
try:
|
||||
from text_generation_server.layers.bnb import (
|
||||
warn_deprecate_bnb,
|
||||
Linear8bitLt,
|
||||
)
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
||||
)
|
||||
warn_deprecate_bnb()
|
||||
linear = Linear8bitLt(
|
||||
weight,
|
||||
bias,
|
||||
has_fp16_weights=False,
|
||||
threshold=6.0,
|
||||
)
|
||||
if bias is not None:
|
||||
linear.bias = nn.Parameter(bias)
|
||||
elif quantize == "bitsandbytes-fp4":
|
||||
try:
|
||||
from text_generation_server.layers.bnb import Linear4bit
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
||||
)
|
||||
linear = Linear4bit(
|
||||
weight,
|
||||
bias,
|
||||
quant_type="fp4",
|
||||
)
|
||||
elif quantize == "bitsandbytes-nf4":
|
||||
try:
|
||||
from text_generation_server.layers.bnb import Linear4bit
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
|
||||
)
|
||||
linear = Linear4bit(
|
||||
weight,
|
||||
bias,
|
||||
quant_type="nf4",
|
||||
)
|
||||
elif quantize == "exl2":
|
||||
from text_generation_server.layers.exl2 import Exl2Weight
|
||||
|
||||
if not isinstance(weight, Exl2Weight):
|
||||
raise NotImplementedError(
|
||||
f"The passed weight is not `exl2` compatible, loader needs to be updated."
|
||||
)
|
||||
|
||||
from text_generation_server.layers.gptq import ExllamaQuantLinear
|
||||
|
||||
linear = ExllamaQuantLinear(weight, bias)
|
||||
|
||||
elif quantize == "gptq":
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.marlin import (
|
||||
GPTQMarlinLinear,
|
||||
GPTQMarlinWeight,
|
||||
)
|
||||
|
||||
if isinstance(weight, GPTQMarlinWeight):
|
||||
linear = GPTQMarlinLinear(
|
||||
weight=weight,
|
||||
bias=bias,
|
||||
)
|
||||
elif isinstance(weight, GPTQWeight):
|
||||
if weight.use_exllama:
|
||||
try:
|
||||
from text_generation_server.layers.gptq import (
|
||||
ExllamaQuantLinear,
|
||||
)
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
|
||||
)
|
||||
|
||||
linear = ExllamaQuantLinear(weight, bias)
|
||||
else:
|
||||
from text_generation_server.layers.gptq.quant_linear import QuantLinear
|
||||
|
||||
linear = QuantLinear(
|
||||
weight.qweight,
|
||||
weight.qzeros,
|
||||
weight.scales,
|
||||
weight.g_idx,
|
||||
bias,
|
||||
weight.bits,
|
||||
weight.groupsize,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The passed weight is not `gptq` compatible, loader needs to be updated."
|
||||
)
|
||||
|
||||
elif quantize == "awq":
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
|
||||
if not isinstance(weight, GPTQWeight):
|
||||
raise NotImplementedError(
|
||||
f"The passed weight is not `awq` compatible, loader needs to be updated."
|
||||
)
|
||||
if SYSTEM == "rocm":
|
||||
raise NotImplementedError(
|
||||
"AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
|
||||
"to use Exllama/GPTQ kernels for AWQ inference."
|
||||
)
|
||||
try:
|
||||
from text_generation_server.layers.awq.quantize.qmodule import WQLinear
|
||||
|
||||
linear = WQLinear(
|
||||
w_bit=weight.bits,
|
||||
group_size=weight.groupsize,
|
||||
qweight=weight.qweight,
|
||||
qzeros=weight.qzeros,
|
||||
scales=weight.scales,
|
||||
bias=bias,
|
||||
)
|
||||
except ImportError:
|
||||
raise NotImplementedError(
|
||||
"You do not seem to have awq installed, either install it (cd server && make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
|
||||
)
|
||||
elif quantize == "marlin":
|
||||
from text_generation_server.layers.marlin import (
|
||||
GPTQMarlin24Linear,
|
||||
GPTQMarlin24Weight,
|
||||
MarlinLinear,
|
||||
MarlinWeight,
|
||||
)
|
||||
|
||||
if isinstance(weight, GPTQMarlin24Weight):
|
||||
linear = GPTQMarlin24Linear(
|
||||
weight=weight,
|
||||
bias=bias,
|
||||
)
|
||||
elif isinstance(weight, MarlinWeight):
|
||||
linear = MarlinLinear(weight=weight, bias=bias)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"The passed weight is not `marlin` compatible, loader needs to be updated."
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
|
||||
return linear
|
||||
return weight.get_linear(bias)
|
||||
|
@ -1,11 +1,13 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from text_generation_server.layers.gptq import GPTQParams
|
||||
from loguru import logger
|
||||
from text_generation_server.layers.fp8 import fp8_quantize
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.log import log_once
|
||||
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
|
||||
|
||||
try:
|
||||
import marlin_kernels
|
||||
@ -24,16 +26,159 @@ GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
|
||||
MARLIN_TILE_SIZE = 16
|
||||
|
||||
|
||||
def can_use_gptq_marlin(gptq_params: GPTQParams, quantize: str) -> bool:
|
||||
class MarlinWeightsLoader(WeightsLoader):
|
||||
"""Loader for Marlin-quantized weights."""
|
||||
|
||||
def __init__(self, *, bits: int, is_marlin_24: bool):
|
||||
self.bits = bits
|
||||
self.is_marlin_24 = is_marlin_24
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
||||
if is_marlin_24:
|
||||
try:
|
||||
B = weights.get_tensor(f"{prefix}.B_24")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
B_meta = weights.get_tensor(f"{prefix}.B_meta")
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
||||
else:
|
||||
try:
|
||||
B = weights.get_tensor(f"{prefix}.B")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
return weight
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: Weights,
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
if self.is_marlin_24:
|
||||
B = weights.get_packed_sharded(
|
||||
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
B_meta = weights.get_packed_sharded(
|
||||
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
s = weights.get_packed_sharded(
|
||||
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
|
||||
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
||||
else:
|
||||
B = weights.get_packed_sharded(
|
||||
f"{prefix}.B", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
s = weights.get_packed_sharded(
|
||||
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
return weight
|
||||
|
||||
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
|
||||
if self.is_marlin_24:
|
||||
try:
|
||||
B = torch.cat(
|
||||
[weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `marlin` weight, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
B_meta = torch.cat(
|
||||
[weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
s = torch.cat(
|
||||
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
||||
else:
|
||||
try:
|
||||
B = torch.cat(
|
||||
[weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `marlin` weight, make sure the model is already quantized"
|
||||
)
|
||||
s = torch.cat(
|
||||
[weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
return weight
|
||||
|
||||
def get_weights_row(self, weights: Weights, prefix: str):
|
||||
if self.is_marlin_24:
|
||||
try:
|
||||
B = weights.get_sharded(f"{prefix}.B_24", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
|
||||
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
|
||||
if num_groups == 1:
|
||||
# The number of groups is 1 when groupsize == -1. share
|
||||
# scales between all shards in this case.
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
else:
|
||||
s = weights.get_sharded(f"{prefix}.s", dim=0)
|
||||
|
||||
weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
|
||||
else:
|
||||
try:
|
||||
B = weights.get_sharded(f"{prefix}.B", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
|
||||
if num_groups == 1:
|
||||
# The number of groups is 1 when groupsize == -1. share
|
||||
# scales between all shards in this case.
|
||||
s = weights.get_tensor(f"{prefix}.s")
|
||||
else:
|
||||
s = weights.get_sharded(f"{prefix}.s", dim=0)
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
return weight
|
||||
|
||||
|
||||
def can_use_gptq_marlin(
|
||||
*, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
|
||||
) -> bool:
|
||||
return (
|
||||
SYSTEM == "cuda"
|
||||
and marlin_kernels is not None
|
||||
and has_sm_8_0
|
||||
and quantize == "gptq"
|
||||
and gptq_params.quant_method == "gptq"
|
||||
and gptq_params.bits in GPTQ_MARLIN_BITS
|
||||
and gptq_params.groupsize in GPTQ_MARLIN_GROUP_SIZES
|
||||
and gptq_params.sym
|
||||
and quant_method == "gptq"
|
||||
and bits in GPTQ_MARLIN_BITS
|
||||
and groupsize in GPTQ_MARLIN_GROUP_SIZES
|
||||
and sym
|
||||
)
|
||||
|
||||
|
||||
@ -83,7 +228,7 @@ def permute_scales(scales: torch.Tensor):
|
||||
|
||||
|
||||
@dataclass
|
||||
class GPTQMarlinWeight:
|
||||
class GPTQMarlinWeight(Weight):
|
||||
"""
|
||||
Repacked GPTQ Marlin weights.
|
||||
"""
|
||||
@ -101,6 +246,12 @@ class GPTQMarlinWeight:
|
||||
assert self.g_idx.dtype == torch.int32
|
||||
assert self.perm.dtype == torch.int32
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return GPTQMarlinLinear(
|
||||
weight=self,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
|
||||
def repack_gptq_for_marlin(
|
||||
*,
|
||||
@ -258,6 +409,12 @@ class GPTQMarlin24Weight:
|
||||
assert self.B_meta.dtype == torch.int16
|
||||
assert self.s.dtype == torch.float16
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return GPTQMarlin24Linear(
|
||||
weight=self,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
|
||||
class GPTQMarlin24Linear(nn.Module):
|
||||
def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
|
||||
@ -339,8 +496,126 @@ class GPTQMarlin24Linear(nn.Module):
|
||||
return C
|
||||
|
||||
|
||||
class GPTQMarlinFP8Linear(nn.Module):
|
||||
"""
|
||||
FP8 GPTQ-Marlin linear layer.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
qweight: torch.Tensor,
|
||||
scale: torch.Tensor,
|
||||
bias: Optional[torch.Tensor],
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
_check_marlin_kernels()
|
||||
assert marlin_kernels is not None
|
||||
|
||||
log_once(logger.info, "GPU does not support FP8, using Marlin FP8 kernel")
|
||||
|
||||
scale = scale.to(torch.float16)
|
||||
qweight, scales = repack_fp8_for_marlin(qweight, scale)
|
||||
|
||||
in_features = qweight.shape[0] * MARLIN_TILE_SIZE
|
||||
out_features = scales.shape[1]
|
||||
_check_valid_shape(in_features=in_features, out_features=out_features)
|
||||
|
||||
self.qweight = qweight
|
||||
self.scales = scales
|
||||
self.bias = bias if bias is not None else None
|
||||
|
||||
self.workspace = torch.zeros(
|
||||
out_features // 64 * 16, dtype=torch.int, device=qweight.device
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_unquant(cls, weight, bias, _dtype):
|
||||
qweight, scale = fp8_quantize(weight)
|
||||
return cls(qweight=qweight, scale=scale, bias=bias)
|
||||
|
||||
@classmethod
|
||||
def from_fp8(cls, weight, scale, _input_scale, bias, _dtype):
|
||||
return cls(qweight=weight, scale=scale, bias=bias)
|
||||
|
||||
def forward(self, A: torch.Tensor) -> torch.Tensor:
|
||||
assert marlin_kernels is not None
|
||||
|
||||
A_flat = A.view(-1, A.shape[-1])
|
||||
C = marlin_kernels.fp8_marlin_gemm(
|
||||
A_flat,
|
||||
self.qweight,
|
||||
self.scales,
|
||||
self.workspace,
|
||||
8,
|
||||
A_flat.shape[0],
|
||||
self.scales.shape[1],
|
||||
A_flat.shape[1],
|
||||
)
|
||||
C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))
|
||||
|
||||
if self.bias is not None:
|
||||
C += self.bias
|
||||
|
||||
return C
|
||||
|
||||
|
||||
def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
Repack FP8 weights to gptq format (packed int32 elements).
|
||||
"""
|
||||
assert fp8_tensor.dtype == torch.float8_e4m3fn
|
||||
|
||||
if fp8_tensor.shape[0] % 4 != 0:
|
||||
raise ValueError(
|
||||
f"Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}"
|
||||
)
|
||||
|
||||
# Reshape to prepare for packing
|
||||
reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:])
|
||||
|
||||
# Convert fp8 to uint8 (byte) representation
|
||||
byte_tensor = reshaped.view(torch.uint8)
|
||||
|
||||
# Pack 4 uint8 values into one int32
|
||||
packed = torch.zeros(
|
||||
fp8_tensor.shape[0] // 4,
|
||||
fp8_tensor.shape[1],
|
||||
dtype=torch.int32,
|
||||
device=fp8_tensor.device,
|
||||
)
|
||||
|
||||
for i in range(4):
|
||||
packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8)
|
||||
|
||||
return packed
|
||||
|
||||
|
||||
def repack_fp8_for_marlin(weight: torch.Tensor, scale: torch.Tensor):
|
||||
"""
|
||||
Repack FP8 tensor for GPTQ-Marlin.
|
||||
"""
|
||||
|
||||
out_features, in_features = weight.shape
|
||||
|
||||
# Torch linear layers weights with shape [out_features, in_features],
|
||||
# GPTQ-quantized weights use [in_feateres/pack_factor, in_features],
|
||||
# so transpose before packing.
|
||||
qweight = pack_fp8_as_int32(weight.t())
|
||||
|
||||
perm = torch.empty(0, dtype=torch.int, device=qweight.device)
|
||||
repacked = marlin_kernels.gptq_marlin_repack(
|
||||
qweight, perm, in_features, out_features, 8
|
||||
)
|
||||
|
||||
scales = scale.reshape(1, 1).repeat(1, out_features)
|
||||
scales = permute_scales(scales)
|
||||
|
||||
return repacked, scales
|
||||
|
||||
|
||||
@dataclass
|
||||
class MarlinWeight:
|
||||
class MarlinWeight(Weight):
|
||||
"""
|
||||
Marlin weights.
|
||||
|
||||
@ -356,6 +631,9 @@ class MarlinWeight:
|
||||
assert self.B.dtype == torch.int32
|
||||
assert self.s.dtype == torch.float16
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
return MarlinLinear(weight=self, bias=bias)
|
||||
|
||||
|
||||
class MarlinLinear(nn.Module):
|
||||
def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import torch
|
||||
from torch import nn
|
||||
from loguru import logger
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
||||
@ -97,18 +98,22 @@ class PositionRotaryEmbedding(nn.Module):
|
||||
)
|
||||
elif rope_scaling["type"] == "yarn":
|
||||
scaling_factor = rope_scaling["factor"]
|
||||
mscale = rope_scaling.get("mscale", 1.0)
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", 0.0)
|
||||
return YarnPositionRotaryEmbedding(
|
||||
dim=2 * inv_freq.shape[0],
|
||||
max_position_embeddings=rope_scaling[
|
||||
"original_max_position_embeddings"
|
||||
],
|
||||
base=10000.0,
|
||||
base=base,
|
||||
device=inv_freq.device,
|
||||
scaling_factor=scaling_factor,
|
||||
extrapolation_factor=1,
|
||||
attn_factor=1,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=mscale,
|
||||
mscale_all_dim=mscale_all_dim,
|
||||
)
|
||||
elif rope_scaling["type"] in ["su", "longrope"]:
|
||||
short_factor = torch.tensor(
|
||||
@ -181,6 +186,8 @@ class PositionRotaryEmbedding(nn.Module):
|
||||
scaling_factor=scaling_factor,
|
||||
)
|
||||
elif rope_scaling["type"] == "yarn":
|
||||
mscale = rope_scaling.get("mscale", 1.0)
|
||||
mscale_all_dim = rope_scaling.get("mscale_all_dim", 0.0)
|
||||
return YarnPositionRotaryEmbedding(
|
||||
dim=2 * inv_freq.shape[0],
|
||||
max_position_embeddings=rope_scaling[
|
||||
@ -193,6 +200,8 @@ class PositionRotaryEmbedding(nn.Module):
|
||||
attn_factor=1,
|
||||
beta_fast=32,
|
||||
beta_slow=1,
|
||||
mscale=mscale,
|
||||
mscale_all_dim=mscale_all_dim,
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
@ -346,10 +355,10 @@ def linear_ramp_mask(min, max, dim):
|
||||
return ramp_func
|
||||
|
||||
|
||||
def get_mscale(scale=1):
|
||||
def get_mscale(scale: float = 1.0, mscale: float = 1.0):
|
||||
if scale <= 1:
|
||||
return 1.0
|
||||
return 0.1 * math.log(scale) + 1.0
|
||||
return 0.1 * mscale * math.log(scale) + 1.0
|
||||
|
||||
|
||||
class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
@ -365,6 +374,8 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
attn_factor,
|
||||
beta_fast,
|
||||
beta_slow,
|
||||
mscale: float,
|
||||
mscale_all_dim: float,
|
||||
):
|
||||
inv_freq = _create_inv_freq(dim, base, device)
|
||||
super().__init__(inv_freq, scaling_factor)
|
||||
@ -375,8 +386,12 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
self.attn_factor = attn_factor
|
||||
self.beta_fast = beta_fast
|
||||
self.beta_slow = beta_slow
|
||||
self.mscale_all_dim = mscale_all_dim
|
||||
self.scaling_factor = scaling_factor
|
||||
self.mscale = float(
|
||||
get_mscale(self.scaling_factor) * self.attn_factor
|
||||
get_mscale(self.scaling_factor, mscale)
|
||||
/ get_mscale(self.scaling_factor, mscale_all_dim)
|
||||
* self.attn_factor
|
||||
) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
@ -387,7 +402,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
if seqlen > self.max_position_embeddings:
|
||||
if seqlen > self.max_position_embeddings or True:
|
||||
inv_freq_extrapolation = _create_inv_freq(
|
||||
self.dim, self.base, self.inv_freq.device
|
||||
)
|
||||
@ -400,6 +415,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
self.base,
|
||||
self.max_position_embeddings,
|
||||
)
|
||||
|
||||
inv_freq_mask = (
|
||||
1 - linear_ramp_mask(low, high, self.dim // 2).float().to(device)
|
||||
) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
||||
@ -409,9 +425,6 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
)
|
||||
|
||||
self.inv_freq = inv_freq
|
||||
self.mscale = float(
|
||||
get_mscale(self.scaling_factor) * self.attn_factor
|
||||
) # Get n-d magnitude scaling corrected for interpolation
|
||||
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
|
@ -52,7 +52,7 @@ class TensorParallelHead(SuperLayer):
|
||||
weight = weights.get_tensor(f"{prefix}.weight")
|
||||
except:
