diff --git a/README.md b/README.md
index effab42e..77422777 100644
--- a/README.md
+++ b/README.md
@@ -1,208 +1,33 @@
-
-
-
-
-# Text Generation Inference
-
-
-
-
-
-
-
-
-
-
-
-
-A Rust, Python and gRPC server for text generation inference. Used in production at [HuggingFace](https://huggingface.co)
-to power LLMs api-inference widgets.
-
-## Table of contents
-
-- [Features](#features)
-- [Optimized Architectures](#optimized-architectures)
-- [Get Started](#get-started)
- - [Docker](#docker)
- - [API Documentation](#api-documentation)
- - [Using a private or gated model](#using-a-private-or-gated-model)
- - [A note on Shared Memory](#a-note-on-shared-memory-shm)
- - [Distributed Tracing](#distributed-tracing)
- - [Local Install](#local-install)
- - [CUDA Kernels](#cuda-kernels)
-- [Run Falcon](#run-falcon)
- - [Run](#run)
- - [Quantization](#quantization)
-- [Develop](#develop)
-- [Testing](#testing)
-
-## Features
-
-- Serve the most popular Large Language Models with a simple launcher
-- Tensor Parallelism for faster inference on multiple GPUs
-- Token streaming using Server-Sent Events (SSE)
-- [Continuous batching of incoming requests](https://github.com/huggingface/text-generation-inference/tree/main/router) for increased total throughput
-- Optimized transformers code for inference using [flash-attention](https://github.com/HazyResearch/flash-attention) and [Paged Attention](https://github.com/vllm-project/vllm) on the most popular architectures
-- Quantization with [bitsandbytes](https://github.com/TimDettmers/bitsandbytes) and [GPT-Q](https://arxiv.org/abs/2210.17323)
-- [Safetensors](https://github.com/huggingface/safetensors) weight loading
-- Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226)
-- Logits warper (temperature scaling, top-p, top-k, repetition penalty, more details see [transformers.LogitsProcessor](https://huggingface.co/docs/transformers/internal/generation_utils#transformers.LogitsProcessor))
-- Stop sequences
-- Log probabilities
-- Production ready (distributed tracing with Open Telemetry, Prometheus metrics)
-
-## Optimized architectures
-
-- [BLOOM](https://huggingface.co/bigscience/bloom)
-- [FLAN-T5](https://huggingface.co/google/flan-t5-xxl)
-- [Galactica](https://huggingface.co/facebook/galactica-120b)
-- [GPT-Neox](https://huggingface.co/EleutherAI/gpt-neox-20b)
-- [Llama](https://github.com/facebookresearch/llama)
-- [OPT](https://huggingface.co/facebook/opt-66b)
-- [SantaCoder](https://huggingface.co/bigcode/santacoder)
-- [Starcoder](https://huggingface.co/bigcode/starcoder)
-- [Falcon 7B](https://huggingface.co/tiiuae/falcon-7b)
-- [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b)
-- [MPT](https://huggingface.co/mosaicml/mpt-30b)
-- [Llama V2](https://huggingface.co/meta-llama)
-
-Other architectures are supported on a best effort basis using:
-
-`AutoModelForCausalLM.from_pretrained(, device_map="auto")`
-
-or
-
-`AutoModelForSeq2SeqLM.from_pretrained(, device_map="auto")`
-
-## Get started
-
-### Docker
-
-The easiest way of getting started is using the official Docker container:
-
-```shell
-model=tiiuae/falcon-7b-instruct
-volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
-
-docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.4 --model-id $model
-```
-**Note:** To use GPUs, you need to install the [NVIDIA Container Toolkit](https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html). We also recommend using NVIDIA drivers with CUDA version 11.8 or higher.
-
-To see all options to serve your models (in the [code](https://github.com/huggingface/text-generation-inference/blob/main/launcher/src/main.rs) or in the cli:
-```
-text-generation-launcher --help
-```
-
-You can then query the model using either the `/generate` or `/generate_stream` routes:
-
-```shell
-curl 127.0.0.1:8080/generate \
- -X POST \
- -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
- -H 'Content-Type: application/json'
-```
-
-```shell
-curl 127.0.0.1:8080/generate_stream \
- -X POST \
- -d '{"inputs":"What is Deep Learning?","parameters":{"max_new_tokens":20}}' \
- -H 'Content-Type: application/json'
-```
-
-or from Python:
-
-```shell
-pip install text-generation
-```
-
-```python
-from text_generation import Client
-
-client = Client("http://127.0.0.1:8080")
-print(client.generate("What is Deep Learning?", max_new_tokens=20).generated_text)
-
-text = ""
-for response in client.generate_stream("What is Deep Learning?", max_new_tokens=20):
- if not response.token.special:
- text += response.token.text
-print(text)
-```
-
-### API documentation
-
-You can consult the OpenAPI documentation of the `text-generation-inference` REST API using the `/docs` route.
-The Swagger UI is also available at: [https://huggingface.github.io/text-generation-inference](https://huggingface.github.io/text-generation-inference).
