More work on the CLIP Side.

This commit is contained in:
Nicolas Patry 2024-04-04 18:08:38 +00:00
parent b8be0d1ae7
commit 5f4b395480
8 changed files with 429 additions and 273 deletions

View File

@ -10,16 +10,23 @@ from transformers.modeling_attn_mask_utils import (
)
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from text_generation_server.utils.layers import (
TensorParallelEmbedding,
TensorParallelColumnLinear,
TensorParallelRowLinear,
)
class CLIPVisionEmbeddings(nn.Module):
def __init__(self, config: CLIPVisionConfig):
def __init__(self, prefix, config: CLIPVisionConfig, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
# TODO Should we TP this ?
self.class_embedding = weights.get_tensor(f"{prefix}.class_embedding")
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
@ -28,13 +35,18 @@ class CLIPVisionEmbeddings(nn.Module):
stride=self.patch_size,
bias=False,
)
self.patch_embedding.weight = nn.Parameter(
weights.get_tensor(f"{prefix}.patch_embedding.weight"), requires_grad=False
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.position_embedding = TensorParallelEmbedding(
prefix=f"{prefix}.position_embedding", weights=weights
)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions).expand((1, -1)),
torch.arange(self.num_positions, device=weights.device).expand((1, -1)),
persistent=False,
)
@ -94,28 +106,38 @@ class CLIPTextEmbeddings(nn.Module):
class CLIPAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
self.head_size = self.embed_dim // self.num_heads
if self.head_size * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.num_heads = self.num_heads // weights.process_group.size()
self.scale = self.head_size**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.qkv = TensorParallelColumnLinear.load_multi(
config,
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
dim=0,
weights=weights,
bias=True,
)
self.out_proj = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.out_proj",
weights=weights,
bias=False,
)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return (
tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
tensor.view(bsz, seq_len, self.num_heads, self.head_size)
.transpose(1, 2)
.contiguous()
)
@ -132,11 +154,20 @@ class CLIPAttention(nn.Module):
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
qkv = self.qkv(hidden_states)
query_states, key_states, value_states = qkv.split(
[
self.head_size * self.num_heads,
]
* 3,
dim=2,
)
query_states = query_states * self.scale
key_states = self._shape(key_states, -1, bsz)
value_states = self._shape(value_states, -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_size)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
@ -176,48 +207,38 @@ class CLIPAttention(nn.Module):
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(
bsz, self.num_heads, tgt_len, src_len
)
attn_weights = attn_weights_reshaped.view(
bsz * self.num_heads, tgt_len, src_len
)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(
attn_weights, p=self.dropout, training=self.training
)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_size):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_size)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_size)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
return attn_output, None
class CLIPMLP(nn.Module):
def __init__(self, config):
def __init__(self, prefix, config, weights):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
self.fc1 = TensorParallelColumnLinear.load(
prefix=f"{prefix}.fc1", config=config, weights=weights, bias=True
)
self.fc2 = TensorParallelRowLinear.load(
prefix=f"{prefix}.fc2", config=config, weights=weights, bias=True
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
@ -227,13 +248,19 @@ class CLIPMLP(nn.Module):
class CLIPEncoderLayer(nn.Module):
def __init__(self, config: CLIPConfig):
def __init__(self, prefix, config: CLIPConfig, weights):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = CLIPAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = CLIPMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.self_attn = CLIPAttention(
prefix=f"{prefix}.self_attn", config=config, weights=weights
)
self.layer_norm1 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm1", weights=weights, eps=config.layer_norm_eps
)
self.mlp = CLIPMLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.layer_norm2 = nn.LayerNorm.load(
prefix=f"{prefix}.layer_norm2", weights=weights, eps=config.layer_norm_eps
)
def forward(
self,
@ -281,73 +308,6 @@ class CLIPPreTrainedModel(nn.Module):
base_model_prefix = "clip"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor
if isinstance(module, CLIPTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, CLIPVisionEmbeddings):
factor = self.config.initializer_factor
nn.init.normal_(
module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor
)
nn.init.normal_(
module.patch_embedding.weight,
std=module.config.initializer_range * factor,
)
nn.init.normal_(
module.position_embedding.weight,
std=module.config.initializer_range * factor,
)
elif isinstance(module, CLIPAttention):
factor = self.config.initializer_factor
in_proj_std = (
(module.embed_dim**-0.5)
* ((2 * module.config.num_hidden_layers) ** -0.5)
* factor
)
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, CLIPMLP):
factor = self.config.initializer_factor
in_proj_std = (
(module.config.hidden_size**-0.5)
* ((2 * module.config.num_hidden_layers) ** -0.5)
* factor
)
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
elif isinstance(module, CLIPModel):
nn.init.normal_(
module.text_projection.weight,
std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
)
nn.init.normal_(
module.visual_projection.weight,
std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
)
elif isinstance(module, CLIPVisionModelWithProjection):
nn.init.normal_(
module.visual_projection.weight,
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
)
elif isinstance(module, CLIPTextModelWithProjection):
nn.init.normal_(
module.text_projection.weight,
std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
)
if isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
CLIP_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
@ -458,13 +418,17 @@ class CLIPEncoder(nn.Module):
config: CLIPConfig
"""
def __init__(self, config: CLIPConfig):
def __init__(self, prefix, config: CLIPConfig, weights):
super().__init__()
self.config = config
self.layers = nn.ModuleList(
[CLIPEncoderLayer(config) for _ in range(config.num_hidden_layers)]
[
CLIPEncoderLayer(
prefix=f"{prefix}.layers.{i}", config=config, weights=weights
)
for i in range(config.num_hidden_layers)
]
)
self.gradient_checkpointing = False
def forward(
self,
@ -523,17 +487,6 @@ class CLIPEncoder(nn.Module):
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
@ -543,9 +496,6 @@ class CLIPEncoder(nn.Module):
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
return hidden_states
@ -555,7 +505,9 @@ class CLIPTextTransformer(nn.Module):
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPTextEmbeddings(config)
self.encoder = CLIPEncoder(config)
self.encoder = CLIPEncoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# For `pooled_output` computation
@ -710,10 +662,20 @@ class CLIPVisionTransformer(nn.Module):
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = CLIPEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.embeddings = CLIPVisionEmbeddings(
prefix=f"{prefix}.embeddings", config=config, weights=weights
)
self.pre_layrnorm = nn.LayerNorm.load(
prefix=f"{prefix}.pre_layrnorm", weights=weights, eps=config.layer_norm_eps
)
self.encoder = CLIPEncoder(
prefix=f"{prefix}.encoder", config=config, weights=weights
)
self.post_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.post_layernorm",
weights=weights,
eps=config.layer_norm_eps,
)
def forward(
self,