|
||||
# ...otherwise they are quantized.
|
||||
weight = weights.get_weights_col(prefix, config.quantize)
|
||||
weight = weights.get_weights_col(prefix)
|
||||
should_gather = weights.process_group.size() > 1
|
||||
elif weights.process_group.size() > 1:
|
||||
try:
|
||||
@ -77,7 +77,7 @@ class TensorParallelHead(SuperLayer):
|
||||
quantize = config.quantize
|
||||
|
||||
return TensorParallelHead(
|
||||
get_linear(weight, bias=None, quantize=quantize),
|
||||
get_linear(weight, bias=None),
|
||||
process_group=weights.process_group,
|
||||
should_gather=should_gather,
|
||||
)
|
||||
@ -129,14 +129,12 @@ class TensorParallelColumnLinear(SuperLayer):
|
||||
@classmethod
|
||||
def load_gate_up(cls, config, prefix: str, weights, bias: bool):
|
||||
"""Specific method when the QKV was joined after the fact"""
|
||||
weight = weights.get_weights_col_packed_gate_up(
|
||||
prefix, quantize=config.quantize
|
||||
)
|
||||
weight = weights.get_weights_col_packed_gate_up(prefix)
|
||||
if bias:
|
||||
raise NotImplementedError("packed_gate_up only implemented without bias")
|
||||
else:
|
||||
bias = None
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
return cls(linear)
|
||||
|
||||
@classmethod
|
||||
@ -152,7 +150,6 @@ class TensorParallelColumnLinear(SuperLayer):
|
||||
"""Specific method when the QKV was joined after the fact"""
|
||||
weight = weights.get_weights_col_packed_qkv(
|
||||
prefix,
|
||||
quantize=config.quantize,
|
||||
num_heads=num_heads,
|
||||
num_key_value_heads=num_key_value_heads,
|
||||
)
|
||||
@ -160,17 +157,17 @@ class TensorParallelColumnLinear(SuperLayer):
|
||||
raise NotImplementedError("packed_qkv only implemented for baichuan")
|
||||
else:
|
||||
bias = None
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
return cls(linear)
|
||||
|
||||
@classmethod
|
||||
def load(cls, config, prefix: str, weights, bias: bool):
|
||||
weight = weights.get_weights_col(prefix, config.quantize)
|
||||
weight = weights.get_weights_col(prefix)
|
||||
if bias:
|
||||
bias = weights.get_sharded(f"{prefix}.bias", dim=0)
|
||||
else:
|
||||
bias = None
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
return cls(linear)
|
||||
|
||||
@classmethod
|
||||
@ -178,20 +175,18 @@ class TensorParallelColumnLinear(SuperLayer):
|
||||
if config.quantize == "exl2":
|
||||
linears = []
|
||||
for prefix in prefixes:
|
||||
weight = weights.get_weights_col(prefix, config.quantize)
|
||||
weight = weights.get_weights_col(prefix)
|
||||
b = weights.get_tensor(f"{prefix}.bias") if bias else None
|
||||
linears.append(get_linear(weight, b, config.quantize))
|
||||
linears.append(get_linear(weight, b))
|
||||
linear = LayerConcat(linears)
|
||||
else:
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes, quantize=config.quantize, dim=dim
|
||||
)
|
||||
weight = weights.get_multi_weights_col(prefixes, dim=dim)
|
||||
if bias:
|
||||
b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
|
||||
bias = torch.cat(b, dim=dim)
|
||||
else:
|
||||
bias = None
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
return cls(linear)
|
||||
|
||||
|
||||
@ -202,7 +197,7 @@ class TensorParallelRowLinear(SuperLayer):
|
||||
|
||||
@classmethod
|
||||
def load(cls, config, prefix: str, weights, bias: bool):
|
||||
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||||
weight = weights.get_weights_row(prefix)
|
||||
|
||||
if bias and weights.process_group.rank() == 0:
|
||||
# Rank is only on the first rank process
|
||||
@ -210,7 +205,7 @@ class TensorParallelRowLinear(SuperLayer):
|
||||
else:
|
||||
bias = None
|
||||
return cls(
|
||||
get_linear(weight, bias, config.quantize),
|
||||
get_linear(weight, bias),
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
|
@ -34,6 +34,7 @@ from text_generation_server.models.custom_modeling.t5_modeling import (
|
||||
)
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
@ -47,9 +48,7 @@ torch.set_grad_enabled(False)
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
"BLOOMSharded",
|
||||
"CausalLM",
|
||||
"GalacticaSharded",
|
||||
"Seq2SeqLM",
|
||||
"get_model",
|
||||
]
|
||||
@ -61,6 +60,10 @@ FLASH_ATTENTION = True
|
||||
try:
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_deepseek_v2_modeling import (
|
||||
FlashDeepseekV2ForCausalLM,
|
||||
DeepseekV2Config,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
@ -121,7 +124,7 @@ try:
|
||||
)
|
||||
from text_generation_server.layers.attention import SUPPORTS_WINDOWING
|
||||
except ImportError as e:
|
||||
logger.warning(f"Could not import Flash Attention enabled models: {e}")
|
||||
log_master(logger.warning, f"Could not import Flash Attention enabled models: {e}")
|
||||
SUPPORTS_WINDOWING = False
|
||||
FLASH_ATTENTION = False
|
||||
|
||||
@ -133,7 +136,7 @@ MAMBA_AVAILABLE = True
|
||||
try:
|
||||
from text_generation_server.models.mamba import Mamba
|
||||
except ImportError as e:
|
||||
logger.warning(f"Could not import Mamba: {e}")
|
||||
log_master(logger.warning, f"Could not import Mamba: {e}")
|
||||
MAMBA_AVAILABLE = False
|
||||
|
||||
if MAMBA_AVAILABLE:
|
||||
@ -141,6 +144,11 @@ if MAMBA_AVAILABLE:
|
||||
|
||||
|
||||
class ModelType(enum.Enum):
|
||||
DEEPSEEK_V2 = {
|
||||
"type": "deepseek_v2",
|
||||
"name": "Deepseek V2",
|
||||
"url": "https://huggingface.co/deepseek-ai/DeepSeek-V2",
|
||||
}
|
||||
IDEFICS2 = {
|
||||
"type": "idefics2",
|
||||
"name": "Idefics 2",
|
||||
@ -302,6 +310,12 @@ def get_model(
|
||||
if quantize in ["awq", "exl2", "gptq", "marlin"]:
|
||||
# These quantizers only work with float16 params.
|
||||
dtype = torch.float16
|
||||
elif quantize == "fp8":
|
||||
from text_generation_server.layers.fp8 import FBGEMM_MM_AVAILABLE
|
||||
|
||||
if FBGEMM_MM_AVAILABLE:
|
||||
# fbgemm kernels are fp8xfp8->bf16
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
# Keep it as default for now and let
|
||||
# every model resolve their own default dtype.
|
||||
@ -424,7 +438,9 @@ def get_model(
|
||||
|
||||
speculate = get_speculate()
|
||||
if speculate > 0:
|
||||
logger.info(f"Using speculation {method} with {speculate} input ids.")
|
||||
log_master(
|
||||
logger.info, f"Using speculation {method} with {speculate} input ids."
|
||||
)
|
||||
|
||||
if model_type is None:
|
||||
# TODO: fix how we determine model type for Mamba
|
||||
@ -439,10 +455,10 @@ def get_model(
|
||||
if quantization_config is not None and quantize is None:
|
||||
method = quantization_config.get("quant_method", None)
|
||||
if method in {"gptq", "awq", "exl2"}:
|
||||
logger.info(f"Auto selecting quantization method {method}")
|
||||
log_master(logger.info, f"Auto selecting quantization method {method}")
|
||||
quantize = method
|
||||
else:
|
||||
logger.info(f"Unknown quantization method {method}")
|
||||
log_master(logger.warning, f"Unknown quantization method {method}")
|
||||
|
||||
if quantize == "exl2" and sharded:
|
||||
raise RuntimeError(
|
||||
@ -459,7 +475,40 @@ def get_model(
|
||||
f"The backend {SYSTEM} does not support sliding window attention that is used by the model type {model_type}. To use this model nonetheless with the {SYSTEM} backend, please launch TGI with the argument `--max-input-tokens` smaller than sliding_window={sliding_window} (got here max_input_tokens={max_input_tokens})."
|
||||
)
|
||||
|
||||
if model_type == MAMBA:
|
||||
if model_type == DEEPSEEK_V2:
|
||||
if FLASH_ATTENTION:
|
||||
head_size = max(
|
||||
config_dict.get("qk_nope_dim", 128)
|
||||
+ config_dict.get("qk_rope_dim", 64),
|
||||
config_dict.get("v_head_dim", 128),
|
||||
)
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=FlashDeepseekV2ForCausalLM,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
default_dtype=torch.bfloat16,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
config_class=DeepseekV2Config,
|
||||
head_size=head_size,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(
|
||||
FLASH_ATT_ERROR_MESSAGE.format("Sharded Deepseek V2")
|
||||
)
|
||||
else:
|
||||
return CausalLM.fallback(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif model_type == MAMBA:
|
||||
return Mamba(
|
||||
model_id,
|
||||
revision,
|
||||
@ -551,7 +600,7 @@ def get_model(
|
||||
)
|
||||
except RuntimeError as e:
|
||||
# Lots of legacy models with various weight names.
|
||||
logger.warning(f"Couldn't load flash gpt2 variant: {e}")
|
||||
log_master(logger.warning, f"Couldn't load flash gpt2 variant: {e}")
|
||||
return CausalLM.fallback(
|
||||
model_id,
|
||||
revision,
|
||||
@ -573,6 +622,10 @@ def get_model(
|
||||
)
|
||||
elif model_type == GPT_NEOX:
|
||||
if FLASH_ATTENTION:
|
||||
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
|
||||
GPTNeoXConfig,
|
||||
)
|
||||
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=FlashGPTNeoXForCausalLM,
|
||||
@ -582,6 +635,7 @@ def get_model(
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
config_class=GPTNeoXConfig,
|
||||
)
|
||||
elif sharded:
|
||||
return CausalLM(
|
||||
@ -797,6 +851,10 @@ def get_model(
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
aliases={
|
||||
"lm_head.weight": ["transformer.word_embeddings.weight"],
|
||||
"transformer.word_embeddings.weight": ["lm_head.weight"],
|
||||
},
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
config_class=RWConfig,
|
||||
|
@ -20,6 +20,7 @@ from text_generation_server.utils import (
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.quantization import get_loader
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
@ -491,7 +492,7 @@ class CausalLMBatch(Batch):
|
||||
|
||||
|
||||
@dataclass
|
||||
class CausalLMBatchKeysLast(Batch):
|
||||
class CausalLMBatchKeysLast(CausalLMBatch):
|
||||
keys_head_dim_last: bool = False
|
||||
|
||||
|
||||
@ -543,15 +544,25 @@ class CausalLM(Model):
|
||||
config.quantize = quantize
|
||||
config.speculator = speculator
|
||||
if tokenizer.pad_token_id is None:
|
||||
if config.pad_token_id is not None:
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
elif config.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = config.eos_token_id
|
||||
elif tokenizer.eos_token_id is not None:
|
||||
tokenizer.pad_token_id = tokenizer.eos_token_id
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
weights_loader = get_loader(
|
||||
quantize=quantize, model_id=model_id, revision=revision
|
||||
)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(
|
||||
filenames, device=device, dtype=dtype, process_group=self.process_group
|
||||
filenames,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
process_group=self.process_group,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
if config.quantize in ["awq", "exl2", "gptq", "marlin"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
prefix = ""
|
||||
model = model_class(prefix, config, weights)
|
||||
|
@ -163,7 +163,6 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -187,9 +186,7 @@ def _load_gqa(config, prefix: str, weights):
|
||||
else:
|
||||
bias = None
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=bias, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=bias))
|
||||
|
||||
|
||||
class FlashCohereAttention(torch.nn.Module):
|
||||
@ -260,8 +257,8 @@ class FlashCohereAttention(torch.nn.Module):
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
|
@ -105,6 +105,12 @@ class DbrxFFNConfig(PretrainedConfig):
|
||||
|
||||
|
||||
class DbrxConfig(PretrainedConfig):
|
||||
attribute_map = {
|
||||
"hidden_size": "d_model",
|
||||
"num_attention_heads": "n_heads",
|
||||
"num_hidden_layers": "n_layers",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int = 2048,
|
||||
@ -157,6 +163,12 @@ class DbrxConfig(PretrainedConfig):
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def num_key_value_heads(self):