-
-### Using a private or gated model
-
-You have the option to utilize the `HUGGING_FACE_HUB_TOKEN` environment variable for configuring the token employed by
-`text-generation-inference`. This allows you to gain access to protected resources.
-
-For example, if you want to serve the gated Llama V2 model variants:
-
-1. Go to https://huggingface.co/settings/tokens
-2. Copy your cli READ token
-3. Export `HUGGING_FACE_HUB_TOKEN=`
-
-or with Docker:
-
-```shell
-model=meta-llama/Llama-2-7b-chat-hf
-volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
-token=
-
-docker run --gpus all --shm-size 1g -e HUGGING_FACE_HUB_TOKEN=$token -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:0.9.3 --model-id $model
-```
-
-### A note on Shared Memory (shm)
-
-[`NCCL`](https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/index.html) is a communication framework used by
-`PyTorch` to do distributed training/inference. `text-generation-inference` make
-use of `NCCL` to enable Tensor Parallelism to dramatically speed up inference for large language models.
-
-In order to share data between the different devices of a `NCCL` group, `NCCL` might fall back to using the host memory if
-peer-to-peer using NVLink or PCI is not possible.
-
-To allow the container to use 1G of Shared Memory and support SHM sharing, we add `--shm-size 1g` on the above command.
-
-If you are running `text-generation-inference` inside `Kubernetes`. You can also add Shared Memory to the container by
-creating a volume with:
-
-```yaml
-- name: shm
- emptyDir:
- medium: Memory
- sizeLimit: 1Gi
-```
-
-and mounting it to `/dev/shm`.
-
-Finally, you can also disable SHM sharing by using the `NCCL_SHM_DISABLE=1` environment variable. However, note that
-this will impact performance.
-
-### Distributed Tracing
-
-`text-generation-inference` is instrumented with distributed tracing using OpenTelemetry. You can use this feature
-by setting the address to an OTLP collector with the `--otlp-endpoint` argument.
-
### Local install
You can also opt to install `text-generation-inference` locally.
-First [install Rust](https://rustup.rs/) and create a Python virtual environment with at least
-Python 3.9, e.g. using `conda`:
+First [install Rust](https://rustup.rs/):
-```shell
+```bash
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
-
-conda create -n text-generation-inference python=3.9
-conda activate text-generation-inference
```
-You may also need to install Protoc.
+Install conda:
-On Linux:
+```bash
+curl https://repo.anaconda.com/pkgs/misc/gpgkeys/anaconda.asc | gpg --dearmor > conda.gpg
+sudo install -o root -g root -m 644 conda.gpg /usr/share/keyrings/conda-archive-keyring.gpg
+gpg --keyring /usr/share/keyrings/conda-archive-keyring.gpg --no-default-keyring --fingerprint 34161F5BF5EB1D4BFBBB8F0A8AEB4F8B29D82806
+echo "deb [arch=amd64 signed-by=/usr/share/keyrings/conda-archive-keyring.gpg] https://repo.anaconda.com/pkgs/misc/debrepo/conda stable main" | sudo tee -a /etc/apt/sources.list.d/conda.list
+sudo apt update && sudo apt install conda -y
+source /opt/conda/etc/profile.d/conda.sh
+conda -V
+```
+Create Env:
+
+```shell
+conda create -n dscb python=3.9
+conda activate dscb
+```
+
+Install PROTOC
```shell
PROTOC_ZIP=protoc-21.12-linux-x86_64.zip
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP
@@ -211,65 +36,19 @@ sudo unzip -o $PROTOC_ZIP -d /usr/local 'include/*'
rm -f $PROTOC_ZIP
```
-On MacOS, using Homebrew:
-
-```shell
-brew install protobuf
-```
-
-Then run:
-
-```shell
-BUILD_EXTENSIONS=True make install # Install repository and HF/transformer fork with CUDA kernels
-make run-falcon-7b-instruct
-```
-
-**Note:** on some machines, you may also need the OpenSSL libraries and gcc. On Linux machines, run:
-
+You might need to install these:
```shell
sudo apt-get install libssl-dev gcc -y
+sudo apt-get install pkg-config
```
-### CUDA Kernels
-
-The custom CUDA kernels are only tested on NVIDIA A100s. If you have any installation or runtime issues, you can remove
-the kernels by using the `DISABLE_CUSTOM_KERNELS=True` environment variable.
-
-Be aware that the official Docker image has them enabled by default.
-
-## Run Falcon
-
-### Run
-
+Install DeepSparse:
```shell
-make run-falcon-7b-instruct
+pip install deepsparse-nightly[transformers]
```
-### Quantization
-
-You can also quantize the weights with bitsandbytes to reduce the VRAM requirement:
-
+Install Server / Router
```shell
-make run-falcon-7b-instruct-quantize
-```
-
-## Develop
-
-```shell
-make server-dev
-make router-dev
-```
-
-## Testing
-
-```shell
-# python
-make python-server-tests
-make python-client-tests
-# or both server and client tests
-make python-tests
-# rust cargo tests
-make rust-tests
-# integration tests
-make integration-tests
-```
+make install-server
+make install-router
+```
\ No newline at end of file