View File

@ -385,7 +385,32 @@ class MistralModel(torch.nn.Module):
prefill_cache_indices: Optional[torch.Tensor],
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
return self.with_hidden_states(
hidden_states,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
true_max_s,
prefill_cache_indices,
)
def with_hidden_states(
self,
hidden_states: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
):
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
@ -409,7 +434,6 @@ class MistralModel(torch.nn.Module):
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states

View File

@ -107,7 +107,9 @@ def load_vision_model(prefix, config, weights):
CLIPVisionTransformer,
)
return CLIPVisionTransformer(prefix, config, weights)
return CLIPVisionTransformer(
prefix=f"{prefix}.vision_model", config=config, weights=weights
)
else:
raise RuntimeError(f"Unsupported model type {config.model_type}")
@ -133,11 +135,13 @@ class LlavaNextForConditionalGeneration(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
config.vision_config.quantize = config.quantize
# self.vision_tower = load_vision_model(
# prefix="vision_tower" if not prefix else f"{prefix}.vision_tower", config=config.vision_config, weights=weights
# )
self.vision_tower = load_vision_model(
prefix="vision_tower" if not prefix else f"{prefix}.vision_tower",
config=config.vision_config,
weights=weights,
)
# self.multi_modal_projector = LlavaNextMultiModalProjector(config)
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
self.image_newline = weights.get_tensor("image_newline")
@ -153,7 +157,6 @@ class LlavaNextForConditionalGeneration(nn.Module):
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
# self.post_init()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration._merge_input_ids_with_image_features
def _merge_input_ids_with_image_features(
@ -278,118 +281,102 @@ class LlavaNextForConditionalGeneration(nn.Module):
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
vision_feature_layer: Optional[int] = None,
vision_feature_select_strategy: Optional[str] = None,
):
if pixel_values is not None and len(pixel_values) > 0:
num_special_image_tokens = (
input_ids == self.config.image_token_index
).sum()
assert num_special_image_tokens == len(
pixel_values
), f"Received {num_special_image_tokens} for {len(pixel_values)} images, this is invalid"
# 1. Extract the input embeddings
inputs_embeds = self.language_model.model.embed_tokens(input_ids)
# vision_feature_layer = (
# vision_feature_layer
# if vision_feature_layer is not None
# else self.config.vision_feature_layer
# )
# vision_feature_select_strategy = (
# vision_feature_select_strategy
# if vision_feature_select_strategy is not None
# else self.config.vision_feature_select_strategy
# )
# 2. Merge text and images
num_images, num_patches, channels, height, width = pixel_values.shape
pixel_values = pixel_values.view(
num_images * num_patches, channels, height, width
)
image_features = self.vision_tower(pixel_values)
# if cu_seqlen_prefill is not None:
# pass
# # # 1. Extract the input embeddings
# # inputs_embeds = self.get_input_embeddings()(input_ids)
selected_image_feature = image_features.hidden_states[
self.config.vision_feature_layer
]
# # # 2. Merge text and images
# # if pixel_values is not None and input_ids.shape[1] != 1:
# # batch_size, num_patches, num_channels, height, width = (
# # pixel_values.shape
# # )
# # reshaped_pixel_values = pixel_values.view(
# # batch_size * num_patches, num_channels, height, width
# # )
# # image_features = self.vision_tower(
# # reshaped_pixel_values, output_hidden_states=True
# # )
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise RuntimeError(
f"Strategy `{self.config.vision_feature_select_strategy}` is not supported/valid."