|
||||
# We can't use the attribute map, since this the number of KV
|
||||
# heads is not top-level.
|
||||
return self.attn_config.kv_n_heads
|
||||
|
||||
|
||||
def promote_scalar(x: torch.Tensor) -> torch.Tensor:
|
||||
return x.view(1) if len(x.size()) == 0 else x
|
||||
@ -235,10 +247,10 @@ def _load_experts_quantized(config, prefix, weights, cls):
|
||||
|
||||
if cls == TensorParallelRowLinear:
|
||||
expert_slice = expert_slice.t().contiguous()
|
||||
linear = get_linear(expert_slice, None, config.quantize)
|
||||
linear = get_linear(expert_slice, None)
|
||||
experts.append(cls(linear, weights.process_group))
|
||||
else:
|
||||
linear = get_linear(expert_slice, None, config.quantize)
|
||||
linear = get_linear(expert_slice, None)
|
||||
experts.append(cls(linear))
|
||||
|
||||
return experts
|
||||
|
@ -0,0 +1,980 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2023, 2024 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import Any, Dict, List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
import torch.distributed
|
||||
from text_generation_server.layers import (
|
||||
FastLinear,
|
||||
SpeculativeHead,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
paged_attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.layers.attention.common import Seqlen
|
||||
from text_generation_server.layers.layernorm import FastRMSNorm
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.utils.weights import Weights
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
|
||||
|
||||
class DeepseekV2Config(PretrainedConfig):
|
||||
def __init__(
|
||||
self,
|
||||
vocab_size=102400,
|
||||
hidden_size=4096,
|
||||
intermediate_size=11008,
|
||||
moe_intermediate_size=1407,
|
||||
num_hidden_layers=30,
|
||||
num_attention_heads=32,
|
||||
num_key_value_heads=32,
|
||||
n_shared_experts=2,
|
||||
n_routed_experts=160,
|
||||
ep_size=1,
|
||||
routed_scaling_factor=1.0,
|
||||
kv_lora_rank=512,
|
||||
q_lora_rank=1536,
|
||||
qk_rope_head_dim=64,
|
||||
v_head_dim=128,
|
||||
qk_nope_head_dim=128,
|
||||
topk_method="gready",
|
||||
n_group=8,
|
||||
topk_group=3,
|
||||
num_experts_per_tok=6,
|
||||
moe_layer_freq=1,
|
||||
first_k_dense_replace=0,
|
||||
norm_topk_prob=False,
|
||||
scoring_func="softmax",
|
||||
aux_loss_alpha=0.001,
|
||||
seq_aux=True,
|
||||
hidden_act="silu",
|
||||
max_position_embeddings=2048,
|
||||
initializer_range=0.02,
|
||||
rms_norm_eps=1e-6,
|
||||
use_cache=True,
|
||||
pad_token_id=None,
|
||||
bos_token_id=100000,
|
||||
eos_token_id=100001,
|
||||
pretraining_tp=1,
|
||||
tie_word_embeddings=False,
|
||||
rope_theta=10000.0,
|
||||
rope_scaling=None,
|
||||
attention_bias=False,
|
||||
attention_dropout=0.0,
|
||||
**kwargs,
|
||||
):
|
||||
self.vocab_size = vocab_size
|
||||
self.max_position_embeddings = max_position_embeddings
|
||||
self.hidden_size = hidden_size
|
||||
self.intermediate_size = intermediate_size
|
||||
self.moe_intermediate_size = moe_intermediate_size
|
||||
self.num_hidden_layers = num_hidden_layers
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.n_shared_experts = n_shared_experts
|
||||
self.n_routed_experts = n_routed_experts
|
||||
self.ep_size = ep_size
|
||||
self.routed_scaling_factor = routed_scaling_factor
|
||||
self.kv_lora_rank = kv_lora_rank
|
||||
self.q_lora_rank = q_lora_rank
|
||||
self.qk_rope_head_dim = qk_rope_head_dim
|
||||
self.v_head_dim = v_head_dim
|
||||
self.qk_nope_head_dim = qk_nope_head_dim
|
||||
self.topk_method = topk_method
|
||||
self.n_group = n_group
|
||||
self.topk_group = topk_group
|
||||
self.num_experts_per_tok = num_experts_per_tok
|
||||
self.moe_layer_freq = moe_layer_freq
|
||||
self.first_k_dense_replace = first_k_dense_replace
|
||||
self.norm_topk_prob = norm_topk_prob
|
||||
self.scoring_func = scoring_func
|
||||
self.aux_loss_alpha = aux_loss_alpha
|
||||
self.seq_aux = seq_aux
|
||||
# for backward compatibility
|
||||
if num_key_value_heads is None:
|
||||
num_key_value_heads = num_attention_heads
|
||||
|
||||
self.num_key_value_heads = num_key_value_heads
|
||||
self.hidden_act = hidden_act
|
||||
self.initializer_range = initializer_range
|
||||
self.rms_norm_eps = rms_norm_eps
|
||||
self.pretraining_tp = pretraining_tp
|
||||
self.use_cache = use_cache
|
||||
self.rope_theta = rope_theta
|
||||
self.rope_scaling = rope_scaling
|
||||
self.attention_bias = attention_bias
|
||||
self.attention_dropout = attention_dropout
|
||||
|
||||
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
|
||||
if tie_word_embeddings:
|
||||
raise ValueError(
|
||||
"tie_word_embeddings is not supported for Deepseek V2 models."
|
||||
)
|
||||
|
||||
if ep_size != 1:
|
||||
raise ValueError(
|
||||
f"Currently only ep_size == 1 is supported for Deepseek V2 models, was {ep_size}"
|
||||
)
|
||||
|
||||
super().__init__(
|
||||
pad_token_id=pad_token_id,
|
||||
bos_token_id=bos_token_id,
|
||||
eos_token_id=eos_token_id,
|
||||
tie_word_embeddings=tie_word_embeddings,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
|
||||
def _load_experts(config, prefix: str, mat: str, weights: Weights):
|
||||
if config.quantize is not None:
|
||||
raise NotImplementedError(
|
||||
"Deepseek V2 does not support weight quantization yet."
|
||||
)
|
||||
|
||||
assert mat in ["gate_proj", "up_proj", "down_proj"]
|
||||
|
||||
world_size = weights.process_group.size()
|
||||
rank = weights.process_group.rank()
|
||||
|
||||
assert (
|
||||
config.moe_intermediate_size % world_size == 0
|
||||
), f"The chosen size {config.moe_intermediate_size} is not compatible with sharding on {world_size} shards"
|
||||
|
||||
block_size = config.moe_intermediate_size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
|
||||
tensor = torch.empty(
|
||||
(config.n_routed_experts * block_size, config.hidden_size),
|
||||
dtype=weights.dtype,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
for i in range(config.n_routed_experts):
|
||||
slice_ = weights._get_slice(f"{prefix}.{i}.{mat}.weight")
|
||||
|
||||
if mat == "down_proj":
|
||||
expert_slice = slice_[:, start:stop].t().contiguous()
|
||||
else:
|
||||
expert_slice = slice_[start:stop]
|
||||
tensor[i * block_size : (i + 1) * block_size] = expert_slice.to(
|
||||
dtype=weights.dtype
|
||||
).to(device=weights.device)
|
||||
return tensor
|
||||
|
||||
|
||||
class DeepseekV2Attention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
prefix: str,
|
||||
config,
|
||||
weights: Weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.kv_lora_rank = config.kv_lora_rank
|
||||
self.q_lora_rank = config.q_lora_rank
|
||||
self.qk_nope_head_dim = config.qk_nope_head_dim
|
||||
self.qk_rope_head_dim = config.qk_rope_head_dim
|
||||
self.head_size = config.qk_nope_head_dim + config.qk_rope_head_dim
|
||||
self.value_head_size = config.v_head_dim
|
||||
self.head_pad_size = max(self.head_size, self.value_head_size)
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.qk_rope_head_dim,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
mscale = get_mscale(
|
||||
self.rotary_emb.scaling_factor, self.rotary_emb.mscale_all_dim
|
||||
)
|
||||
self.softmax_scale = self.head_size**-0.5 * mscale * mscale
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
if self.q_lora_rank is None:
|
||||
self.q_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.q_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
else:
|
||||
self.q_a_proj = get_linear(
|
||||
weight=weights.get_weights(f"{prefix}.q_a_proj"),
|
||||
bias=(
|
||||
weights.get_tensor(f"{prefix}.q_a_proj.bias")
|
||||
if config.attention_bias
|
||||
else None
|
||||
),
|
||||
)
|
||||
self.q_a_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.q_a_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.q_b_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.q_b_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
self.kv_a_proj_with_mqa = get_linear(
|
||||
weight=weights.get_weights(f"{prefix}.kv_a_proj_with_mqa"),
|
||||
bias=(
|
||||
weights.get_tensor(f"{prefix}.kv_a_proj_with_mqa.bias")
|
||||
if config.attention_bias
|
||||
else None
|
||||
),
|
||||
)
|
||||
|
||||
self.kv_a_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.kv_a_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.kv_b_proj = TensorParallelColumnLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.kv_b_proj",
|
||||
weights=weights,
|
||||
bias=config.attention_bias,
|
||||
)
|
||||
|
||||
self.o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache: Tuple[torch.Tensor, torch.Tensor],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: Seqlen,
|
||||
max_s: int,
|
||||
):
|
||||
if self.q_lora_rank is None:
|
||||
query = self.q_proj(hidden_states)
|
||||
else:
|
||||
query = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))[0])
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
|
||||
_, query_pe = torch.split(
|
||||
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
|
||||
)
|
||||
|
||||
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
||||
compressed_kv, key_pe = torch.split(
|
||||
compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
|
||||
)
|
||||
|
||||
key_pe = key_pe.view(-1, 1, self.qk_rope_head_dim)
|
||||
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv.contiguous())[0]).view(
|
||||
-1, self.num_key_value_heads, self.qk_nope_head_dim + self.value_head_size
|
||||
)
|
||||
|
||||
key_nope, value = torch.split(
|
||||
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
|
||||
)
|
||||
|
||||
batch_size, heads, head_dim = query_pe.shape
|
||||
query_pe = (
|
||||
query_pe.view(batch_size, heads, head_dim // 2, 2)
|
||||
.transpose(2, 3)
|
||||
.reshape(batch_size, heads, head_dim)
|
||||
)
|
||||
batch_size, heads, head_dim = key_pe.shape
|
||||
key_pe = (
|
||||
key_pe.view(batch_size, heads, head_dim // 2, 2)
|
||||
.transpose(2, 3)
|
||||
.reshape(batch_size, heads, head_dim)
|
||||
)
|
||||
self.rotary_emb(query_pe, key_pe, cos, sin)
|
||||
|
||||
query[..., self.qk_nope_head_dim :] = query_pe
|
||||
key = torch.empty_like(query)
|
||||
key[..., : self.qk_nope_head_dim] = key_nope
|
||||
key[..., self.qk_nope_head_dim :] = key_pe
|
||||
|
||||
# We need to pad the heads because Flash Attention does not support
|
||||
# qk and v with different head sizes.
|
||||
query = torch.nn.functional.pad(
|
||||
query, (0, self.head_pad_size - self.head_size), value=0
|
||||
)
|
||||
key = torch.nn.functional.pad(
|
||||
key, (0, self.head_pad_size - self.head_size), value=0
|
||||
)
|
||||
value = torch.nn.functional.pad(
|
||||
value, (0, self.head_pad_size - self.value_head_size), value=0
|
||||
)
|
||||
|
||||
reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
|
||||
|
||||
# Output tensor
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
attn_output,
|
||||
cu_seqlen_prefill,
|
||||
max_s,
|
||||
self.softmax_scale,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
paged_attention(
|
||||
attn_output,
|
||||
query,
|
||||
kv_cache[0],
|
||||
kv_cache[1],
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# Remove padding.
|
||||
attn_output = attn_output[..., : self.value_head_size]
|
||||
|
||||
return self.o_proj(
|
||||
attn_output.reshape(-1, self.num_heads * self.value_head_size)
|
||||
)
|
||||
|
||||
|
||||
class DeepseekV2MLP(nn.Module):
|
||||
def __init__(self, prefix: str, config, weights, intermediate_size: int):
|
||||
super().__init__()
|
||||
self.hidden_act = config.hidden_act
|
||||
if self.hidden_act != "silu":
|
||||
# Bail out because MoE only supports silu.
|
||||
raise NotImplementedError(
|
||||
"Currently only `silu` is supported as an activation for Deepseek V2."
|
||||
)
|
||||
self.act = ACT2FN[self.hidden_act]
|
||||
|
||||
self.gate_up_proj = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.gate_proj", f"{prefix}.up_proj"],
|
||||
weights=weights,
|
||||
dim=0,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.down_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.down_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
|
||||
self.intermediate_size = intermediate_size // weights.process_group.size()
|
||||
|
||||
# TODO: This is a hotfix to be removed & properly refactored.
|
||||
self.quantize = config.quantize
|
||||
|
||||
def forward(self, hidden_states: torch.Tensor, reduce: bool = True):
|
||||
if (
|
||||
SYSTEM == "rocm"
|
||||
and self.hidden_act == "silu"
|
||||
and hidden_states.shape[0] == 1
|
||||
and not self.quantize
|
||||
):
|
||||
out = torch.empty(
|
||||
hidden_states.shape[0],
|
||||
self.intermediate_size,
|
||||
dtype=hidden_states.dtype,
|
||||
device="cuda",
|
||||
)
|
||||
_custom_C.LLMM_Silu(self.gate_up_proj.linear.weight, hidden_states, out, 8)
|
||||
return self.down_proj(out, reduce=reduce)
|
||||
else:
|
||||
gate_up_states = self.gate_up_proj(hidden_states)
|
||||
gate_up_states = gate_up_states.view(-1, 2, self.intermediate_size)
|
||||
return self.down_proj(
|
||||
self.act(gate_up_states[:, 0]) * gate_up_states[:, 1], reduce=reduce
|
||||
)
|
||||
|
||||
|
||||
class BlockSparseMoE(nn.Module):
|
||||
def __init__(self, prefix, config: DeepseekV2Config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_dim = config.hidden_size
|
||||
self.moe_intermediate_size = (
|
||||
config.moe_intermediate_size // weights.process_group.size()
|
||||
)
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.n_expert_group = config.n_group
|
||||
self.topk_group = config.topk_group
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.norm_topk_prob = config.norm_topk_prob
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
|
||||
gate_proj = _load_experts(
|
||||
config, f"{prefix}.experts", "gate_proj", weights
|
||||
).view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim)
|
||||
|
||||
up_proj = _load_experts(config, f"{prefix}.experts", "up_proj", weights).view(
|
||||
self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim
|
||||
)
|
||||
|
||||
self.gate_up_proj = torch.cat([gate_proj, up_proj], dim=1)
|
||||
|
||||
self.down_proj = (
|
||||
_load_experts(config, f"{prefix}.experts", "down_proj", weights)
|
||||
.view(self.n_routed_experts, self.moe_intermediate_size, self.hidden_dim)
|
||||
.transpose(1, 2)
|
||||
.contiguous()
|
||||
)
|
||||
|
||||
# Gating
|
||||
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.moe_intermediate_size
|
||||
* config.n_shared_experts,
|
||||
)
|
||||
else:
|
||||
self.shared_experts = None
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
router_logits = self.gate(x)
|
||||
topk_weights, topk_ids = grouped_topk(
|
||||
x,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.norm_topk_prob,
|
||||
num_expert_group=self.n_expert_group,
|
||||
topk_group=self.topk_group,
|
||||
)
|
||||
out = (
|
||||
fused_experts(
|
||||
x,
|
||||
self.gate_up_proj,
|
||||
self.down_proj,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
inplace=True,
|
||||
)
|
||||
* self.routed_scaling_factor
|
||||
)
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out.view(*x.shape)
|
||||
|
||||
|
||||
class DenseMoE(nn.Module):
|
||||
def __init__(self, prefix: str, config: DeepseekV2Config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.hidden_dim = config.hidden_size
