feat: load and query model

This commit is contained in:
drbh 2024-05-08 16:21:44 -04:00 committed by Nicolas Patry
parent e3d765645a
commit 5fd72ed06c
14 changed files with 1398 additions and 20 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

View File

@ -0,0 +1,39 @@
import pytest
import requests
import io
import base64
@pytest.fixture(scope="module")
def flash_pali_gemma_handle(launcher):
with launcher(
"Tinkering/test-bvhf",
num_shard=1,
max_input_length=4000,
max_total_tokens=4096,
) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_pali_gemma(flash_pali_gemma_handle):
await flash_pali_gemma_handle.health(300)
return flash_pali_gemma_handle.client
def get_cow_beach():
with open("integration-tests/images/cow_beach.png", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
return f"data:image/png;base64,{encoded_string.decode('utf-8')}"
@pytest.mark.asyncio
@pytest.mark.private
async def test_flash_pali_gemma(flash_pali_gemma, response_snapshot):
cow = get_cow_beach()
inputs = f"Where is the cow standing?\n![]({cow})"
response = await flash_pali_gemma.generate(inputs, max_new_tokens=20)
# TODO: update this! this is incorrect and just to show the current state of the test
assert response.generated_text == ' - HDS'
# assert response.generated_text == "\nbeach"

View File

@ -118,6 +118,22 @@ impl Idefics2 {
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")]
pub struct Paligemma {}
impl Paligemma {
pub fn get_number_of_features(&self, _height: usize, _width: usize) -> usize {
// TODO: improve to calculate based on height and width
// 224 = 256 image tokens
// 448 = 1024 image tokens
// 896 = 4096 image tokens
256
}
}
#[derive(Clone, Debug, Serialize, Deserialize)]
#[serde(tag = "model_type")]
#[serde(rename_all = "snake_case")]
@ -139,6 +155,7 @@ pub enum Config {
Phi3,
Llama,
Baichuan,
Paligemma(Paligemma),
Gemma,
Cohere,
Drbx,

View File

@ -540,6 +540,30 @@ fn prepare_input(
inputs = modified_inputs;
tokenizer_query
}
Some(Config::Paligemma(config)) => {
let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len());
let mut start = 0;
for chunk in RE.find_iter(&inputs) {
let chunk_start = chunk.start();
let chunk_end = chunk.end();
if chunk_start != start {
modified_inputs.push_str(&inputs[start..chunk_start]);
tokenizer_query.push_str(&inputs[start..chunk_start]);
}
let (image_uri, height, width) = fetch_image(&inputs[chunk_start..chunk_end])?;
let slots = config.get_number_of_features(height, width);
tokenizer_query.push_str(&"<image>".repeat(slots));
modified_inputs.push_str(&image_uri);
start = chunk_end;
}
if start != inputs.len() - 1 {
modified_inputs.push_str(&inputs[start..]);
tokenizer_query.push_str(&inputs[start..]);
}
inputs = modified_inputs;
tokenizer_query
}
Some(Config::Idefics2(config)) => {
let mut modified_inputs = String::with_capacity(inputs.len());
let mut tokenizer_query = String::with_capacity(inputs.len());

View File

@ -75,6 +75,7 @@ try:
from text_generation_server.models.flash_phi import FlashPhi
from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
from text_generation_server.models.flash_dbrx import FlashDbrx
from text_generation_server.models.flash_pali_gemma import FlashPaliGemma
from text_generation_server.utils.flash_attn import HAS_FLASH_ATTN_V2_CUDA
except ImportError as e:
@ -433,6 +434,16 @@ def get_model(
trust_remote_code=trust_remote_code,
)
if model_type == "paligemma":
return FlashPaliGemma(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
if model_type == "cohere":
if FLASH_ATTENTION:
return FlashCohere(