)
# # selected_image_feature = image_features.hidden_states[
# # vision_feature_layer
# # ]
image_features = self.multi_modal_projector(selected_image_feature)
# # if vision_feature_select_strategy == "default":
# # selected_image_feature = selected_image_feature[:, 1:]
# # elif vision_feature_select_strategy == "full":
# # selected_image_feature = selected_image_feature
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [num_patches] * num_images
image_features = torch.split(image_features, split_sizes, dim=0)
# # image_features = self.multi_modal_projector(selected_image_feature)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = (
self.config.vision_config.image_size
// self.config.vision_config.patch_size
)
# # # split up image_features for each of the individual images
# # # hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# # # if we assume each image has 5 image features (base image + 4 patches)
# # split_sizes = [image.shape[0] for image in pixel_values]
# # image_features = torch.split(image_features, split_sizes, dim=0)
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
# # # NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
# # height = width = (
# # self.config.vision_config.image_size
# # // self.config.vision_config.patch_size
# # )
if height * width != base_image_feature.shape[0]:
raise ValueError(
"The number of patches is not consistent with the image size."
)
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(
*image_feature.shape[:-1], 1
),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
else:
image_feature = image_feature[0]
image_feature = torch.cat(
(image_feature, self.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
# # new_image_features = []
# # for image_idx, image_feature in enumerate(image_features):
# # if image_feature.shape[0] > 1:
# # base_image_feature = image_feature[0]
# # image_feature = image_feature[1:]
# # if height * width != base_image_feature.shape[0]:
# # raise ValueError(
# # "The number of patches is not consistent with the image size."
# # )
# # num_patch_height, num_patch_width = get_anyres_image_grid_shape(
# # image_sizes[image_idx],
# # self.config.image_grid_pinpoints,
# # self.config.vision_config.image_size,
# # )
# # image_feature = image_feature.view(
# # num_patch_height, num_patch_width, height, width, -1
# # )
# # image_feature = image_feature.permute(
# # 4, 0, 2, 1, 3
# # ).contiguous()
# # image_feature = image_feature.flatten(1, 2).flatten(2, 3)
# # image_feature = unpad_image(
# # image_feature, image_sizes[image_idx]
# # )
# # image_feature = torch.cat(
# # (
# # image_feature,
# # self.image_newline[:, None, None].expand(
# # *image_feature.shape[:-1], 1
# # ),
# # ),
# # dim=-1,
# # )
# # image_feature = image_feature.flatten(1, 2).transpose(0, 1)
# # image_feature = torch.cat(
# # (base_image_feature, image_feature), dim=0
# # )
# # else:
# # image_feature = image_feature[0]
# # image_feature = torch.cat(
# # (image_feature, self.image_newline[None]), dim=0
# # )
# # new_image_features.append(image_feature)
# # image_features = torch.stack(new_image_features, dim=0)
# # inputs_embeds, attention_mask, labels, position_ids = (
# # self._merge_input_ids_with_image_features(
# # image_features, inputs_embeds, input_ids, attention_mask, labels
# # )
# # )
# # if labels is None:
# # labels = torch.full_like(
# # attention_mask, self.config.ignore_index
# # ).to(torch.long)
inputs_embeds, attention_mask, labels, position_ids = (
self._merge_input_ids_with_image_features(
image_features, inputs_embeds, input_ids, attention_mask, labels
)
)
if labels is None:
labels = torch.full_like(attention_mask, self.config.ignore_index).to(
torch.long
)
logits = self.language_model(
input_ids,