|
||||
self.moe_intermediate_size = config.moe_intermediate_size
|
||||
self.n_routed_experts = config.n_routed_experts
|
||||
self.n_expert_group = config.n_group
|
||||
self.topk_group = config.topk_group
|
||||
self.top_k = config.num_experts_per_tok
|
||||
self.norm_topk_prob = config.norm_topk_prob
|
||||
self.routed_scaling_factor = config.routed_scaling_factor
|
||||
|
||||
# Gating
|
||||
#
|
||||
# Seems like no one quantizes the gate.
|
||||
self.gate = FastLinear.load(config, f"{prefix}.gate", weights, bias=False)
|
||||
|
||||
self.experts = [
|
||||
DeepseekV2MLP(
|
||||
f"{prefix}.experts.{i}", config, weights, self.moe_intermediate_size
|
||||
)
|
||||
for i in range(self.n_routed_experts)
|
||||
]
|
||||
|
||||
if config.n_shared_experts is not None:
|
||||
self.shared_experts = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.shared_experts",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.moe_intermediate_size
|
||||
* config.n_shared_experts,
|
||||
)
|
||||
else:
|
||||
self.shared_experts = None
|
||||
|
||||
self.process_group = weights.process_group
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
x: (sequence_length, model_dim)
|
||||
gate_logits: (sequence_length, n_experts)
|
||||
"""
|
||||
# optional reshape
|
||||
input_shape = x.shape
|
||||
x = x.view(-1, input_shape[-1])
|
||||
|
||||
if self.shared_experts is not None:
|
||||
shared_output = self.shared_experts(x, reduce=False)
|
||||
else:
|
||||
shared_output = None
|
||||
|
||||
# gate_logits: (sequence_length, n_experts)
|
||||
router_logits = self.gate(x)
|
||||
|
||||
topk_weights, topk_ids = grouped_topk(
|
||||
x,
|
||||
router_logits,
|
||||
self.top_k,
|
||||
renormalize=self.norm_topk_prob,
|
||||
num_expert_group=self.n_expert_group,
|
||||
topk_group=self.topk_group,
|
||||
)
|
||||
|
||||
out = self.moe_infer_gpu(x, topk_ids, topk_weights) * self.routed_scaling_factor
|
||||
|
||||
if shared_output is not None:
|
||||
out = out + shared_output
|
||||
|
||||
# Reduce sum
|
||||
if self.process_group.size() > 1:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
def moe_infer_gpu(
|
||||
self, x: torch.Tensor, topk_ids: torch.Tensor, topk_weight: torch.Tensor
|
||||
):
|
||||
weights = torch.zeros(
|
||||
topk_ids.shape[0], len(self.experts), dtype=x.dtype, device=x.device
|
||||
)
|
||||
weights.scatter_(1, topk_ids, topk_weight)
|
||||
|
||||
out = x.new_zeros(x.shape[0], self.hidden_dim)
|
||||
for i, expert in enumerate(self.experts):
|
||||
# Add expert output to out with masking
|
||||
out += expert(x, reduce=False) * weights[:, i].view(-1, 1)
|
||||
return out
|
||||
|
||||
|
||||
class DeepseekV2Layer(nn.Module):
|
||||
def __init__(self, prefix, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"{prefix}.layers.{layer_id}"
|
||||
|
||||
self.self_attn = DeepseekV2Attention(
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
if (
|
||||
config.n_routed_experts is not None
|
||||
and layer_id >= config.first_k_dense_replace
|
||||
and layer_id % config.moe_layer_freq == 0
|
||||
):
|
||||
moe_cls = BlockSparseMoE if config.quantize is None else DenseMoE
|
||||
self.mlp = moe_cls(f"{prefix}.mlp", config, weights)
|
||||
else:
|
||||
self.mlp = DeepseekV2MLP(
|
||||
prefix=f"{prefix}.mlp",
|
||||
config=config,
|
||||
weights=weights,
|
||||
intermediate_size=config.intermediate_size,
|
||||
)
|
||||
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
residual: torch.Tensor,
|
||||
cos: torch.Tensor,
|
||||
sin: torch.Tensor,
|
||||
cu_seqlen_prefill: torch.Tensor,
|
||||
kv_cache,
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: Seqlen,
|
||||
max_s: int,
|
||||
):
|
||||
normed_hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
||||
|
||||
# Self Attention
|
||||
attn_output = self.self_attn(
|
||||
normed_hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# faster post attention rms norm
|
||||
normed_attn_res_output, residual = self.post_attention_layernorm(
|
||||
attn_output, residual
|
||||
)
|
||||
|
||||
output = self.mlp(normed_attn_res_output)
|
||||
|
||||
return output, residual
|
||||
|
||||
|
||||
class DeepseekV2Model(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_tokens", weights=weights
|
||||
)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
DeepseekV2Layer(
|
||||
prefix,
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_size
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = self.embed_tokens(input_ids)
|
||||
|
||||
# Get rotary cos and sin for this forward
|
||||
# Avoid to index in each layer
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids, max_s, hidden_states.dtype
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states, residual)
|
||||
|
||||
return hidden_states
|
||||
|
||||
|
||||
class FlashDeepseekV2ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights: Weights):
|
||||
super().__init__()
|
||||
|
||||
self.model = DeepseekV2Model(
|
||||
"model" if not prefix else f"{prefix}.model", config, weights
|
||||
)
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix="lm_head" if not prefix else f"{prefix}.lm_head",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
input_lengths: torch.Tensor,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
|
||||
hidden_states = self.model(
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
||||
|
||||
|
||||
# Functions below are from vLLM:
|
||||
#
|
||||
# https://github.com/vllm-project/vllm/blob/f7160d946a0a07703e72d81ba9ecf3913f192605/vllm/model_executor/layers/fused_moe/fused_moe.py#L397
|
||||
#
|
||||
# Remove after we have synced our version with upstream.
|
||||
|
||||
|
||||
def grouped_topk(
|
||||
hidden_states: torch.Tensor,
|
||||
gating_output: torch.Tensor,
|
||||
topk: int,
|
||||
renormalize: bool,
|
||||
num_expert_group: int = 0,
|
||||
topk_group: int = 0,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
scores = torch.softmax(gating_output, dim=-1)
|
||||
num_token = scores.shape[0]
|
||||
group_scores = (
|
||||
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
|
||||
) # [n, n_group]
|
||||
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
|
||||
1
|
||||
] # [n, top_k_group]
|
||||
group_mask = torch.zeros_like(group_scores) # [n, n_group]
|
||||
group_mask.scatter_(1, group_idx, 1) # [n, n_group]
|
||||
score_mask = (
|
||||
group_mask.unsqueeze(-1)
|
||||
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
|
||||
.reshape(num_token, -1)
|
||||
) # [n, e]
|
||||
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
|
||||
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
|
||||
|
||||
if renormalize:
|
||||
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
|
||||
|
||||
return topk_weights, topk_ids
|
||||
|
||||
|
||||
def get_default_config(
|
||||
M: int,
|
||||
E: int,
|
||||
N: int,
|
||||
K: int,
|
||||
topk: int,
|
||||
dtype: Optional[str],
|
||||
) -> Dict[str, int]:
|
||||
config = {
|
||||
"BLOCK_SIZE_M": 64,
|
||||
"BLOCK_SIZE_N": 64,
|
||||
"BLOCK_SIZE_K": 32,
|
||||
"GROUP_SIZE_M": 8,
|
||||
}
|
||||
if M <= E:
|
||||
config = {
|
||||
"BLOCK_SIZE_M": 16,
|
||||
"BLOCK_SIZE_N": 32,
|
||||
"BLOCK_SIZE_K": 64,
|
||||
"GROUP_SIZE_M": 1,
|
||||
}
|
||||
return config
|
||||
|
||||
|
||||
def fused_experts(
|
||||
hidden_states: torch.Tensor,
|
||||
w1: torch.Tensor,
|
||||
w2: torch.Tensor,
|
||||
topk_weights: torch.Tensor,
|
||||
topk_ids: torch.Tensor,
|
||||
inplace: bool = False,
|
||||
override_config: Optional[Dict[str, Any]] = None,
|
||||
use_fp8: bool = False,
|
||||
w1_scale: Optional[torch.Tensor] = None,
|
||||
w2_scale: Optional[torch.Tensor] = None,
|
||||
a1_scale: Optional[torch.Tensor] = None,
|
||||
a2_scale: Optional[torch.Tensor] = None,
|
||||
):
|
||||
# Check constraints.
|
||||
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
|
||||
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
|
||||
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
|
||||
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
|
||||
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
|
||||
assert hidden_states.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
||||
|
||||
import triton.language as tl
|
||||
from vllm import _custom_ops as ops
|
||||
from vllm.model_executor.layers.fused_moe.fused_moe import (
|
||||
get_moe_configs,
|
||||
invoke_fused_moe_kernel,
|
||||
moe_align_block_size,
|
||||
)
|
||||
|
||||
M, _ = hidden_states.shape
|
||||
E, N, _ = w1.shape
|
||||
|
||||
if override_config:
|
||||
config = override_config
|
||||
else:
|
||||
# First try to load optimal config from the file
|
||||
configs = get_moe_configs(E, w2.shape[2], "float8" if use_fp8 else None)
|
||||
|
||||
if configs:
|
||||
# If an optimal configuration map has been found, look up the
|
||||
# optimal config
|
||||
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
|
||||
else:
|
||||
# Else use the default config
|
||||
config = get_default_config(
|
||||
M, E, N, w1.shape[2], topk_ids.shape[1], "float8" if use_fp8 else None
|
||||
)
|
||||
|
||||
intermediate_cache1 = torch.empty(
|
||||
(M, topk_ids.shape[1], N),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
intermediate_cache2 = torch.empty(
|
||||
(M * topk_ids.shape[1], N // 2),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
intermediate_cache3 = torch.empty(
|
||||
(M, topk_ids.shape[1], w2.shape[1]),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
|
||||
sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size(
|
||||
topk_ids, config["BLOCK_SIZE_M"], E
|
||||
)
|
||||
compute_type = tl.bfloat16 if hidden_states.dtype == torch.bfloat16 else tl.float16
|
||||
|
||||
invoke_fused_moe_kernel(
|
||||
hidden_states,
|
||||
w1,
|
||||
intermediate_cache1,
|
||||
a1_scale,
|
||||
w1_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
num_tokens_post_padded,
|
||||
False,
|
||||
topk_ids.shape[1],
|
||||
config,
|
||||
compute_type=compute_type,
|
||||
use_fp8=use_fp8,
|
||||
)
|
||||
|
||||
ops.silu_and_mul(intermediate_cache2, intermediate_cache1.view(-1, N))
|
||||
|
||||
invoke_fused_moe_kernel(
|
||||
intermediate_cache2,
|
||||
w2,
|
||||
intermediate_cache3,
|
||||
a2_scale,
|
||||
w2_scale,
|
||||
topk_weights,
|
||||
topk_ids,
|
||||
sorted_token_ids,
|
||||
expert_ids,
|
||||
num_tokens_post_padded,
|
||||
True,
|
||||
1,
|
||||
config,
|
||||
compute_type=compute_type,
|
||||
use_fp8=use_fp8,
|
||||
)
|
||||
|
||||
if inplace:
|
||||
return torch.sum(
|
||||
intermediate_cache3.view(*intermediate_cache3.shape),
|
||||
dim=1,
|
||||
out=hidden_states,
|
||||
)
|
||||
return torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1)
|
@ -42,6 +42,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
class Gemma2Config(PretrainedConfig):
|
||||
@ -141,24 +142,21 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
if config.quantize not in ["gptq", "awq", "marlin"]:
|
||||
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
if isinstance(weight, UnquantizedWeight):
|
||||
weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
|
||||
head_size = config.head_dim
|
||||
num_heads = config.num_attention_heads // weights.process_group.size()
|
||||
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
|
||||
assert list(weight.shape) == [
|
||||
assert list(weight.weight.shape) == [
|
||||
(num_heads + 2 * num_key_value_heads) * head_size,
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=None, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=None))
|
||||
|
||||
|
||||
class FlashGemma2Attention(torch.nn.Module):
|
||||
|
@ -42,6 +42,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
class GemmaConfig(PretrainedConfig):
|
||||
@ -141,24 +142,21 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
if config.quantize not in ["gptq", "awq", "marlin"]:
|
||||
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
if isinstance(weight, UnquantizedWeight):
|
||||
weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
|
||||
head_size = config.head_dim
|
||||
num_heads = config.num_attention_heads // weights.process_group.size()
|
||||
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
|
||||
assert list(weight.shape) == [
|
||||
assert list(weight.weight.shape) == [
|
||||
(num_heads + 2 * num_key_value_heads) * head_size,
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=None, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=None))
|
||||
|
||||
|
||||
class FlashGemmaAttention(torch.nn.Module):
|
||||
|
@ -61,7 +61,6 @@ def _load_qkv_gptq(config, prefix: str, weights):
|
||||
# Weights
|
||||
weight = weights.get_weights_col_packed_qkv(
|
||||
f"{prefix}.c_attn",
|
||||
config.quantize,
|
||||
config.num_attention_heads,
|
||||
config.num_attention_heads,
|
||||
)
|
||||
@ -83,7 +82,7 @@ def _load_qkv_gptq(config, prefix: str, weights):
|
||||
bias = torch.cat(tensors, dim=0)
|
||||
bias = bias.to(device=weights.device)
|
||||
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
|
||||
|
||||
def _load_qkv(config, prefix: str, weights, head_size, num_heads):
|
||||
@ -130,14 +129,14 @@ def _load_qkv(config, prefix: str, weights, head_size, num_heads):
|
||||
3 * num_heads * head_size
|
||||
], f"{weight.shape} != {[3 * num_heads * head_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
|
||||
|
||||
def load_row(config, prefix: str, weights, bias: bool):
|
||||
"""load_row, but with transposed weight matrices."""
|
||||
|
||||
if config.quantize == "gptq":
|
||||
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||||
weight = weights.get_weights_row(prefix)
|
||||
else:
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=0).T
|
||||
|
||||
@ -148,16 +147,14 @@ def load_row(config, prefix: str, weights, bias: bool):
|
||||
bias = None
|
||||
|
||||
return TensorParallelRowLinear(
|
||||
get_linear(weight, bias, config.quantize), process_group=weights.process_group
|
||||
get_linear(weight, bias), process_group=weights.process_group
|
||||
)
|
||||
|
||||
|
||||
def load_col(config, prefix: str, weights, bias: bool):
|
||||
"""load_col, but with transposed weight matrices."""