View File

@ -295,9 +295,9 @@ class GemmaMLP(nn.Module):
class FlashGemmaLayer(nn.Module):
def __init__(self, layer_id, config, weights):
def __init__(self, prefix, layer_id, config, weights):
super().__init__()
prefix = f"model.layers.{layer_id}"
prefix = f"{prefix or ''}model.layers.{layer_id}"
self.self_attn = FlashGemmaAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
@ -351,21 +351,30 @@ class FlashGemmaLayer(nn.Module):
class FlashGemmaModel(torch.nn.Module):
def __init__(self, config, weights):
def __init__(self, prefix, config, weights):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
embed_norm = config.hidden_size**0.5
pvalue = f"{prefix + '.' if prefix else ''}model.embed_tokens"
self.embed_tokens = TensorParallelEmbedding(
prefix="model.embed_tokens", weights=weights
prefix=pvalue,
weights=weights,
# limit embed_tokens.weight size to the config.vocab_size
)
self.embed_tokens.weight = torch.nn.Parameter(
self.embed_tokens.weight[: config.vocab_size, : config.hidden_size]
)
# TODO: double check why this is needed
self.embed_tokens.weight *= embed_norm
self.layers = nn.ModuleList(
[
FlashGemmaLayer(
f"{prefix + '.' if prefix else ''}",
layer_id,
config,
weights,
@ -374,7 +383,9 @@ class FlashGemmaModel(torch.nn.Module):
]
)
self.norm = GemmaFastRMSNorm.load(
prefix="model.norm", weights=weights, eps=config.rms_norm_eps
prefix=f"{prefix + '.' if prefix else ''}model.norm",
weights=weights,
eps=config.rms_norm_eps,
)
self.gradient_checkpointing = False
@ -385,7 +396,8 @@ class FlashGemmaModel(torch.nn.Module):
def forward(
self,
input_ids: torch.Tensor,
# input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -394,7 +406,7 @@ class FlashGemmaModel(torch.nn.Module):
input_lengths: torch.Tensor,
max_s: int,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
# Get rotary cos and sin for this forward
# Avoid to index in each layer
@ -423,13 +435,15 @@ class FlashGemmaModel(torch.nn.Module):
class FlashGemmaForCausalLM(torch.nn.Module):
def __init__(self, config, weights):
def __init__(self, prefix, config, weights):
super().__init__()
self.model = FlashGemmaModel(config, weights)
self.config = config
self.model = FlashGemmaModel(prefix, config, weights)
prefix = f"{prefix + '.' if prefix else ''}model.embed_tokens"
prefix = prefix if config.tie_word_embeddings else "lm_head"
self.lm_head = SpeculativeHead.load(
config,
prefix="model.embed_tokens" if config.tie_word_embeddings else "lm_head",
prefix=prefix,
weights=weights,
)
@ -445,8 +459,9 @@ class FlashGemmaForCausalLM(torch.nn.Module):
max_s: int,
lm_head_indices: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(
input_ids,
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,