View File

@ -106,6 +106,19 @@ class FlashCausalLMBatch(Batch):
max_tokens=self.blocks * BLOCK_SIZE,
)
@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer):
batch_inputs = []
max_truncation = 0
for r in requests:
batch_inputs.append(r.inputs)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
return batch_tokenized_inputs
@classmethod
def from_pb(
cls,
@ -114,16 +127,7 @@ class FlashCausalLMBatch(Batch):
dtype: torch.dtype,
device: torch.device,
) -> "FlashCausalLMBatch":
batch_inputs = []
max_truncation = 0
for r in pb.requests:
batch_inputs.append(r.inputs)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
position_ids = []
speculative_ids = []
cu_seqlen_prefill = [0]

View File

@ -65,19 +65,21 @@ class FlashMistralBatch(FlashCausalLMBatch):
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
device: torch.device,
) -> "FlashCausalLMBatch":
batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
@classmethod
def from_tokenized(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
batch_tokenized_inputs,
dtype: torch.dtype,
device: torch.device,
) -> "FlashCausalLMBatch":
sliding_window, sliding_window_blocks = get_sliding_windows()
batch_inputs = []
max_truncation = 0
for r in pb.requests:
batch_inputs.append(r.inputs)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
position_ids = []
cu_seqlen_prefill = [0]
needed_blocks_slots = []

View File

@ -927,7 +927,7 @@ class IdeficsCausalLMBatch(Batch):
)
@classmethod
def from_pb(
def from_pb_processor(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,