|
||||
if config.quantize == "gptq":
|
||||
weight = weights.get_multi_weights_col(
|
||||
[prefix], quantize=config.quantize, dim=1
|
||||
)
|
||||
weight = weights.get_multi_weights_col([prefix], dim=1)
|
||||
else:
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=1).T
|
||||
|
||||
@ -166,7 +163,7 @@ def load_col(config, prefix: str, weights, bias: bool):
|
||||
else:
|
||||
bias = None
|
||||
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
|
||||
|
||||
class FlashGPT2Attention(torch.nn.Module):
|
||||
|
@ -18,6 +18,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from contextlib import contextmanager
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
import torch
|
||||
@ -25,7 +26,6 @@ import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.layers.attention import (
|
||||
@ -33,7 +33,6 @@ from text_generation_server.layers.attention import (
|
||||
attention,
|
||||
reshape_and_cache,
|
||||
)
|
||||
from text_generation_server.models.globals import FLASH_DECODING
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
@ -46,6 +45,11 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
from text_generation_server.utils.weights import (
|
||||
UnquantizedWeight,
|
||||
Weights,
|
||||
)
|
||||
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
try:
|
||||
@ -105,6 +109,19 @@ def load_attention(config, prefix: str, weights, layer_id):
|
||||
)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def no_fp8(weights: Weights):
|
||||
"""De-activate fp8 auto conversion for the duration of this context manager"""
|
||||
weights_loader = weights.weights_loader
|
||||
if isinstance(weights_loader, HybridFP8UnquantLoader) and weights_loader.to_fp8:
|
||||
weights_loader = HybridFP8UnquantLoader(
|
||||
weights_loader.activation_scale_ub, to_fp8=False
|
||||
)
|
||||
|
||||
with weights.use_loader(weights_loader):
|
||||
yield
|
||||
|
||||
|
||||
class FlashLlamaAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -330,12 +347,15 @@ class LlamaMLP(nn.Module):
|
||||
class FlashLlamaLayer(nn.Module):
|
||||
def __init__(self, index, prefix, config, weights):
|
||||
super().__init__()
|
||||
|
||||
with no_fp8(weights):
|
||||
self.self_attn = FlashLlamaAttention(
|
||||
index=index,
|
||||
prefix=f"{prefix}.self_attn",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.mlp = LlamaMLP(
|
||||
prefix=f"{prefix}.mlp", config=config, weights=weights, index=index
|
||||
)
|
||||
@ -396,7 +416,22 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
process_group = weights.process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
self.layers = nn.ModuleList(
|
||||
|
||||
# Skip fp8 quant for first and last layers
|
||||
self.layers = nn.ModuleList()
|
||||
with no_fp8(weights):
|
||||
self.layers.append(
|
||||
FlashLlamaLayer(
|
||||
index=0,
|
||||
prefix=(
|
||||
"model.layers.0" if not prefix else "{prefix}.model.layers.0"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
)
|
||||
|
||||
self.layers.extend(
|
||||
[
|
||||
FlashLlamaLayer(
|
||||
index=layer_id,
|
||||
@ -408,9 +443,26 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
# Skip first and last layers
|
||||
for layer_id in range(1, config.num_hidden_layers - 1)
|
||||
]
|
||||
)
|
||||
|
||||
with no_fp8(weights):
|
||||
last_layer_id = config.num_hidden_layers - 1
|
||||
self.layers.append(
|
||||
FlashLlamaLayer(
|
||||
index=last_layer_id,
|
||||
prefix=(
|
||||
f"model.layers.{last_layer_id}"
|
||||
if not prefix
|
||||
else f"{prefix}.model.layers.{last_layer_id}"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
)
|
||||
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix="model.norm" if not prefix else f"{prefix}.model.norm",
|
||||
weights=weights,
|
||||
@ -470,9 +522,12 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
|
||||
with no_fp8(weights):
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=(
|
||||
"model.embed_tokens" if not prefix else f"{prefix}.model.embed_tokens"
|
||||
"model.embed_tokens"
|
||||
if not prefix
|
||||
else f"{prefix}.model.embed_tokens"
|
||||
),
|
||||
weights=weights,
|
||||
)
|
||||
@ -482,6 +537,7 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
else:
|
||||
suffix = "lm_head"
|
||||
|
||||
with no_fp8(weights):
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix=suffix if not prefix else f"{prefix}.{suffix}",
|
||||
|
@ -135,7 +135,6 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -150,9 +149,7 @@ def _load_gqa(config, prefix: str, weights):
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=None, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=None))
|
||||
|
||||
|
||||
def _load_experts(config, prefix: str, mat, weights):
|
||||
|
@ -24,7 +24,7 @@ import torch.distributed
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig as TransformersGPTNeoXConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.layers.attention import (
|
||||
@ -45,10 +45,17 @@ from text_generation_server.layers.layernorm import (
|
||||
from text_generation_server.layers.rotary import (
|
||||
PositionRotaryEmbedding,
|
||||
)
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
class GPTNeoXConfig(TransformersGPTNeoXConfig):
|
||||
attribute_map = {
|
||||
"num_key_value_heads": "num_attention_heads",
|
||||
}
|
||||
|
||||
|
||||
def load_row(config, prefix: str, weights, bias: bool):
|
||||
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||||
weight = weights.get_weights_row(prefix)
|
||||
|
||||
if bias and weights.process_group.rank() == 0:
|
||||
# Rank is only on the first rank process
|
||||
@ -56,7 +63,7 @@ def load_row(config, prefix: str, weights, bias: bool):
|
||||
else:
|
||||
bias = None
|
||||
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
if config.use_parallel_residual:
|
||||
return linear
|
||||
else:
|
||||
@ -64,11 +71,11 @@ def load_row(config, prefix: str, weights, bias: bool):
|
||||
|
||||
|
||||
def load_qkv(config, prefix: str, weights, num_heads, head_size, hidden_size):
|
||||
weight = weights.get_multi_weights_col([prefix], quantize=config.quantize, dim=0)
|
||||
if isinstance(weight, torch.Tensor):
|
||||
weight = weights.get_multi_weights_col([prefix], dim=0)
|
||||
if isinstance(weight, UnquantizedWeight):
|
||||
# Only on non quantized versions
|
||||
weight = (
|
||||
weight.view(
|
||||
weight.weight = (
|
||||
weight.weight.view(
|
||||
num_heads,
|
||||
3,
|
||||
head_size,
|
||||
@ -81,7 +88,7 @@ def load_qkv(config, prefix: str, weights, num_heads, head_size, hidden_size):
|
||||
bias = weights.get_sharded(f"{prefix}.bias", dim=0)
|
||||
bias = bias.view(num_heads, 3, head_size).permute(1, 0, 2).reshape(-1)
|
||||
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
if config.use_parallel_residual:
|
||||
return linear
|
||||
else:
|
||||
|
@ -85,7 +85,6 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
@ -101,9 +100,7 @@ def _load_gqa(config, prefix: str, weights):
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
# this is the same as llama except for Phi uses bias=True
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=True, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=True))
|
||||
|
||||
|
||||
class FlashPhiAttention(torch.nn.Module):
|
||||
|
@ -23,7 +23,7 @@ from text_generation_server.layers.attention import (
|
||||
|
||||
|
||||
def load_row(config, prefix: str, weights, bias: bool):
|
||||
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||||
weight = weights.get_weights_row(prefix)
|
||||
|
||||
if bias and weights.process_group.rank() == 0:
|
||||
# Rank is only on the first rank process
|
||||
@ -31,7 +31,7 @@ def load_row(config, prefix: str, weights, bias: bool):
|
||||
else:
|
||||
bias = None
|
||||
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
if config.parallel_attn:
|
||||
return linear
|
||||
else:
|
||||
@ -42,6 +42,7 @@ class RWConfig(PretrainedConfig):
|
||||
attribute_map = {
|
||||
"num_hidden_layers": "n_layer",
|
||||
"num_attention_heads": "n_head",
|
||||
"num_key_value_heads": "n_head_kv",
|
||||
}
|
||||
|
||||
def __init__(
|
||||
|
@ -17,6 +17,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
get_linear,
|
||||
)
|
||||
from text_generation_server.layers.gptq import GPTQWeightsLoader
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastLayerNorm,
|
||||
)
|
||||
@ -81,11 +82,13 @@ def _load_multi_mqa_gptq(
|
||||
qzeros = torch.cat([q_tensor, kv_tensor], dim=1)
|
||||
qzeros = qzeros.to(device=weights.device)
|
||||
|
||||
gptq_params = weights._get_gptq_params()
|
||||
if gptq_params.quant_method == "gptq":
|
||||
loader = weights.weights_loader
|
||||
assert isinstance(loader, GPTQWeightsLoader)
|
||||
loader._get_gptq_params(weights)
|
||||
if loader.quant_method == "gptq":
|
||||
g_idx = weights.get_tensor(f"{prefix}.c_attn.g_idx")
|
||||
g_idx = g_idx.to(device=weights.device)
|
||||
elif gptq_params.quant_method == "awq":
|
||||
elif loader.quant_method == "awq":
|
||||
g_idx = None
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
@ -100,8 +103,9 @@ def _load_multi_mqa_gptq(
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
groupsize=gptq_params.groupsize,
|
||||
bits=loader.bits,
|
||||
groupsize=loader.groupsize,
|
||||
use_awq_kernel=loader.quantize == "awq",
|
||||
use_exllama=HAS_EXLLAMA,
|
||||
)
|
||||
|
||||
@ -118,7 +122,7 @@ def _load_multi_mqa_gptq(
|
||||
bias = torch.cat([q_tensor, kv_tensor], dim=0)
|
||||
bias = bias.to(device=weights.device)
|
||||
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
else:
|
||||
raise NotImplementedError("Gptq loading with santacoder is not implemented")
|
||||
|
||||
@ -190,29 +194,27 @@ def _load_multi_mqa(
|
||||
assert list(bias.shape) == [
|
||||
(num_heads + 2) * head_size
|
||||
], f"{weight.shape} != {[(num_heads + 2) * head_size]}"
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
|
||||
|
||||
def load_col(config, prefix: str, weights, bias: bool):
|
||||
if config.transpose:
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=1).T
|
||||
else:
|
||||
weight = weights.get_multi_weights_col(
|
||||
[prefix], quantize=config.quantize, dim=0
|
||||
)
|
||||
weight = weights.get_multi_weights_col([prefix], dim=0)
|
||||
|
||||
if bias:
|
||||
bias = weights.get_sharded(f"{prefix}.bias", dim=0)
|
||||
else:
|
||||
bias = None
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias))
|
||||
|
||||
|
||||
def load_row(config, prefix: str, weights, bias: bool):
|
||||
if config.transpose:
|
||||
weight = weights.get_sharded(f"{prefix}.weight", dim=0).T
|
||||
else:
|
||||
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
|
||||
weight = weights.get_weights_row(prefix)
|
||||
|
||||
if bias and weights.process_group.rank() == 0:
|
||||
# Rank is only on the first rank process
|
||||
@ -220,7 +222,7 @@ def load_row(config, prefix: str, weights, bias: bool):
|
||||
else:
|
||||
bias = None
|
||||
return TensorParallelRowLinear(
|
||||
get_linear(weight, bias, config.quantize), process_group=weights.process_group
|
||||
get_linear(weight, bias), process_group=weights.process_group
|
||||
)
|
||||
|
||||
|
||||
|
@ -45,6 +45,7 @@ from text_generation_server.layers.layernorm import (
|
||||
from text_generation_server.layers.rotary import (
|
||||
PositionRotaryEmbedding,
|
||||
)
|
||||
from text_generation_server.utils.weights import UnquantizedWeight
|
||||
|
||||
|
||||
class Starcoder2Config(PretrainedConfig):
|
||||
@ -126,20 +127,19 @@ def _load_gqa(config, prefix: str, weights):
|
||||
|
||||
weight = weights.get_multi_weights_col(
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
quantize=config.quantize,
|
||||
dim=0,
|
||||
)
|
||||
|
||||
if config.quantize not in ["gptq", "awq", "marlin"]:
|
||||
weight = weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
if isinstance(weight, UnquantizedWeight):
|
||||
weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device)
|
||||
|
||||
head_size = config.hidden_size // config.num_attention_heads
|
||||
num_heads = config.num_attention_heads // weights.process_group.size()
|
||||
num_key_value_heads = config.num_key_value_heads // weights.process_group.size()
|
||||
assert list(weight.shape) == [
|
||||
assert list(weight.weight.shape) == [
|
||||
(num_heads + 2 * num_key_value_heads) * head_size,
|
||||
config.hidden_size,
|
||||
], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}"
|
||||
|
||||
if config.use_bias:
|
||||
w = [
|
||||
@ -150,9 +150,7 @@ def _load_gqa(config, prefix: str, weights):
|
||||
else:
|
||||
bias = None
|
||||
|
||||
return TensorParallelColumnLinear(
|
||||
get_linear(weight, bias=bias, quantize=config.quantize)
|
||||
)
|
||||
return TensorParallelColumnLinear(get_linear(weight, bias=bias))
|
||||
|
||||
|
||||
class Starcoder2Attention(torch.nn.Module):
|
||||
|
@ -34,6 +34,7 @@ from text_generation_server.layers import (
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
from text_generation_server.utils.weights import DefaultWeightsLoader, UnquantizedWeight
|
||||
|
||||
|
||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
@ -682,7 +683,7 @@ class Idefics2Connector(nn.Module):
|
||||
class Idefics2ForConditionalGeneration(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
config.vision_config.quantize = config.quantize
|
||||
config.vision_config.quantize = None
|
||||
config.vision_config.speculator = config.speculator
|
||||
config.text_config.quantize = config.quantize
|
||||
config.text_config.speculator = config.speculator
|
||||
@ -695,16 +696,24 @@ class Idefics2ForConditionalGeneration(nn.Module):
|
||||
name="text_model",
|
||||
)
|
||||
self.dtype = weights.dtype
|
||||
|
||||
# The vision and connector models are not quantized.
|
||||
with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)):
|
||||
self.vision_model = Idefics2VisionTransformer(
|
||||
prefix=f"{prefix}.model.vision_model" if prefix else "model.vision_model",
|
||||
prefix=(
|
||||
f"{prefix}.model.vision_model" if prefix else "model.vision_model"
|
||||
),
|
||||
config=vision_config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
config.quantize = None
|
||||
self.connector = Idefics2Connector(
|
||||
prefix=f"{prefix}.model.connector" if prefix else "model.connector",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
self.image_seq_len = config.perceiver_config.resampler_n_latents
|
||||
self.image_token_id = config.image_token_id
|
||||
|
@ -75,7 +75,7 @@ def load_col(config, prefix, weights, bias):
|
||||
bias = bias.to(device=weights.device)
|
||||
else:
|
||||
bias = None
|
||||
linear = get_linear(weight, bias, config.quantize)
|
||||
linear = get_linear(weight, bias)
|
||||
return TensorParallelColumnLinear(linear)
|
||||
|
||||
|
||||
@ -337,17 +337,17 @@ class MultiheadAttention(nn.Module):
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
attn_impl = config.attn_config["attn_impl"]
|
||||
self.attn_impl = config.attn_config["attn_impl"]
|
||||
self.clip_qkv = config.attn_config["clip_qkv"]
|
||||
self.qk_ln = config.attn_config["qk_ln"]
|
||||
attn_impl = config.attn_config.attn_impl
|
||||
self.attn_impl = config.attn_config.attn_impl
|
||||
self.clip_qkv = config.attn_config.clip_qkv
|
||||
self.qk_ln = config.attn_config.qk_ln
|
||||
self.d_model = config.d_model
|
||||
d_model = config.d_model
|
||||
self.n_heads = config.n_heads
|
||||
self.softmax_scale = config.attn_config["softmax_scale"]
|
||||
self.softmax_scale = config.attn_config.softmax_scale
|
||||
if self.softmax_scale is None:
|
||||
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
||||
self.attn_dropout_p = config.attn_config["attn_pdrop"]
|
||||
self.attn_dropout_p = config.attn_config.attn_pdrop
|
||||
|
||||
if self.n_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
@ -430,17 +430,17 @@ class MultiQueryAttention(nn.Module):
|
||||
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
attn_impl = config.attn_config["attn_impl"]
|
||||
self.attn_impl = config.attn_config["attn_impl"]
|
||||
self.clip_qkv = config.attn_config["clip_qkv"]
|
||||
self.qk_ln = config.attn_config["qk_ln"]
|
||||
attn_impl = config.attn_config.attn_impl
|
||||
self.attn_impl = config.attn_config.attn_impl
|
||||
self.clip_qkv = config.attn_config.clip_qkv
|
||||
self.qk_ln = config.attn_config.qk_ln
|
||||
self.d_model = config.d_model
|
||||
d_model = config.d_model
|
||||
self.n_heads = config.n_heads
|
||||
self.softmax_scale = config.attn_config["softmax_scale"]
|
||||
self.softmax_scale = config.attn_config.softmax_scale
|
||||
if self.softmax_scale is None:
|
||||
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
||||
self.attn_dropout_p = config.attn_config["attn_pdrop"]
|
||||
self.attn_dropout_p = config.attn_config.attn_pdrop
|
||||
# self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
||||
self.Wqkv = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.Wqkv", weights=weights, bias=not config.no_bias
|
||||
@ -614,9 +614,9 @@ class MPTBlock(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.prefix = prefix
|
||||
if config.attn_config["attn_type"] != "multihead_attention":
|
||||
if config.attn_config.attn_type != "multihead_attention":
|
||||
raise NotImplementedError(
|
||||
f"""Not implemented attn {config.attn_config["attn_type"]}"""
|
||||
f"""Not implemented attn {config.attn_config.attn_type}"""
|
||||
)
|
||||
resid_pdrop = config.resid_pdrop
|
||||
if config.no_bias:
|
||||
@ -789,11 +789,11 @@ class MPTModel(MPTPreTrainedModel):
|
||||
self.world_size = weights.process_group.size()
|
||||
self.rank = weights.process_group.rank()
|
||||
self.n_heads = config.n_heads
|
||||
self.attn_impl = config.attn_config["attn_impl"]
|
||||
self.prefix_lm = config.attn_config["prefix_lm"]
|
||||
self.attn_uses_sequence_id = config.attn_config["attn_uses_sequence_id"]
|
||||
self.alibi = config.attn_config["alibi"]
|
||||
self.alibi_bias_max = config.attn_config["alibi_bias_max"]
|
||||
self.attn_impl = config.attn_config.attn_impl
|
||||
self.prefix_lm = config.attn_config.prefix_lm
|
||||
self.attn_uses_sequence_id = config.attn_config.attn_uses_sequence_id
|
||||
self.alibi = config.attn_config.alibi
|
||||
self.alibi_bias_max = config.attn_config.alibi_bias_max
|
||||
if config.init_device == "mixed":
|
||||
if dist.get_local_rank() == 0:
|
||||
config.init_device = "cpu"
|
||||
|
@ -23,14 +23,13 @@ from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.utils.log import log_master
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.utils.dist import RANK
|
||||
from text_generation_server.utils.speculate import get_speculate
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
hub,
|
||||
)
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
@ -50,6 +49,7 @@ from text_generation_server.models.globals import (
|
||||
from text_generation_server.layers.attention import Seqlen
|
||||
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
|
||||
from text_generation_server.utils.dist import MEMORY_FRACTION
|
||||
from text_generation_server.utils.quantization import get_loader
|
||||
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
|
||||
|
||||
from text_generation_server.utils.import_utils import (
|
||||
@ -838,7 +838,9 @@ class FlashCausalLM(Model):
|
||||
default_dtype=torch.float16,
|
||||
aliases=None,
|
||||
# Used for Santacoder override of config
|
||||
num_kv_heads=None,
|
||||
num_kv_heads: Optional[int] = None,
|
||||
# Deepseek V2 uses different QK and V dims.
|
||||
head_size: Optional[int] = None,
|
||||
skip_special_tokens: bool = True,
|
||||
):
|
||||
self.process_group, rank, world_size = initialize_torch_distributed()
|
||||
@ -881,12 +883,16 @@ class FlashCausalLM(Model):
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
|
||||
weights_loader = get_loader(quantize, model_id, revision)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(
|
||||
filenames, device, dtype, process_group=self.process_group, aliases=aliases
|
||||
filenames,
|
||||
device,
|
||||
dtype,
|
||||
process_group=self.process_group,
|
||||
aliases=aliases,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
if config.quantize in ["awq", "exl2", "gptq", "marlin"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
||||
prefix = ""
|
||||
model = model_class(prefix, config, weights)
|
||||
@ -905,15 +911,23 @@ class FlashCausalLM(Model):
|
||||
self.num_layers = config.num_hidden_layers
|
||||
# Validation is done in the model itself
|
||||
if num_kv_heads is None:
|
||||
# Order is important here.
|
||||
for attr in ["num_key_value_heads", "num_key_value_heads", "n_head"]:
|
||||
num_kv_heads = getattr(config, "num_attention_heads", None)
|
||||
if num_kv_heads is not None:
|
||||
break
|
||||
num_kv_heads = getattr(config, "num_key_value_heads", None)
|
||||
# GPT-2 workaround
|
||||
if num_kv_heads is None:
|
||||
num_kv_heads = getattr(config, "n_head", None)
|
||||
if num_kv_heads is None:
|
||||
raise ValueError("Cannot get the number of key/value heads")
|
||||
self.num_kv_heads = num_kv_heads // self.process_group.size()
|
||||
self.num_kv_heads = (
|
||||
num_kv_heads // self.process_group.size()
|
||||
if num_kv_heads > 1
|
||||
else num_kv_heads
|
||||
)
|
||||
assert self.num_kv_heads > 0
|
||||
|
||||
if head_size is None:
|
||||
self.head_size = config.hidden_size // config.num_attention_heads
|
||||
else:
|
||||
self.head_size = head_size
|
||||
|
||||
self.cuda_graphs = {}
|
||||
self.kv_cache = []
|
||||
@ -1141,31 +1155,36 @@ class FlashCausalLM(Model):
|
||||
f"tunableop_{MODEL_ID.replace('/', '-')}_tp{self.world_size}_rank{self.rank}.csv",
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`."