View File

@ -0,0 +1,264 @@
# coding=utf-8
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
from torch import nn
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils.layers import TensorParallelColumnLinear
from text_generation_server.models.custom_modeling.vlm import (
load_text_model,
load_vision_model,
)
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
GemmaConfig,
)
# TODO: prefer using the following config classes
# * instead of the hack inside of the gemma modeling file
class VisionConfig(PretrainedConfig):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
model_type: str,
num_attention_heads: int,
num_hidden_layers: int,
num_image_tokens: int,
patch_size: int,
projection_dim: int,
projector_hidden_act: str,
vision_use_head: bool,
vocab_size: int,
quantize: Optional[str] = None,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_image_tokens = num_image_tokens
self.patch_size = patch_size
self.projection_dim = projection_dim
self.projector_hidden_act = projector_hidden_act
self.vision_use_head = vision_use_head
self.vocab_size = vocab_size
self.quantize = quantize
class PaliTextConfig(PretrainedConfig):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
model_type: str,
num_attention_heads: int,
num_hidden_layers: int,
num_image_tokens: int,
num_key_value_heads: int,
torch_dtype: str,
vocab_size: int,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_image_tokens = num_image_tokens
self.num_key_value_heads = num_key_value_heads
self.torch_dtype = torch_dtype
self.vocab_size = vocab_size
class PaliGemmaConfig(PretrainedConfig):
def __init__(
self,
vocab_size=257216,
hidden_size=2048,
intermediate_size=24576,
num_hidden_layers=28,
num_attention_heads=16,
num_key_value_heads=16,
head_dim=256,
hidden_act="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
bos_token_id=2,
eos_token_id=1,
tie_word_embeddings=True,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
text_config=None,
vision_config=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.head_dim = head_dim
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.text_config = GemmaConfig(
hidden_size=2048,
intermediate_size=16384,
model_type="gemma",
num_attention_heads=8,
num_hidden_layers=18,
num_image_tokens=256,
num_key_value_heads=1,
torch_dtype="float32",
vocab_size=257216,
)
self.vision_config = VisionConfig(
hidden_size=1152,
intermediate_size=4304,
model_type="siglip_vision_model",
num_attention_heads=16,
num_hidden_layers=27,
num_image_tokens=256,
patch_size=14,
projection_dim=2048,
projector_hidden_act="gelu_fast",
vision_use_head=False,
vocab_size=257152,
)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
class FlashPaliGemmaForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
self.vision_tower = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
).to(weights.device, weights.dtype)
self.multi_modal_projector = TensorParallelColumnLinear.load(
config,
prefix="multi_modal_projector.linear",
weights=weights,
bias=True,
).to(weights.device, weights.dtype)
self.vocab_size = config.vocab_size
self.config = config
self.language_model = load_text_model(
prefix=prefix,
config=config,
weights=weights,
).to(weights.device, weights.dtype)
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
def _merge_input_ids_with_image_features(
self, image_features, inputs_embeds, input_ids
):
"""In place merges in vision_embeddings with inputs_embeds."""
mask = input_ids == self.config.image_token_index
# Let's pray we have enabled enough slots !
try:
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
except Exception as e:
raise RuntimeError(
f"Cannot fill images right now. If error happens at warmup, make sure you have enough `--max-input-tokens` to handle images. If error happens at regular runtime, please fill in an issue: {e}"
)
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
pixel_attention_mask=None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
if pixel_values is not None:
pixel_values = pixel_values.to(inputs_embeds.device, inputs_embeds.dtype)
# merge text and images
if pixel_values is not None and len(pixel_values) > 0:
image_outputs = self.vision_tower(pixel_values)
selected_image_feature = image_outputs.last_hidden_state
image_features = self.multi_modal_projector(selected_image_feature)
# TODO: make sure to handle the specialized attention mask correctly
inputs_embeds = self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids
)
hidden_states = self.language_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.language_model.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -0,0 +1,578 @@
from typing import Optional, Tuple, Union
import math
import torch
from torch import nn
from transformers.activations import ACT2FN
from transformers.modeling_attn_mask_utils import (
_create_4d_causal_attention_mask,
_prepare_4d_attention_mask,
)
from transformers.modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
ImageClassifierOutput,
)
from transformers import SiglipConfig, SiglipTextConfig, SiglipVisionConfig
from text_generation_server.utils.layers import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
class SiglipVisionEmbeddings(nn.Module):