View File

@ -1,12 +1,18 @@
import re
import torch
from opentelemetry import trace
from typing import Optional, Tuple, List, Type, Dict
from transformers import PreTrainedTokenizerBase
from text_generation_server.pb import generate_pb2
from text_generation_server.models.flash_mistral import (
BaseFlashMistral,
FlashMistralBatch,
)
from text_generation_server.models.cache_manager import (
get_cache_manager,
)
tracer = trace.get_tracer(__name__)
@ -31,13 +37,65 @@ def split(string) -> List[Dict[str, str]]:
class VlmCausalLMBatch(FlashMistralBatch):
pass
pixel_values: Optional[List[torch.Tensor]]
image_sizes: Optional[List[Tuple[int, int]]]
@classmethod
def batch_tokenized_inputs(cls, requests, tokenizer, processor):
batch_inputs = []
images = []
max_truncation = 0
for r in requests:
chunks = split(r.inputs)
full_text = ""
for chunk in chunks:
if chunk["type"] == "text":
full_text += chunk["content"]
elif chunk["type"] == "image":
full_text += "<image>"
images.append(chunk["content"])
else:
raise RuntimeError(f"Invalid chunk type {chunk['type']}")
batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs, truncation=True, max_length=max_truncation
)["input_ids"]
images = processor.image_processor.fetch_images(images)
if images:
image_inputs = processor.image_processor(images, return_tensors="pt")
else:
image_inputs = None
return batch_tokenized_inputs, image_inputs
@classmethod
def from_pb_processor(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
processor,
dtype: torch.dtype,
device: torch.device,
) -> "VlmCausalLMBatch":
batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
pb.requests, tokenizer, processor
)
batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
if image_inputs is not None:
batch.pixel_values = image_inputs["pixel_values"].to(device=device)
batch.image_sizes = image_inputs["image_sizes"].to(device=device)
else:
batch.pixel_values = None
batch.image_sizes = None
return batch
class VlmCausalLM(BaseFlashMistral):
@property
def batch_type(self) -> Type[FlashMistralBatch]:
return FlashMistralBatch
def batch_type(self) -> Type[VlmCausalLMBatch]:
return VlmCausalLMBatch
def get_layer_config(self, model) -> Tuple[int, int, int]:
return (
@ -48,3 +106,122 @@ class VlmCausalLM(BaseFlashMistral):
def max_past(self) -> Optional[int]:
return getattr(self.model.language_model, "max_past", None)
def forward(
self, batch: VlmCausalLMBatch
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
# Model Forward
if batch.speculative_ids is not None:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = get_cache_manager().kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
speculative_ids = batch.speculative_ids
B, speculative_length = speculative_ids.shape
new_length = speculative_length + 1
new_input_ids = torch.cat(
[input_ids.unsqueeze(-1), speculative_ids], dim=1
).reshape(-1)
arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
arange_int = arange.to(dtype=torch.int32)
new_position_ids = (
position_ids.unsqueeze(-1).expand(B, new_length) + arange
).view(-1)
slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
input_lengths = (
input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
).view(-1)
# Add Copy the block tables for all members
block_tables = (
block_tables.unsqueeze(1)
.expand(B, new_length, -1)
.reshape(B * new_length, -1)
.contiguous()
)
max_s = max_s + speculative_length
input_ids = new_input_ids
position_ids = new_position_ids
else:
input_ids = batch.input_ids
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = get_cache_manager().kv_cache
block_tables = batch.block_tables_tensor
slots = batch.slots[batch.slot_indices]
input_lengths = batch.input_lengths_tensor
max_s = batch.max_seqlen
lm_head_indices = batch.prefill_head_indices
if cu_seqlen_prefill is None and self.max_past() is not None:
# In decode, not prefill, we're actually overwriting the KV-cache
# in a circular buffer mode.
# This makes sure the max_s for the decode pass is correct.
max_s = min(self.max_past(), max_s)
bs = input_ids.shape[0]
padded_bs = bs
if bs == 3:
padded_bs = 4
elif 3 < bs <= 8:
padded_bs = 8
elif bs > 8:
padded_bs = (bs + 7) // 8 * 8
# Try to find an associated cuda graph
cuda_graph = self.cuda_graphs.get(padded_bs, None)
if cu_seqlen_prefill is not None or cuda_graph is None:
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
max_s=max_s,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
pixel_values=batch.pixel_values,
image_sizes=batch.image_sizes,
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
if batch.pixel_values is not None:
batch.pixel_values = None
if batch.image_sizes is not None:
batch.image_sizes = None
return logits, speculative_logits
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
cuda_graph["block_tables"][
: block_tables.shape[0], : block_tables.shape[1]
] = block_tables
cuda_graph["slots"].fill_(-1)
cuda_graph["slots"][: slots.shape[0]] = slots
cuda_graph["input_lengths"].zero_()
cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
# Replay the graph
cuda_graph["graph"].replay()
# Slice output to the correct shape
speculative_logits = (
cuda_graph["speculative_logits"][:bs]
if cuda_graph["speculative_logits"] is not None
else None
)
logits = cuda_graph["logits"][:bs]
return logits, speculative_logits

View File

@ -83,7 +83,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
IdeficsCausalLMBatch,
VlmCausalLMBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb(
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,
@ -106,7 +106,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
IdeficsCausalLMBatch,
VlmCausalLMBatch,
}: # Hack, i would rather use kwargs in the `from_pb` call
batch = self.model.batch_type.from_pb(
batch = self.model.batch_type.from_pb_processor(
request.batch,
self.model.tokenizer,
self.model.processor,