|
||||
log_master(
|
||||
logger.info,
|
||||
f"PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes, picking the ROCm optimal matrix multiplication kernel for the target lengths {', '.join([str(seqlen) for seqlen in tuning_sequences])}, with typical 5-8% latency improvement for small sequence lengths. The picked GEMMs are saved in the file {tunableop_filepath}. To disable TunableOp, please launch TGI with `PYTORCH_TUNABLEOP_ENABLED=0`.",
|
||||
)
|
||||
|
||||
if os.path.isfile(tunableop_filepath):
|
||||
logger.info(
|
||||
f"The file {tunableop_filepath} already exists and will be reused."
|
||||
log_master(
|
||||
logger.info,
|
||||
f"The file {tunableop_filepath} already exists and will be reused.",
|
||||
)
|
||||
torch.cuda.tunable.read_file(tunableop_filepath)
|
||||
|
||||
os.makedirs(HUGGINGFACE_HUB_CACHE, exist_ok=True)
|
||||
|
||||
for seqlen in tuning_sequences:
|
||||
logger.info(f"Warming up TunableOp for seqlen={seqlen}")
|
||||
log_master(logger.info, f"Warming up TunableOp for seqlen={seqlen}")
|
||||
self.tunableop_warmup(seqlen)
|
||||
torch.cuda.tunable.write_file(tunableop_filepath)
|
||||
torch.cuda.tunable.tuning_enable(False)
|
||||
else:
|
||||
logger.info(
|
||||
"PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp."
|
||||
log_master(
|
||||
logger.info,
|
||||
"PyTorch ROCm TunableOp (https://github.com/pytorch/pytorch/tree/main/aten/src/ATen/cuda/tunable) is disabled. TunableOp brings an additional 5-8% latency improvement for small sequence lengths but requires a warmup. If necessary, please use the environment variable PYTORCH_TUNABLEOP_ENABLED=1 to enable TunableOp.",
|
||||
)
|
||||
|
||||
if CUDA_GRAPHS:
|
||||
try:
|
||||
logger.info(f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}")
|
||||
log_master(
|
||||
logger.info, f"Cuda Graphs are enabled for sizes {CUDA_GRAPHS}"
|
||||
)
|
||||
# Warmup cuda graphs
|
||||
for bs in CUDA_GRAPHS:
|
||||
if self.speculate is None or self.speculate + 1 <= bs:
|
||||
@ -1173,7 +1192,9 @@ class FlashCausalLM(Model):
|
||||
except torch.cuda.OutOfMemoryError:
|
||||
logger.exception(f"Decode cuda graph warmup failed")
|
||||
else:
|
||||
logger.info(f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS}).")
|
||||
log_master(
|
||||
logger.info, f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS})."
|
||||
)
|
||||
|
||||
return int(num_blocks * BLOCK_SIZE)
|
||||
|
||||
@ -1525,8 +1546,7 @@ class FlashCausalLM(Model):
|
||||
left = 0
|
||||
|
||||
if n_accepted_ids > 1:
|
||||
if RANK == 0:
|
||||
logger.debug(f"Speculated ids {n_accepted_ids - 1}")
|
||||
log_master(logger.debug, f"Speculated ids {n_accepted_ids - 1}")
|
||||
|
||||
current_stopped = False
|
||||
for j in range(index, index + n_accepted_ids):
|
||||
|
@ -1,15 +1,16 @@
|
||||
import torch
|
||||
import os
|
||||
from loguru import logger
|
||||
from typing import Dict
|
||||
from typing import Dict, Optional
|
||||
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
MEM_POOL = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None
|
||||
# This is overridden by the cli
|
||||
FLASH_DECODING = os.getenv("FLASH_DECODING") in {"1", "true", "True"}
|
||||
BLOCK_SIZE: int = 256 if FLASH_DECODING else 16
|
||||
if FLASH_DECODING:
|
||||
logger.info("Using FLASH_DECODING")
|
||||
|
||||
log_master(logger.info, "Using FLASH_DECODING")
|
||||
|
||||
cuda_graphs = os.getenv("CUDA_GRAPHS")
|
||||
if cuda_graphs is not None:
|
||||
@ -26,11 +27,9 @@ else:
|
||||
if cuda_graphs is not None:
|
||||
cuda_graphs.sort(reverse=True)
|
||||
|
||||
|
||||
CUDA_GRAPHS = cuda_graphs
|
||||
|
||||
# This is overridden at model loading.
|
||||
global MODEL_ID
|
||||
MODEL_ID = None
|
||||
|
||||
|
||||
@ -41,8 +40,7 @@ def set_model_id(model_id: str):
|
||||
|
||||
# NOTE: eventually we should move this into the router and pass back the
|
||||
# index in all cases.
|
||||
global ADAPTER_TO_INDEX
|
||||
ADAPTER_TO_INDEX: Dict[str, int] = None
|
||||
ADAPTER_TO_INDEX: Optional[Dict[str, int]] = None
|
||||
|
||||
|
||||
def set_adapter_to_index(adapter_to_index: Dict[str, int]):
|
||||
|
@ -23,6 +23,7 @@ from text_generation_server.utils import (
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
from text_generation_server.utils.quantization import get_loader
|
||||
|
||||
|
||||
class IDEFICSSharded(IdeficsCausalLM):
|
||||
@ -70,6 +71,9 @@ class IDEFICSSharded(IdeficsCausalLM):
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
weights_loader = get_loader(
|
||||
quantize=quantize, model_id=model_id, revision=revision
|
||||
)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(
|
||||
@ -77,6 +81,7 @@ class IDEFICSSharded(IdeficsCausalLM):
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
process_group=self.process_group,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
|
||||
model = IdeficsForVisionText2Text(config, weights)
|
||||
|
@ -28,6 +28,7 @@ from text_generation_server.models.types import (
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.quantization import get_loader
|
||||
from text_generation_server.utils.tokens import batch_top_tokens, Sampling
|
||||
from dataclasses import dataclass
|
||||
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
|
||||
@ -448,8 +449,17 @@ class Mamba(Model):
|
||||
config.quantize = quantize
|
||||
config.speculator = speculator
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
weights_loader = get_loader(
|
||||
quantize=quantize, model_id=model_id, revision=revision
|
||||
)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(filenames, device, dtype, process_group=self.process_group)
|
||||
weights = Weights(
|
||||
filenames,
|
||||
device,
|
||||
dtype,
|
||||
process_group=self.process_group,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
model = MambaModel(config, weights)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(Mamba, self).__init__(
|
||||
|
@ -15,6 +15,7 @@ from text_generation_server.utils.adapter import (
|
||||
AdapterParameters,
|
||||
AdapterSource,
|
||||
)
|
||||
from text_generation_server.utils.log import log_master
|
||||
from loguru import logger
|
||||
|
||||
|
||||
@ -204,8 +205,9 @@ class Model(ABC):
|
||||
f"order to use the dynamic adapter loading feature."
|
||||
)
|
||||
|
||||
logger.info(
|
||||
f"Loading adapter weights into model: {','.join(adapter_parameters.adapter_ids)}"
|
||||
log_master(
|
||||
logger.info,
|
||||
f"Loading adapter weights into model: {','.join(adapter_parameters.adapter_ids)}",
|
||||
)
|
||||
weight_names = tuple([v[0] for v in self.target_to_layer.values()])
|
||||
(
|
||||
@ -240,8 +242,9 @@ class Model(ABC):
|
||||
layer_weights.add_adapter(adapter_index, adapter_weights)
|
||||
|
||||
if len(unused_weight_names) > 0:
|
||||
logger.warning(
|
||||
f"{','.join(adapter_parameters.adapter_ids)} unused adapter weights: {unused_weight_names}"
|
||||
log_master(
|
||||
logger.warning,
|
||||
f"{','.join(adapter_parameters.adapter_ids)} unused adapter weights: {unused_weight_names}",
|
||||
)
|
||||
|
||||
if adapter_tokenizer is not None:
|
||||
|
@ -18,6 +18,7 @@ from text_generation_server.utils import (
|
||||
Weights,
|
||||
)
|
||||
from text_generation_server.utils.chunks import concat_text_chunks
|
||||
from text_generation_server.utils.quantization import get_loader
|
||||
from text_generation_server.utils.tokens import batch_top_tokens
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.types import (
|
||||
@ -586,6 +587,9 @@ class Seq2SeqLM(Model):
|
||||
)
|
||||
tokenizer.bos_token_id = config.decoder_start_token_id
|
||||
|
||||
weights_loader = get_loader(
|
||||
quantize=quantize, model_id=model_id, revision=revision
|
||||
)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
weights = Weights(
|
||||
@ -594,6 +598,7 @@ class Seq2SeqLM(Model):
|
||||
dtype=dtype,
|
||||
process_group=self.process_group,
|
||||
aliases=aliases,
|
||||
weights_loader=weights_loader,
|
||||
)
|
||||
if config.quantize in ["awq", "exl2", "gptq", "marlin"]:
|
||||
weights._set_gptq_params(model_id, revision)
|
||||
|
@ -1,4 +1,3 @@
|
||||
from itertools import repeat
|
||||
import torch
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
@ -13,6 +12,7 @@ from text_generation_server.models.flash_causal_lm import (
|
||||
FlashCausalLMBatch,
|
||||
FlashCausalLM,
|
||||
)
|
||||
from text_generation_server.utils.log import log_master
|
||||
from transformers import AutoProcessor
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
@ -56,8 +56,9 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
||||
num_features = get_number_of_features(height, width, config)
|
||||
from loguru import logger
|
||||
|
||||
logger.info(
|
||||
f"Found {num_features} features in image of resolution {height}x{width}"
|
||||
log_master(
|
||||
logger.info,
|
||||
f"Found {num_features} features in image of resolution {height}x{width}",
|
||||
)
|
||||
return "<image>" * num_features
|
||||
|
||||
@ -261,7 +262,12 @@ class VlmCausalLM(FlashCausalLM):
|
||||
**processor_kwargs,
|
||||
)
|
||||
self.batch_class = batch_class
|
||||
super().__init__(model_id=model_id, **kwargs)
|
||||
super().__init__(
|
||||
model_id=model_id,
|
||||
revision=revision,
|
||||
trust_remote_code=trust_remote_code,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[VlmCausalLMBatch]:
|
||||
|
@ -56,7 +56,7 @@ def initialize_torch_distributed():
|
||||
backend = "nccl"
|
||||
options = ProcessGroupNCCL.Options()
|
||||
options.is_high_priority_stream = True
|
||||
options._timeout = timedelta(seconds=60)
|
||||
options._timeout = timedelta(seconds=120)
|
||||
else:
|
||||
backend = "gloo"
|
||||
options = None
|
||||
@ -76,7 +76,7 @@ def initialize_torch_distributed():
|
||||
backend="ccl",
|
||||
world_size=WORLD_SIZE,
|
||||
rank=RANK,
|
||||
timeout=timedelta(seconds=60),
|
||||
timeout=timedelta(seconds=120),
|
||||
pg_options=options,
|
||||
)
|
||||
else:
|
||||
@ -84,7 +84,7 @@ def initialize_torch_distributed():
|
||||
backend=backend,
|
||||
world_size=WORLD_SIZE,
|
||||
rank=RANK,
|
||||
timeout=timedelta(seconds=60),
|
||||
timeout=timedelta(seconds=120),
|
||||
pg_options=options,
|
||||
)
|
||||
else:
|
||||
|
@ -1,6 +1,15 @@
|
||||
from functools import lru_cache
|
||||
from text_generation_server.utils.dist import RANK
|
||||
|
||||
|
||||
@lru_cache(10)
|
||||
def log_once(log, msg: str):
|
||||
def log_once(log, msg: str, master=True):
|
||||
if master:
|
||||
log_master(log, msg)
|
||||
else:
|
||||
log(msg)
|
||||
|
||||
|
||||
def log_master(log, msg: str):
|
||||
if RANK == 0:
|
||||
log(msg)
|
||||
|
173
server/text_generation_server/utils/quantization.py
Normal file
173
server/text_generation_server/utils/quantization.py
Normal file
@ -0,0 +1,173 @@
|
||||
import json
|
||||
import os
|
||||
from dataclasses import dataclass
|
||||
from typing import Optional
|
||||
|
||||
from huggingface_hub import hf_hub_download
|
||||
from text_generation_server.utils.weights import (
|
||||
DefaultWeightsLoader,
|
||||
UnquantizedWeight,
|
||||
WeightsLoader,
|
||||
)
|
||||
|
||||
|
||||
# TODO: Split this config to have a single config type per quant method
|
||||
@dataclass
|
||||
class _QuantizerConfig:
|
||||
bits: int
|
||||
checkpoint_format: Optional[str]
|
||||
desc_act: bool
|
||||
groupsize: int
|
||||
quant_method: str
|
||||
sym: bool
|
||||
|
||||
|
||||
@dataclass
|
||||
class _FP8QuantizerConfig:
|
||||
activation_scale_ub: float
|
||||
|
||||
|
||||
# We should probably do this with Pytantic JSON deserialization,
|
||||
# but for now we'll stay close to the old _set_gptq_params.
|
||||
def _get_quantizer_config(model_id, revision):
|
||||
bits = 4
|
||||
groupsize = -1
|
||||
quant_method = "gptq"
|
||||
checkpoint_format = None
|
||||
sym = True
|
||||
desc_act = False
|
||||
|
||||
filename = "config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(model_id, filename=filename, revision=revision)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
# FP8 config
|
||||
if data["quantization_config"]["quant_method"] == "fbgemm_fp8":
|
||||
return _FP8QuantizerConfig(
|
||||
activation_scale_ub=data["quantization_config"]["activation_scale_ub"]
|
||||
)
|
||||
|
||||
bits = data["quantization_config"]["bits"]
|
||||
groupsize = data["quantization_config"]["group_size"]
|
||||
# Order is important here, desc_act is missing on some real models
|
||||
quant_method = data["quantization_config"]["quant_method"]
|
||||
checkpoint_format = data["quantization_config"].get("checkpoint_format")
|
||||
sym = data["quantization_config"]["sym"]
|
||||
desc_act = data["quantization_config"]["desc_act"]
|
||||
except Exception:
|
||||
filename = "quantize_config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(
|
||||
model_id, filename=filename, revision=revision
|
||||
)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
bits = data["bits"]
|
||||
groupsize = data["group_size"]
|
||||
sym = data["sym"]
|
||||
desc_act = data["desc_act"]
|
||||
if "version" in data and data["version"] == "GEMM":
|
||||
quant_method = "awq"
|
||||
except Exception:
|
||||
filename = "quant_config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(
|
||||
model_id, filename=filename, revision=revision
|
||||
)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
bits = data["w_bit"]
|
||||
groupsize = data["q_group_size"]
|
||||
desc_act = data["desc_act"]
|
||||
if "version" in data and data["version"] == "GEMM":
|
||||
quant_method = "awq"
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
return _QuantizerConfig(
|
||||
bits=bits,
|
||||
groupsize=groupsize,
|
||||
quant_method=quant_method,
|
||||
checkpoint_format=checkpoint_format,
|
||||
sym=sym,
|
||||
desc_act=desc_act,
|
||||
)
|
||||
|
||||
|
||||
def get_loader(
|
||||
quantize: Optional[str], model_id: str, revision: Optional[str]
|
||||
) -> WeightsLoader:
|
||||
quantizer_config = _get_quantizer_config(model_id, revision)
|
||||
if quantize in {"awq", "gptq"}:
|
||||
from text_generation_server.layers.gptq import GPTQWeightsLoader
|
||||
|
||||
# TODO: improve check once we have one config type per quantize value
|
||||
if not isinstance(quantizer_config, _QuantizerConfig):
|
||||
raise ValueError(
|
||||
f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
|
||||
)
|
||||
|
||||
return GPTQWeightsLoader(
|
||||
bits=quantizer_config.bits,
|
||||
desc_act=quantizer_config.desc_act,
|
||||
groupsize=quantizer_config.groupsize,
|
||||
quant_method=quantizer_config.quant_method,
|
||||
quantize=quantize,
|
||||
sym=quantizer_config.sym,
|
||||
)
|
||||
elif quantize == "bitsandbytes":
|
||||
from text_generation_server.layers.bnb import BNBWeight
|
||||
|
||||
return DefaultWeightsLoader(BNBWeight)
|
||||
elif quantize == "bitsandbytes-fp4":
|
||||
from text_generation_server.layers.bnb import BNBFP4Weight
|
||||
|
||||
return DefaultWeightsLoader(BNBFP4Weight)
|
||||
elif quantize == "bitsandbytes-nf4":
|
||||
from text_generation_server.layers.bnb import BNBNF4Weight
|
||||
|
||||
return DefaultWeightsLoader(BNBNF4Weight)
|
||||
elif quantize == "eetq":
|
||||
from text_generation_server.layers.eetq import EETQWeight
|
||||
|
||||
return DefaultWeightsLoader(EETQWeight)
|
||||
elif quantize == "exl2":
|
||||
from text_generation_server.layers.exl2 import Exl2WeightsLoader
|
||||
|
||||
return Exl2WeightsLoader()
|
||||
elif quantize == "marlin":
|
||||
from text_generation_server.layers.marlin import MarlinWeightsLoader
|
||||
|
||||
# TODO: improve check once we have one config type per quantize value
|
||||
if not isinstance(quantizer_config, _QuantizerConfig):
|
||||
raise ValueError(
|
||||
f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
|
||||
)
|
||||
|
||||
return MarlinWeightsLoader(
|
||||
bits=quantizer_config.bits,
|
||||
is_marlin_24=quantizer_config.checkpoint_format == "marlin_24",
|
||||
)
|
||||
elif quantize == "fp8" or quantize is None:
|
||||
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
|
||||
|
||||
# Since the default for the quantize config is _QuantizerConfig,
|
||||
# we need to add this check to not get an attribute error
|
||||
activation_scale_ub = None
|
||||
if isinstance(quantizer_config, _FP8QuantizerConfig):
|
||||
activation_scale_ub = quantizer_config.activation_scale_ub
|
||||
|
||||
return HybridFP8UnquantLoader(activation_scale_ub, to_fp8=quantize == "fp8")
|
||||
else:
|
||||
raise ValueError(f"Unknown quantization method: {quantize}")
|
@ -1,13 +1,140 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union
|
||||
from safetensors import safe_open, SafetensorError
|
||||
import torch
|
||||
from loguru import logger
|
||||
from huggingface_hub import hf_hub_download
|
||||
import json
|
||||
from text_generation_server.layers.gptq import GPTQParams
|
||||
from text_generation_server.utils.log import log_once
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
from contextlib import contextmanager
|
||||
from pathlib import Path
|
||||
from typing import Dict, List, Optional, Union, Type
|
||||
from safetensors import safe_open
|
||||
from dataclasses import dataclass
|
||||
|
||||
from text_generation_server.utils.import_utils import SYSTEM
|
||||
|
||||
|
||||
class WeightsLoader(ABC):
|
||||
"""
|
||||
Instances of this type implement higher-level weight loading.
|
||||
|
||||
At a low-level, every weight is stored in the Safetensors format.
|
||||
The interpretation of weights may be different however, for instance
|
||||
could be packed, quantized weights. Loaders are responsible for
|
||||
interpreting the raw tensors, sharding tensors in a manner compatible
|
||||
with the format, etc.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply without tensor paralllism.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: "Weights",
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
"""
|
||||
Get the packed weights at the given prefix with column-splitting for
|
||||
tensor parallelism. This method should be used when multiple different
|
||||
weights are packed into a tensor, for instance, query/key/value
|
||||
weights or a gate/up projection.
|
||||
|
||||
The `block_sizes` determines the proportions of the packed tensors.
|
||||
The columns are split in equally sized blocks when `block_sizes` is an
|
||||
`int`, or in blocks proportional given to the sizes. For instance
|
||||
`[2, 1, 1]` will divide an input with dimensionality `1024` in
|
||||
`[512, 256, 256]`.
|
||||
"""
|
||||
...
|
||||
|
||||
def get_weights_col(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get weights at the given prefix and apply column-splitting for tensor
|
||||
paralllism.
|
||||
"""
|
||||
return weights.get_multi_weights_col([prefix], 0)
|
||||
|
||||
@abstractmethod
|
||||
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
|
||||
"""
|
||||
Get the weights at the given prefixes, column-split them for tensor
|
||||
parallelim, and then concatenate the weights along the given dimension.
|
||||
"""
|
||||
...
|
||||
|
||||
@abstractmethod
|
||||
def get_weights_row(self, weights: "Weights", prefix: str):
|
||||
"""
|
||||
Get the weights at the given prefix and apply row-splitting for tensor
|
||||
parallism.
|
||||
"""
|
||||
...
|
||||
|
||||
|
||||
class Weight(ABC):
|
||||
"""Instances of this type implement unquantized/quantized/to-be
|
||||
quantized weights."""
|
||||
|
||||
@abstractmethod
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
"""Create a linear layer from this weight."""
|
||||
...
|
||||
|
||||
|
||||
@dataclass
|
||||
class UnquantizedWeight(Weight):
|
||||
weight: torch.Tensor
|
||||
|
||||
def get_linear(self, bias: torch.Tensor):
|
||||
from text_generation_server.layers.linear import FastLinear, FastLinearROCm
|
||||
|
||||
if SYSTEM == "rocm":
|
||||
return FastLinearROCm(self.weight, bias)
|
||||
else:
|
||||
return FastLinear(self.weight, bias)
|
||||
|
||||
|
||||
class DefaultWeightsLoader(WeightsLoader):
|
||||
"""Weight loader that loads (unquantized) Torch tensors."""
|
||||
|
||||
def __init__(self, weight_class: Type[UnquantizedWeight]):
|
||||
"""Create a loader. Weights will be wrapped using the given `weights_class`,
|
||||
normally this will be `UnquantizedWeight`, but a quantizer-specific class
|
||||
such as `Fp8Weight` can be used to quantize the weights during loading.
|
||||
"""
|
||||
self.weight_class = weight_class
|
||||
|
||||
"""
|
||||
Loader that uses tensors as-is with the exception of applying sharding
|
||||
and/or concatenation.
|
||||
"""
|
||||
|
||||
def get_weights(self, weights: "Weights", prefix: str):
|
||||
return weights.get_tensor(f"{prefix}.weight")
|
||||
|
||||
def get_weights_col_packed(
|
||||
self,
|
||||
weights: "Weights",
|
||||
prefix: str,
|
||||
block_sizes: Union[int, List[int]],
|
||||
):
|
||||
|
||||
return self.weight_class(
|
||||
weights.get_packed_sharded(
|
||||
f"{prefix}.weight", dim=0, block_sizes=block_sizes
|
||||
),
|
||||
)
|
||||
|
||||
def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
|
||||
w = [weights.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
|
||||
return self.weight_class(torch.cat(w, dim=dim))
|
||||
|
||||
def get_weights_row(self, weights: "Weights", prefix: str):
|
||||
return self.weight_class(
|
||||
weights.get_sharded(f"{prefix}.weight", dim=1),
|
||||
)
|
||||
|
||||
|
||||
class Weights:
|
||||
@ -17,6 +144,7 @@ class Weights:
|
||||
device,
|
||||
dtype,
|
||||
process_group,
|
||||
weights_loader: WeightsLoader,
|
||||
aliases: Optional[Dict[str, List[str]]] = None,
|
||||
prefix: Optional[str] = None,
|
||||
):
|
||||
@ -37,6 +165,7 @@ class Weights:
|
||||
self.dtype = dtype
|
||||
self.process_group = process_group
|
||||
self.prefix = prefix
|
||||
self.weights_loader = weights_loader
|
||||
self._handles = {}
|
||||
|
||||
def _get_handle(self, filename):
|
||||
@ -69,23 +198,39 @@ class Weights:
|
||||
slice_ = f.get_slice(tensor_name)
|
||||
return slice_
|
||||
|
||||
def _has_tensor(self, tensor_name: str):
|
||||
try:
|
||||
self.get_filename(tensor_name)
|
||||
except Exception:
|
||||
return False
|
||||
return True
|
||||
|
||||
def get_shape(self, tensor_name: str):
|
||||
return self._get_slice(tensor_name).get_shape()
|
||||
|
||||
def get_tensor(self, tensor_name: str, to_device=True):
|
||||
def get_tensor(self, tensor_name: str, to_device=True, to_dtype=True):
|
||||
filename, tensor_name = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
tensor = f.get_tensor(tensor_name)
|
||||
# Special case for gptq which shouldn't convert
|
||||
# u4 which are disguised as int32. Exl2 uses int16
|
||||
# as well.
|
||||
if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
|
||||
# as well. FP8 uses torch.float8_e4m3fn
|
||||
if (
|
||||
tensor.dtype
|
||||
not in [
|
||||
torch.float8_e4m3fn,
|
||||
torch.int16,
|
||||
torch.int32,
|
||||
torch.int64,
|
||||
]
|
||||
and to_dtype
|
||||
):
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
if to_device:
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
||||
def get_partial_sharded(self, tensor_name: str, dim: int):
|
||||
def get_partial_sharded(self, tensor_name: str, dim: int, to_dtype=True):
|
||||
filename, tensor_name = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
slice_ = f.get_slice(tensor_name)
|
||||
@ -105,12 +250,16 @@ class Weights:
|
||||
raise NotImplementedError("Let's make that generic when needed")
|
||||
# Special case for gptq which shouldn't convert
|
||||
# u4 which are disguised as int32. exl2 uses int16.
|
||||
if tensor.dtype not in (torch.int16, torch.int32):
|
||||
# FP8 uses torch.float8_e4m3fn.
|
||||
if (
|
||||
tensor.dtype not in (torch.float8_e4m3fn, torch.int16, torch.int32)
|
||||
and to_dtype
|
||||
):
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
||||
def get_sharded(self, tensor_name: str, dim: int):
|
||||
def get_sharded(self, tensor_name: str, dim: int, to_dtype=True):
|
||||
filename, tensor_name = self.get_filename(tensor_name)
|
||||
f = self._get_handle(filename)
|
||||
slice_ = f.get_slice(tensor_name)
|
||||
@ -119,10 +268,14 @@ class Weights:
|
||||
assert (
|
||||
size % world_size == 0
|
||||
), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
|
||||
return self.get_partial_sharded(tensor_name, dim)
|
||||
return self.get_partial_sharded(tensor_name, dim, to_dtype=to_dtype)
|
||||
|
||||
def get_packed_sharded(
|
||||
self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]]
|
||||
self,
|
||||
tensor_name: str,
|
||||
dim: int,
|
||||
block_sizes: Union[int, List[int]],
|
||||
to_dtype=True,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
Get a shard from a tensor that packs multiple tensors.
|
||||
@ -168,308 +321,51 @@ class Weights:
|
||||
tensor = tensor.to(device=self.device)
|
||||
|
||||
# Avoid casting quantizer dtypes.
|
||||
if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
|
||||
if (
|
||||
tensor.dtype
|
||||
not in [
|
||||
torch.float8_e4m3fn,
|
||||
torch.int16,
|
||||
torch.int32,
|
||||
torch.int64,
|
||||
]
|
||||
and to_dtype
|
||||
):
|
||||
tensor = tensor.to(dtype=self.dtype)
|
||||
|
||||
return tensor
|
||||
|
||||
def get_weights(self, prefix: str):
|
||||
return self.weights_loader.get_weights(self, prefix)
|
||||
|
||||
def get_weights_col_packed_qkv(
|
||||
self,
|
||||
prefix: str,
|
||||
quantize: str,
|
||||
num_heads: int,
|
||||
num_key_value_heads: int,
|
||||
):
|
||||
return self.get_weights_col_packed(
|
||||
prefix, quantize, [num_heads, num_key_value_heads, num_key_value_heads]
|
||||
prefix, [num_heads, num_key_value_heads, num_key_value_heads]
|
||||
)
|
||||
|
||||
def get_weights_col_packed_gate_up(self, prefix: str, quantize: str):
|
||||
return self.get_weights_col_packed(prefix, quantize, 2)
|
||||
def get_weights_col_packed_gate_up(self, prefix: str):
|
||||
return self.get_weights_col_packed(prefix, 2)
|
||||
|
||||
def get_weights_col_packed(
|
||||
self, prefix: str, quantize: str, block_sizes: Union[int, List[int]]
|
||||
):
|
||||
def get_weights_col_packed(self, prefix: str, block_sizes: Union[int, List[int]]):
|
||||
"""
|
||||
Highly specific when the underlying tensor is a simple cat of Q,K,V instead of being
|
||||
already alternating Q,K,V within the main tensor.
|
||||
|
||||
The columns are split in equally sized blocks when blocks is an `int`, or
|
||||
in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
|
||||
divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
|
||||
convenient for e.g. splitting QKV without knowing the storage details of
|
||||
quantized weights.
|
||||
"""
|
||||
if quantize in ["gptq", "awq"]:
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
return self.weights_loader.get_weights_col_packed(self, prefix, block_sizes)
|
||||
|
||||
try:
|
||||
qweight = self.get_packed_sharded(
|
||||
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight, make sure the model is already quantized."