def __init__(self, prefix, config: SiglipVisionConfig, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.patch_embedding.bias = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.bias"), requires_grad=False
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches
self.position_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.position_embedding", weights=weights
)
# TODO: remove this hack! figure out why off by one
self.position_embedding.weight = torch.nn.Parameter(
self.position_embedding.weight[:256, :]
)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions, device=weights.device).expand((1, -1)),
persistent=False,
)
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
patch_embeds = self.patch_embedding(
pixel_values
) # shape = [*, width, grid, grid]
embeddings = patch_embeds.flatten(2).transpose(1, 2)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class SiglipTextEmbeddings(nn.Module):
def __init__(self, config: SiglipTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(
config.max_position_embeddings, embed_dim
)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).expand((1, -1)),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = (
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class SiglipAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.head_size = self.head_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.num_heads = self.num_heads // weights.process_group.size()
self.embed_dim = self.embed_dim // weights.process_group.size()
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.qkv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=True,
)
self.out_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.out_proj",
weights=weights,
bias=True,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, _ = hidden_states.size()
qkv = self.qkv(hidden_states)
query_states, key_states, value_states = qkv.split(
[
self.head_size * self.num_heads,
]
* 3,
dim=2,
)
key_states = self._shape(key_states, -1, bsz)
value_states = self._shape(value_states, -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_size)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
# scale post matmul
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) * self.scale
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = (
attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
+ attention_mask
)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
# upcast attention to fp32
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32
).to(attn_weights.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.bmm(attn_weights, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class SiglipMLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = TensorParallelColumnLinear.load( # config.hidden_size, config.intermediate_size
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load( # config.intermediate_size, config.hidden_size
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SiglipEncoderLayer(nn.Module):
def __init__(self, prefix, config: SiglipConfig, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = SiglipAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
)
self.mlp = SiglipMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`):
Input to the layer of shape `(batch, seq_len, embed_dim)`.
attention_mask (`torch.FloatTensor`):
Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values.
output_attentions (`bool`, *optional*, defaults to `False`):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
if output_attentions:
return hidden_states, attn_weights
print(hidden_states[0, 0, :5].tolist())
return hidden_states, None
class SiglipMultiheadAttentionPoolingHead(nn.Module):
"""Multihead Attention Pooling."""
def __init__(self, config: SiglipVisionConfig):
super().__init__()
self.probe = nn.Parameter(torch.randn(1, 1, config.hidden_size))
self.attention = torch.nn.MultiheadAttention(
config.hidden_size, config.num_attention_heads, batch_first=True
)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = SiglipMLP(config)
def forward(self, hidden_state):
batch_size = hidden_state.shape[0]
probe = self.probe.repeat(batch_size, 1, 1)
hidden_state = self.attention(probe, hidden_state, hidden_state)[0]
residual = hidden_state
hidden_state = self.layernorm(hidden_state)
hidden_state = residual + self.mlp(hidden_state)
return hidden_state[:, 0]
import warnings
def _trunc_normal_(tensor, mean, std, a, b):
# Cut & paste from PyTorch official master until it's in a few official releases - RW
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
def norm_cdf(x):
# Computes standard normal cumulative distribution function
return (1.0 + math.erf(x / math.sqrt(2.0))) / 2.0
if (mean < a - 2 * std) or (mean > b + 2 * std):
warnings.warn(
"mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
"The distribution of values may be incorrect.",
stacklevel=2,
)
# Values are generated by using a truncated uniform distribution and
# then using the inverse CDF for the normal distribution.
# Get upper and lower cdf values
l = norm_cdf((a - mean) / std)
u = norm_cdf((b - mean) / std)
# Uniformly fill tensor with values from [l, u], then translate to
# [2l-1, 2u-1].
tensor.uniform_(2 * l - 1, 2 * u - 1)
# Use inverse cdf transform for normal distribution to get truncated
# standard normal
tensor.erfinv_()
# Transform to proper mean, std
tensor.mul_(std * math.sqrt(2.0))
tensor.add_(mean)
# Clamp to ensure it's in the proper range
tensor.clamp_(min=a, max=b)
def trunc_normal_tf_(
tensor: torch.Tensor,
mean: float = 0.0,
std: float = 1.0,
a: float = -2.0,
b: float = 2.0,
) -> torch.Tensor:
"""Fills the input Tensor with values drawn from a truncated
normal distribution. The values are effectively drawn from the
normal distribution :math:`\\mathcal{N}(\text{mean}, \text{std}^2)`
with values outside :math:`[a, b]` redrawn until they are within
the bounds. The method used for generating the random values works
best when :math:`a \\leq \text{mean} \\leq b`.
NOTE: this 'tf' variant behaves closer to Tensorflow / JAX impl where the
bounds [a, b] are applied when sampling the normal distribution with mean=0, std=1.0
and the result is subsquently scaled and shifted by the mean and std args.
Args:
tensor: an n-dimensional `torch.Tensor`
mean: the mean of the normal distribution
std: the standard deviation of the normal distribution
a: the minimum cutoff value
b: the maximum cutoff value
"""
with torch.no_grad():
_trunc_normal_(tensor, 0, 1.0, a, b)
tensor.mul_(std).add_(mean)
from torch.nn.init import _calculate_fan_in_and_fan_out
def variance_scaling_(tensor, scale=1.0, mode="fan_in", distribution="normal"):
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
if mode == "fan_in":
denom = fan_in
elif mode == "fan_out":
denom = fan_out
elif mode == "fan_avg":
denom = (fan_in + fan_out) / 2
variance = scale / denom
if distribution == "truncated_normal":
# constant is stddev of standard normal truncated to (-2, 2)
trunc_normal_tf_(tensor, std=math.sqrt(variance) / 0.87962566103423978)
elif distribution == "normal":
with torch.no_grad():
tensor.normal_(std=math.sqrt(variance))
elif distribution == "uniform":
bound = math.sqrt(3 * variance)
with torch.no_grad():
tensor.uniform_(-bound, bound)
else:
raise ValueError(f"invalid distribution {distribution}")
def lecun_normal_(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="truncated_normal")
def default_flax_embed_init(tensor):
variance_scaling_(tensor, mode="fan_in", distribution="normal")
from transformers import PreTrainedModel
class SiglipPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SiglipConfig
base_model_prefix = "siglip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, SiglipVisionEmbeddings):
width = (
self.config.vision_config.hidden_size
if isinstance(self.config, SiglipConfig)
else self.config.hidden_size
)
nn.init.normal_(module.position_embedding.weight, std=1 / np.sqrt(width))
elif isinstance(module, nn.Embedding):
default_flax_embed_init(module.weight)
elif isinstance(module, SiglipAttention):
nn.init.xavier_uniform_(module.q_proj.weight)
nn.init.xavier_uniform_(module.k_proj.weight)
nn.init.xavier_uniform_(module.v_proj.weight)
nn.init.xavier_uniform_(module.out_proj.weight)
nn.init.zeros_(module.q_proj.bias)
nn.init.zeros_(module.k_proj.bias)
nn.init.zeros_(module.v_proj.bias)
nn.init.zeros_(module.out_proj.bias)
elif isinstance(module, SiglipMLP):
nn.init.xavier_uniform_(module.fc1.weight)
nn.init.xavier_uniform_(module.fc2.weight)
nn.init.normal_(module.fc1.bias, std=1e-6)
nn.init.normal_(module.fc2.bias, std=1e-6)
elif isinstance(module, SiglipMultiheadAttentionPoolingHead):
nn.init.xavier_uniform_(module.probe.data)
nn.init.xavier_uniform_(module.attention.in_proj_weight.data)
nn.init.zeros_(module.attention.in_proj_bias.data)
elif isinstance(module, SiglipModel):
logit_scale_init = torch.log(torch.tensor(1.0))
module.logit_scale.data.fill_(logit_scale_init)
module.logit_bias.data.zero_()
elif isinstance(module, (nn.Linear, nn.Conv2d)):
lecun_normal_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class SiglipEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`SiglipEncoderLayer`].
Args:
config: SiglipConfig
"""
def __init__(self, prefix, config: SiglipConfig, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[
SiglipEncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
)
for i in range(config.num_hidden_layers)
]
)
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = None,
):
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
"""
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
hidden_states, _ = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
return hidden_states
class SiglipVisionTransformer(nn.Module):
def __init__(self, prefix, config: SiglipVisionConfig, weights):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = SiglipVisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.encoder = SiglipEncoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
):
r"""
Returns:
"""
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
# NOTE: up until this point, the code logits are exactly
# the same as the transformers code. The values evaulate
# slightly differently in our encoder layer.
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
)
last_hidden_state = encoder_outputs
post_last_hidden_state = self.post_layernorm(last_hidden_state)
return BaseModelOutputWithPooling(
last_hidden_state=post_last_hidden_state,
# pooler_output=pooled_output,
# hidden_states=encoder_outputs,
)