|
||||
)
|
||||
scales = self.get_packed_sharded(
|
||||
f"{prefix}.scales", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
scales = scales.to(dtype=self.dtype)
|
||||
def get_weights_col(self, prefix: str):
|
||||
return self.weights_loader.get_weights_col(self, prefix)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
if can_use_gptq_marlin(gptq_params, quantize):
|
||||
g_idx = self.get_tensor(f"{prefix}.g_idx")
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
desc_act=gptq_params.desc_act,
|
||||
groupsize=gptq_params.groupsize,
|
||||
sym=gptq_params.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
qzeros = self.get_packed_sharded(
|
||||
f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
if quantize == "gptq" and gptq_params.quant_method == "gptq":
|
||||
g_idx = self.get_tensor(f"{prefix}.g_idx")
|
||||
elif quantize == "gptq" and gptq_params.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // gptq_params.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// gptq_params.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
weight = GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
groupsize=gptq_params.groupsize,
|
||||
use_exllama=False,
|
||||
)
|
||||
elif quantize == "marlin":
|
||||
from text_generation_server.layers.marlin import (
|
||||
GPTQMarlin24Weight,
|
||||
MarlinWeight,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
||||
if is_marlin_24:
|
||||
B = self.get_packed_sharded(
|
||||
f"{prefix}.B_24", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
B_meta = self.get_packed_sharded(
|
||||
f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
s = self.get_packed_sharded(
|
||||
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
weight = GPTQMarlin24Weight(
|
||||
B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
|
||||
)
|
||||
else:
|
||||
B = self.get_packed_sharded(
|
||||
f"{prefix}.B", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
s = self.get_packed_sharded(
|
||||
f"{prefix}.s", dim=1, block_sizes=block_sizes
|
||||
)
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
else:
|
||||
weight = self.get_packed_sharded(
|
||||
f"{prefix}.weight", dim=0, block_sizes=block_sizes
|
||||
)
|
||||
return weight
|
||||
|
||||
def get_weights_col(self, prefix: str, quantize: str):
|
||||
if quantize == "exl2":
|
||||
from text_generation_server.layers.exl2 import Exl2Weight
|
||||
|
||||
try:
|
||||
q_weight = self.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = self.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = self.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = self.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
|
||||
return self.get_multi_weights_col([prefix], quantize, 0)
|
||||
|
||||
def get_multi_weights_col(self, prefixes: List[str], quantize: str, dim: int):
|
||||
if quantize == "exl2":
|
||||
raise ValueError("get_multi_weights_col is not supported for exl2")
|
||||
elif quantize in ["gptq", "awq"]:
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
try:
|
||||
qweight = torch.cat(
|
||||
[self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
scales = torch.cat(
|
||||
[self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
if can_use_gptq_marlin(gptq_params, quantize):
|
||||
w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
g_idx = w[0]
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
desc_act=gptq_params.desc_act,
|
||||
groupsize=gptq_params.groupsize,
|
||||
sym=gptq_params.sym,
|
||||
sharded_infeatures=False,
|
||||
)
|
||||
|
||||
qzeros = torch.cat(
|
||||
[self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
from text_generation_server.layers.gptq import HAS_EXLLAMA
|
||||
|
||||
use_exllama = (
|
||||
gptq_params.bits == 4
|
||||
and HAS_EXLLAMA
|
||||
and quantize == "gptq"
|
||||
and not gptq_params.desc_act
|
||||
)
|
||||
|
||||
if quantize == "gptq" and gptq_params.quant_method == "gptq":
|
||||
w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
|
||||
for w2 in w[1:]:
|
||||
torch.testing.assert_close(w2, w[0])
|
||||
g_idx = w[0]
|
||||
elif quantize == "gptq" and gptq_params.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // gptq_params.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// gptq_params.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
else:
|
||||
g_idx = None
|
||||
|
||||
weight = GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
groupsize=gptq_params.groupsize,
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
elif quantize == "marlin":
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.marlin import (
|
||||
GPTQMarlin24Weight,
|
||||
MarlinWeight,
|
||||
)
|
||||
|
||||
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
||||
if is_marlin_24:
|
||||
try:
|
||||
B = torch.cat(
|
||||
[self.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
B_meta = torch.cat(
|
||||
[self.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
s = torch.cat(
|
||||
[self.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
weight = GPTQMarlin24Weight(
|
||||
B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
|
||||
)
|
||||
else:
|
||||
try:
|
||||
B = torch.cat(
|
||||
[self.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight, make sure the model is already quantized"
|
||||
)
|
||||
s = torch.cat(
|
||||
[self.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
|
||||
)
|
||||
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
|
||||
else:
|
||||
w = [self.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
|
||||
weight = torch.cat(w, dim=dim)
|
||||
|
||||
return weight
|
||||
def get_multi_weights_col(self, prefixes: List[str], dim: int):
|
||||
return self.weights_loader.get_multi_weights_col(self, prefixes, dim)
|
||||
|
||||
def get_tensor_shard(self, var, dim):
|
||||
world_size = self.process_group.size()
|
||||
@ -487,318 +383,22 @@ class Weights:
|
||||
tensor = tensor.to(device=self.device)
|
||||
return tensor
|
||||
|
||||
def get_multi_weights_row(self, prefix: str, quantize: str):
|
||||
if quantize == "exl2":
|
||||
from text_generation_server.layers.exl2 import Exl2Weight
|
||||
def get_weights_row(self, prefix: str):
|
||||
return self.weights_loader.get_weights_row(self, prefix)
|
||||
|
||||
@contextmanager
|
||||
def use_loader(self, weights_loader: WeightsLoader):
|
||||
"""
|
||||
This method is a context manager that can be used to use `Weights` with
|
||||
a different loader for the duration of the context.
|
||||
"""
|
||||
|
||||
old_loader = self.weights_loader
|
||||
self.weights_loader = weights_loader
|
||||
try:
|
||||
q_weight = self.get_tensor(f"{prefix}.q_weight")
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
q_scale = self.get_tensor(f"{prefix}.q_scale")
|
||||
q_invperm = self.get_tensor(f"{prefix}.q_invperm")
|
||||
q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
|
||||
q_groups = self.get_tensor(f"{prefix}.q_groups")
|
||||
|
||||
return Exl2Weight(
|
||||
q_weight=q_weight,
|
||||
q_scale=q_scale,
|
||||
q_invperm=q_invperm,
|
||||
q_scale_max=q_scale_max,
|
||||
q_groups=q_groups,
|
||||
)
|
||||
|
||||
elif quantize == "gptq":
|
||||
from text_generation_server.layers.marlin import (
|
||||
can_use_gptq_marlin,
|
||||
repack_gptq_for_marlin,
|
||||
)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
if can_use_gptq_marlin(gptq_params, quantize):
|
||||
log_once(logger.info, "Using GPTQ-Marlin kernels")
|
||||
try:
|
||||
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
f"Cannot load `{quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
if gptq_params.desc_act or gptq_params.groupsize == -1:
|
||||
scales = self.get_tensor(f"{prefix}.scales")
|
||||
else:
|
||||
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
||||
|
||||
sharded_in_features = self.process_group.size() > 1
|
||||
|
||||
return repack_gptq_for_marlin(
|
||||
qweight=qweight,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
desc_act=gptq_params.desc_act,
|
||||
groupsize=gptq_params.groupsize,
|
||||
sym=gptq_params.sym,
|
||||
sharded_infeatures=sharded_in_features,
|
||||
)
|
||||
|
||||
use_exllama = True
|
||||
if gptq_params.bits != 4:
|
||||
use_exllama = False
|
||||
|
||||
if gptq_params.desc_act:
|
||||
log_once(logger.warning, "Disabling exllama because desc_act=True")
|
||||
use_exllama = False
|
||||
|
||||
try:
|
||||
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
|
||||
)
|
||||
|
||||
if gptq_params.quant_method == "gptq":
|
||||
g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
|
||||
elif gptq_params.quant_method == "awq":
|
||||
g_idx = None
|
||||
|
||||
if self.process_group.size() > 1:
|
||||
if g_idx is not None:
|
||||
if (
|
||||
not torch.equal(
|
||||
g_idx.cpu(),
|
||||
torch.tensor(
|
||||
[
|
||||
i // gptq_params.groupsize
|
||||
for i in range(g_idx.shape[0])
|
||||
],
|
||||
dtype=torch.int32,
|
||||
),
|
||||
)
|
||||
and not (g_idx == 0).all()
|
||||
):
|
||||
# Exllama implementation does not support row tensor parallelism with act-order, as
|
||||
# it would require to reorder input activations that are split unto several GPUs
|
||||
use_exllama = False
|
||||
|
||||
from text_generation_server.layers.gptq import (
|
||||
HAS_EXLLAMA,
|
||||
CAN_EXLLAMA,
|
||||
GPTQWeight,
|
||||
)
|
||||
|
||||
if use_exllama:
|
||||
if not HAS_EXLLAMA:
|
||||
if CAN_EXLLAMA:
|
||||
log_once(
|
||||
logger.warning,
|
||||
"Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
|
||||
)
|
||||
use_exllama = False
|
||||
else:
|
||||
log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")
|
||||
|
||||
if use_exllama and gptq_params.groupsize != -1:
|
||||
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
|
||||
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
||||
else:
|
||||
qzeros = self.get_tensor(f"{prefix}.qzeros")
|
||||
scales = self.get_tensor(f"{prefix}.scales")
|
||||
|
||||
if use_exllama and g_idx is not None:
|
||||
g_idx = g_idx - g_idx[0]
|
||||
|
||||
if gptq_params.quant_method == "awq":
|
||||
log_once(
|
||||
logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
|
||||
)
|
||||
from text_generation_server.layers.awq.conversion_utils import (
|
||||
fast_awq_to_gptq,
|
||||
)
|
||||
|
||||
qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
|
||||
if use_exllama:
|
||||
g_idx = None
|
||||
else:
|
||||
g_idx = (
|
||||
torch.arange(
|
||||
qweight.shape[0] * (32 // gptq_params.bits),
|
||||
device=qweight.device,
|
||||
)
|
||||
// gptq_params.groupsize
|
||||
).to(dtype=torch.int32)
|
||||
|
||||
weight = GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
groupsize=gptq_params.groupsize,
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
elif quantize == "awq":
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
|
||||
try:
|
||||
qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `awq` weight, make sure the model is already quantized"
|
||||
)
|
||||
|
||||
qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
|
||||
scales = self.get_sharded(f"{prefix}.scales", dim=0)
|
||||
g_idx = None
|
||||
use_exllama = False
|
||||
|
||||
weight = GPTQWeight(
|
||||
qweight=qweight,
|
||||
qzeros=qzeros,
|
||||
scales=scales,
|
||||
g_idx=g_idx,
|
||||
bits=gptq_params.bits,
|
||||
groupsize=gptq_params.groupsize,
|
||||
use_exllama=use_exllama,
|
||||
)
|
||||
elif quantize == "marlin":
|
||||
from text_generation_server.layers.gptq import GPTQWeight
|
||||
from text_generation_server.layers.marlin import (
|
||||
GPTQMarlin24Weight,
|
||||
MarlinWeight,
|
||||
)
|
||||
|
||||
is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
|
||||
if is_marlin_24:
|
||||
try:
|
||||
B = self.get_sharded(f"{prefix}.B_24", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
B_meta = self.get_sharded(f"{prefix}.B_meta", dim=0)
|
||||
num_groups = self._get_slice(f"{prefix}.s").get_shape()[0]
|
||||
if num_groups == 1:
|
||||
# The number of groups is 1 when groupsize == -1. share
|
||||
# scales between all shards in this case.
|
||||
s = self.get_tensor(f"{prefix}.s")
|
||||
else:
|
||||
s = self.get_sharded(f"{prefix}.s", dim=0)
|
||||
|
||||
gptq_params = self._get_gptq_params()
|
||||
weight = GPTQMarlin24Weight(
|
||||
B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
|
||||
)
|
||||
else:
|
||||
try:
|
||||
B = self.get_sharded(f"{prefix}.B", dim=0)
|
||||
except RuntimeError:
|
||||
raise RuntimeError(
|
||||
"Cannot load `marlin` weight, make sure the model is already quantized."
|
||||
)
|
||||
|
||||
num_groups = self._get_slice(f"{prefix}.s").get_shape()[0]
|
||||
if num_groups == 1:
|
||||
# The number of groups is 1 when groupsize == -1. share
|
||||
# scales between all shards in this case.
|
||||
s = self.get_tensor(f"{prefix}.s")
|
||||
else:
|
||||
s = self.get_sharded(f"{prefix}.s", dim=0)
|
||||
weight = MarlinWeight(B=B, s=s)
|
||||
else:
|
||||
weight = self.get_sharded(f"{prefix}.weight", dim=1)
|
||||
return weight
|
||||
|
||||
def _get_gptq_params(self) -> GPTQParams:
|
||||
try:
|
||||
bits = self.get_tensor("gptq_bits").item()
|
||||
groupsize = self.get_tensor("gptq_groupsize").item()
|
||||
checkpoint_format = getattr(self, "gptq_checkpoint_format", None)
|
||||
desc_act = False
|
||||
sym = False
|
||||
quant_method = "gptq"
|
||||
except (SafetensorError, RuntimeError) as e:
|
||||
try:
|
||||
bits = self.gptq_bits
|
||||
groupsize = self.gptq_groupsize
|
||||
checkpoint_format = getattr(self, "gptq_checkpoint_format", None)
|
||||
desc_act = getattr(self, "gptq_desc_act", False)
|
||||
quant_method = getattr(self, "quant_method", "gptq")
|
||||
sym = getattr(self, "sym", True)
|
||||
except Exception:
|
||||
raise e
|
||||
|
||||
return GPTQParams(
|
||||
bits=bits,
|
||||
checkpoint_format=checkpoint_format,
|
||||
desc_act=desc_act,
|
||||
groupsize=groupsize,
|
||||
quant_method=quant_method,
|
||||
sym=sym,
|
||||
)
|
||||
|
||||
def _set_gptq_params(self, model_id, revision):
|
||||
filename = "config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(
|
||||
model_id, filename=filename, revision=revision
|
||||
)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
self.gptq_bits = data["quantization_config"]["bits"]
|
||||
self.gptq_groupsize = data["quantization_config"]["group_size"]
|
||||
# Order is important here, desc_act is missing on some real models
|
||||
self.quant_method = data["quantization_config"]["quant_method"]
|
||||
self.gptq_checkpoint_format = data["quantization_config"].get(
|
||||
"checkpoint_format"
|
||||
)
|
||||
self.gptq_sym = data["quantization_config"]["sym"]
|
||||
self.gptq_desc_act = data["quantization_config"]["desc_act"]
|
||||
except Exception:
|
||||
filename = "quantize_config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(
|
||||
model_id, filename=filename, revision=revision
|
||||
)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
self.gptq_bits = data["bits"]
|
||||
self.gptq_groupsize = data["group_size"]
|
||||
self.gptq_sym = data["sym"]
|
||||
self.gptq_desc_act = data["desc_act"]
|
||||
if "version" in data and data["version"] == "GEMM":
|
||||
self.quant_method = "awq"
|
||||
except Exception:
|
||||
filename = "quant_config.json"
|
||||
try:
|
||||
if os.path.exists(os.path.join(model_id, filename)):
|
||||
filename = os.path.join(model_id, filename)
|
||||
else:
|
||||
filename = hf_hub_download(
|
||||
model_id, filename=filename, revision=revision
|
||||
)
|
||||
with open(filename, "r") as f:
|
||||
data = json.load(f)
|
||||
self.gptq_bits = data["w_bit"]
|
||||
self.gptq_groupsize = data["q_group_size"]
|
||||
self.gptq_desc_act = data["desc_act"]
|
||||
if "version" in data and data["version"] == "GEMM":
|
||||
self.quant_method = "awq"
|
||||
except Exception:
|
||||
pass
|
||||
yield
|
||||
finally:
|
||||
self.weights_loader = old_loader
|
||||
|
||||
|
||||
def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]:
|
||||
|
@ -155,7 +155,7 @@ def check_openapi(check: bool):
|
||||
filename,
|
||||
],
|
||||
capture_output=True,
|
||||
).stdout.decode()
|
||||
).stdout.decode("utf-8")
|
||||
os.remove(tmp_filename)
|
||||
|
||||
if diff:
|
||||
@ -164,10 +164,26 @@ def check_openapi(check: bool):
|
||||
"OpenAPI documentation is not up-to-date, run `python update_doc.py` in order to update it"
|
||||
)
|
||||
|
||||
return True
|
||||
else:
|
||||
os.rename(tmp_filename, filename)
|
||||
print("OpenAPI documentation updated.")
|
||||
errors = subprocess.run(
|
||||
[
|
||||
"swagger-cli",
|
||||
# allow for trailing whitespace since it's not significant
|
||||
# and the precommit hook will remove it
|
||||
"validate",
|
||||
filename,
|
||||
],
|
||||
capture_output=True,
|
||||
).stderr.decode("utf-8")
|
||||
# The openapi specs fails on `exclusive_minimum` which is expected to be a boolean where
|
||||
# utoipa outputs a value instead: https://github.com/juhaku/utoipa/issues/969
|
||||
if not errors.startswith("Swagger schema validation failed."):
|
||||
print(errors)
|
||||
raise Exception(
|
||||
f"OpenAPI documentation is invalid, `swagger-cli validate` showed some error:\n {errors}"
|
||||
)
|
||||
return True
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user