View File

@ -11,6 +11,12 @@ def load_text_model(prefix, config, weights, name=None):
)
return FlashMistralForCausalLM(prefix, config, weights, name=name)
elif config.model_type == "gemma":
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
FlashGemmaForCausalLM,
)
return FlashGemmaForCausalLM(prefix, config, weights)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
@ -24,5 +30,13 @@ def load_vision_model(prefix, config, weights):
return CLIPVisionTransformer(
prefix=f"{prefix}.vision_model", config=config, weights=weights
)
if config.model_type == "siglip_vision_model":
from text_generation_server.models.custom_modeling.siglip import (
SiglipVisionTransformer,
)
return SiglipVisionTransformer(
prefix=f"vision_tower.vision_model", config=config, weights=weights
)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")

View File

@ -133,6 +133,17 @@ class FlashCausalLMBatch(Batch):
device: torch.device,
) -> "FlashCausalLMBatch":
batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
@classmethod
def from_tokenized(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
batch_tokenized_inputs,
dtype: torch.dtype,
device: torch.device,
) -> "FlashCausalLMBatch":
position_ids = []
speculative_ids = []
cu_seqlen_prefill = [0]
@ -207,6 +218,7 @@ class FlashCausalLMBatch(Batch):
# Paged attention
# Remove one as the first token des not have a past
speculative_length = get_speculate()
speculative_length = 0 if speculative_length is None else speculative_length
total_tokens = input_length + max_new_tokens - 1 + speculative_length
needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
blocks += needed_blocks

View File

@ -4,6 +4,7 @@ import torch.distributed
from opentelemetry import trace
from typing import Optional
from transformers.models.gemma import GemmaTokenizerFast
from transformers import AutoConfig, PretrainedConfig
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gemma_modeling import (
@ -19,15 +20,58 @@ from text_generation_server.utils import (
tracer = trace.get_tracer(__name__)
class FlashGemma(FlashCausalLM):
class VisionConfig(PretrainedConfig):
def __init__(
self,
hidden_size: int = 1152,
intermediate_size: int = 4304,
model_type: str = "siglip_vision_model",
num_attention_heads: int = 16,
num_hidden_layers: int = 27,
num_image_tokens: int = 256,
patch_size: int = 14,
projection_dim: int = 2048,
projector_hidden_act: str = "gelu_fast",
vision_use_head: bool = False,
vocab_size: int = 257152,
quantize: Optional[str] = None,
image_size: int = 224,
layer_norm_eps: float = 1e-06,
attention_dropout: float = 0.0,
hidden_act: str = "gelu_pytorch_tanh",
num_channels: int = 3,
):
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.model_type = model_type
self.num_attention_heads = num_attention_heads
self.num_hidden_layers = num_hidden_layers
self.num_image_tokens = num_image_tokens
self.patch_size = patch_size
self.projection_dim = projection_dim
self.projector_hidden_act = projector_hidden_act
self.vision_use_head = vision_use_head
self.vocab_size = vocab_size
self.quantize = quantize
self.image_size = image_size
self.layer_norm_eps = layer_norm_eps
self.attention_dropout = attention_dropout
self.hidden_act = hidden_act
self.num_channels = num_channels
class BaseFlashGemma(FlashCausalLM):
def __init__(
self,
model_cls,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
prefix: Optional[str] = None,
config_cls=AutoConfig,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
@ -49,9 +93,39 @@ class FlashGemma(FlashCausalLM):
config = GemmaConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
is_vlm = hasattr(config, "vision_config") and hasattr(config, "text_config")
if is_vlm:
config.vision_config = VisionConfig(
hidden_size=1152,
intermediate_size=4304,
model_type="siglip_vision_model",
num_attention_heads=16,
num_hidden_layers=27,
num_image_tokens=256,
patch_size=14,
projection_dim=2048,
projector_hidden_act="gelu_fast",
vision_use_head=False,
vocab_size=257152,
quantize=quantize,
)
config.quantize = quantize
config.speculator = speculator
if is_vlm:
config.num_hidden_layers = config.text_config.get("num_hidden_layers")
config.intermediate_size = config.text_config.get("intermediate_size")
config.model_type = config.text_config.get("model_type")
config.num_attention_heads = config.text_config.get("num_attention_heads")
config.num_hidden_layers = config.text_config.get("num_hidden_layers")
config.num_image_tokens = config.text_config.get("num_image_tokens")
config.num_key_value_heads = config.text_config.get("num_key_value_heads")
config.torch_dtype = config.text_config.get("torch_dtype")
config.vocab_size = config.text_config.get("vocab_size")
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
@ -59,17 +133,49 @@ class FlashGemma(FlashCausalLM):
if config.quantize in ["gptq", "awq"]:
weights._set_gptq_params(model_id, revision)
model = FlashGemmaForCausalLM(config, weights)
model = model_cls(prefix, config, weights)
torch.distributed.barrier(group=self.process_group)
super(FlashGemma, self).__init__(
if is_vlm:
num_layers = config.num_hidden_layers
num_kv_heads = config.num_key_value_heads
head_size = config.intermediate_size
else:
num_layers = len(model.model.layers)
num_kv_heads = model.model.num_key_value_heads
head_size = model.model.head_size
super().__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),
num_kv_heads=model.model.num_key_value_heads,
head_size=model.model.head_size,
num_layers=num_layers,
num_kv_heads=num_kv_heads,
head_size=head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)
class FlashGemma(BaseFlashGemma):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
super(FlashGemma, self).__init__(
model_cls=FlashGemmaForCausalLM,
model_id=model_id,
revision=revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
prefix=None,
)

View File

@ -0,0 +1,54 @@
import torch
import torch.distributed
from opentelemetry import trace
from typing import Optional, Tuple
from text_generation_server.models.vlm_causal_lm import PaliVlmCausalLM
from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
FlashPaliGemmaForConditionalGeneration,
PaliGemmaConfig,
PaliTextConfig,
)
from transformers import AutoProcessor
tracer = trace.get_tracer(__name__)
class FlashPaliGemma(PaliVlmCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.processor = AutoProcessor.from_pretrained(
# TODO: load in the correct processor based on the model_id
"google/siglip-base-patch16-224",
# "google/siglip-so400m-patch14-384",
revision=revision,
trust_remote_code=trust_remote_code,
)
super().__init__(
config_cls=PaliTextConfig,
model_cls=FlashPaliGemmaForConditionalGeneration,
model_id=model_id,
revision=revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
prefix="language_model",
)
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
len(model.language_model.model.layers),
model.language_model.model.num_key_value_heads,
model.language_model.model.head_size,
)
def max_past(self) -> Optional[int]:
return getattr(self.model.language_model, "max_past", None)

View File

@ -15,6 +15,8 @@ from text_generation_server.models.flash_mistral import (
BaseFlashMistral,
FlashMistralBatch,
)
from text_generation_server.models.flash_gemma import BaseFlashGemma
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch
from text_generation_server.models.cache_manager import (
get_cache_manager,
)
@ -80,6 +82,11 @@ def image_text_replacement(image_input, config, image_id) -> str:
logger.info(f"Found {num_features} in image of resolution {height}x{width}")
return "<image>" * num_features
# TODO: double check correct naming for model_type
elif config.model_type == "gemma":
# TODO: use correct number of features
return "<image>" * 256
else:
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
@ -371,3 +378,238 @@ class VlmCausalLM(BaseFlashMistral):
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits
class PaliVlmCausalLMBatch(FlashCausalLMBatch):
pixel_values: Optional[List[torch.Tensor]]
pixel_attention_mask: Optional[List[torch.Tensor]]
image_sizes: Optional[List[Tuple[int, int]]]
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super(PaliVlmCausalLMBatch, cls).concatenate(batches)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
return batch
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]):
batch = super().filter(request_ids)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
return batch
@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer, processor, config):
batch_inputs = []
image_inputs = []
max_truncation = 0
for r in requests:
chunks = split(r.inputs)
full_text = ""
image_id = 0
for chunk in chunks:
if chunk["type"] == "text":
full_text += chunk["content"]
elif chunk["type"] == "image":
image = chunk["content"]
# Should never receive URLs anymore, processing should be done
# On the rust layer.
# This avoid making n queries per TP
# if image.startswith("https://") or image.startswith("http://"):
# image = processor.image_processor.fetch_images(image)
if image.startswith("data:"):
image = load_data_uri(image)
else:
raise RuntimeError(
"Cannot process input image not starting with data:"
)
image_input = processor.image_processor(image, return_tensors="pt")
full_text += image_text_replacement(image_input, config, image_id)
image_inputs.append(image_input)
else:
raise RuntimeError(f"Invalid chunk type {chunk['type']}")
batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
if image_inputs:
image_input = image_inputs[0]
new_image_inputs = {
"pixel_values": torch.cat(
[img["pixel_values"] for img in image_inputs], dim=0
),
}
if "pixel_attention_mask" in image_input:
new_image_inputs["pixel_attention_mask"] = torch.cat(
[img["pixel_attention_mask"] for img in image_inputs], dim=0
)
if "image_sizes" in image_input:
new_image_inputs["image_sizes"] = torch.cat(
[img["image_sizes"] for img in image_inputs], dim=0
)
image_inputs = new_image_inputs
else:
image_inputs = None
return batch_tokenized_inputs, image_inputs
@classmethod
def from_pb_processor(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
processor,
config,
dtype: torch.dtype,
device: torch.device,
) -> "PaliVlmCausalLMBatch":
batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
pb.requests, tokenizer, processor, config
)
batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
if image_inputs is not None:
batch.pixel_values = image_inputs["pixel_values"].to(device=device)
if "pixel_attention_mask" in image_inputs:
batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
device=device
)
else:
batch.pixel_attention_mask = None
if "image_sizes" in image_inputs:
batch.image_sizes = image_inputs["image_sizes"].to(device=device)
else:
batch.image_sizes = None
else:
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
return batch
class PaliVlmCausalLM(BaseFlashGemma):
@property
def batch_type(self) -> Type[PaliVlmCausalLMBatch]:
return PaliVlmCausalLMBatch
def forward(
self, batch: PaliVlmCausalLMBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = get_cache_manager().kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
speculative_ids = batch.speculative_ids
B, speculative_length = speculative_ids.shape
new_length = speculative_length + 1
new_input_ids = torch.cat(
[input_ids.unsqueeze(-1), speculative_ids], dim=1
).reshape(-1)
arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
arange_int = arange.to(dtype=torch.int32)
new_position_ids = (
position_ids.unsqueeze(-1).expand(B, new_length) + arange
).view(-1)
slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
input_lengths = (
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
).view(-1)
# Add Copy the block tables for all members
block_tables = (
block_tables.unsqueeze(1)
.expand(B, new_length, -1)
.reshape(B * new_length, -1)
.contiguous()
)
max_s = max_s + speculative_length
input_ids = new_input_ids
position_ids = new_position_ids
else:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = get_cache_manager().kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
if cu_seqlen_prefill is None and self.max_past() is not None:
# In decode, not prefill, we're actually overwriting the KV-cache
# in a circular buffer mode.
# This makes sure the max_s for the decode pass is correct.
max_s = min(self.max_past(), max_s)
bs = input_ids.shape[0]
# Try to find an associated cuda graph
bs = input_ids.shape[0]
sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
if sorted_padded_bs:
# Get associated cuda graph
cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
else:
cuda_graph = None
if cu_seqlen_prefill is not None or cuda_graph is None:
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
# prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
pixel_values=batch.pixel_values,
)
# if batch.prefill_cache_indices is not None:
# batch.prefill_cache_indices = None
if batch.pixel_values is not None:
batch.pixel_values = None
if batch.pixel_attention_mask is not None:
batch.pixel_attention_mask = None
if batch.image_sizes is not None:
batch.image_sizes = None
return logits, speculative_logits
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
cuda_graph["block_tables"][
: block_tables.shape[0], : block_tables.shape[1]
] = block_tables
cuda_graph["slots"].fill_(-1)
cuda_graph["slots"][: slots.shape[0]] = slots
cuda_graph["input_lengths"].zero_()
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
# Replay the graph
cuda_graph["graph"].replay()
# Slice output to the correct shape
speculative_logits = (
cuda_graph["speculative_logits"][:bs]
if cuda_graph["speculative_logits"] is not None
else None
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits

View File

@ -14,7 +14,7 @@ from typing import List, Optional
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
from text_generation_server.models.vlm_causal_lm import VlmCausalLMBatch
from text_generation_server.models.vlm_causal_lm import VlmCausalLMBatch, PaliVlmCausalLMBatch
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
@ -98,6 +98,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
PaliVlmCausalLMBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,
@ -122,6 +123,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
if self.model.batch_type in {
IdeficsCausalLMBatch,
VlmCausalLMBatch,
PaliVlmCausalLMBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb_processor(
request.batch,