Revert "Reworked the implementation."

This reverts commit 7c3f29777f17411ae4ade57e2f88e73cde704ee5.
This commit is contained in:
Nicolas Patry 2024-11-15 14:27:16 +01:00
parent df72deac26
commit 5d9613e0c5
No known key found for this signature in database
GPG Key ID: D2920555C90F704C
2 changed files with 268 additions and 270 deletions

View File

@ -14,7 +14,6 @@ use chat_template::ChatTemplate;
use futures::future::try_join_all;
use futures::Stream;
use minijinja::ErrorKind;
use serde::{Deserialize, Serialize};
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
use thiserror::Error;
@ -374,25 +373,4 @@ impl InferError {
InferError::StreamSerializationError(_) => "stream_serialization_error",
}
}
pub(crate) fn into_openai_event(self) -> Event {
let message = self.to_string();
Event::default().json_data(OpenaiErrorEvent {
error: APIError {
message,
http_status_code: 422,
},
})
}
}
#[derive(Serialize)]
pub struct APIError {
message: String,
http_status_code: usize,
}
#[derive(Serialize)]
pub struct OpenaiErrorEvent {
error: APIError,
}

View File

@ -7,10 +7,6 @@ use crate::kserve::{
kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
kserve_model_metadata, kserve_model_metadata_ready,
};
use crate::sagemaker::{
sagemaker_compatibility, SagemakerRequest, SagemakerResponse, SagemakerStreamResponse,
__path_sagemaker_compatibility,
};
use crate::validation::ValidationError;
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
@ -19,8 +15,7 @@ use crate::{
GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
TextMessage, Token, TokenizeResponse, Tokenizer, ToolCallDelta, ToolCallMessage, Url, Usage,
Validation,
TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
};
use crate::{
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
@ -46,7 +41,6 @@ use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
use http::header::AUTHORIZATION;
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
use pyo3::prelude::*;
use pyo3::types::IntoPyDict;
use regex::Regex;
use serde_json::Value;
@ -56,6 +50,7 @@ use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
use thiserror::Error;
use tokenizers::Tokenizer;
use tokio::select;
use tokio::signal;
use tokio::sync::oneshot;
@ -65,41 +60,6 @@ use tracing::{info_span, instrument, Instrument};
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
fn encoding_to_tokens(encoding: &tokenizers::Encoding, input: &str) -> Vec<SimpleToken> {
let offsets = encoding.get_offsets();
let input_ids = encoding.get_ids();
if offsets.len() == input_ids.len() {
input_ids
.iter()
.zip(offsets)
.map(|(&id, &(start, stop))| {
let text = input
.chars()
.skip(start)
.take(stop - start)
.collect::<String>();
SimpleToken {
id,
text,
start,
stop,
}
})
.collect()
} else {
encoding
.get_ids()
.iter()
.map(|&id| SimpleToken {
id,
text: "".to_string(),
start: 0,
stop: 0,
})
.collect()
}
}
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
post,
@ -109,7 +69,7 @@ request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = Vec<GenerateResponse>),
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
@ -123,7 +83,7 @@ example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(skip(infer, req))]
pub(crate) async fn compat_generate(
async fn compat_generate(
Extension(default_return_full_text): Extension<bool>,
infer: Extension<Infer>,
compute_type: Extension<ComputeType>,
@ -181,16 +141,12 @@ async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
})
}
/// Template and tokenize ChatRequest
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/chat_tokenize",
request_body = ChatRequest,
responses(
(status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse),
(status = 404, description = "Failed to tokenize ChatRequest", body = ErrorResponse),
)
responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
Extension(infer): Extension<Infer>,
@ -201,14 +157,40 @@ async fn get_chat_tokenize(
let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
let input = generate_request.inputs.clone();
let encoding = infer.tokenize(generate_request).await?;
if let Some(encoding) = encoding {
let tokens: Vec<SimpleToken> = encoding
.get_ids()
.iter()
.zip(encoding.get_offsets())
.map(|(&id, &(start, stop))| {
let text = input
.chars()
.skip(start)
.take(stop - start)
.collect::<String>();
SimpleToken {
id,
text,
start,
stop,
}
})
.collect();
let tokens = encoding_to_tokens(&encoding, &input);
let resp = ChatTokenizeResponse {
tokenize_response: TokenizeResponse(tokens),
templated_text: input,
};
Ok((HeaderMap::new(), Json(resp)))
let resp = ChatTokenizeResponse {
tokenize_response: TokenizeResponse(tokens),
templated_text: input,
};
Ok((HeaderMap::new(), Json(resp)))
} else {
Err((
StatusCode::NOT_FOUND,
Json(ErrorResponse {
error: "No fast tokenizer or tokenizer.json for this model".to_string(),
error_type: "no fast tokenizer".to_string(),
}),
))
}
}
#[utoipa::path(
@ -696,7 +678,7 @@ time_per_token,
seed,
)
)]
pub(crate) async fn completions(
async fn completions(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Extension(info): Extension<Info>,
@ -866,7 +848,14 @@ pub(crate) async fn completions(
yield Ok(event);
}
Err(err) => yield Ok(err.into_openai_event()),
Err(err) => {
let event = Event::default()
.json_data(ErrorEvent::into_api_error(err, 422))
.unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into());
println!("{:?}", event);
yield Ok::<Event, Infallible>(event);
break
}
}
}
};
@ -1220,7 +1209,7 @@ time_per_token,
seed,
)
)]
pub(crate) async fn chat_completions(
async fn chat_completions(
Extension(infer): Extension<Infer>,
Extension(compute_type): Extension<ComputeType>,
Extension(info): Extension<Info>,
@ -1274,102 +1263,107 @@ pub(crate) async fn chat_completions(
};
let mut response_as_tool = using_tools;
while let Some(result) = response_stream.next().await {
match result{
Ok(stream_tokens) => {
let token_text = &stream_token.token.text.clone();
match state {
StreamState::Buffering => {
json_buffer.push_str(&token_text.replace(" ", ""));
buffer.push(stream_token);
if let Some(captures) = function_regex.captures(&json_buffer) {
let function_name = captures[1].to_string();
if function_name == "no_tool" {
state = StreamState::BufferTrailing;
response_as_tool = false;
buffer.clear();
json_buffer.clear();
} else {
state = StreamState::Content {
skip_close_quote: false,
};
// send all the buffered messages
for stream_token in &buffer {
let event = create_event_from_stream_token(
stream_token,
logprobs,
stream_options.clone(),
response_as_tool,
system_fingerprint.clone(),
model_id.clone(),
);
yield Ok::<Event, Infallible>(event);
match result {
Ok(stream_token) => {
let token_text = &stream_token.token.text.clone();
match state {
StreamState::Buffering => {
json_buffer.push_str(&token_text.replace(" ", ""));
buffer.push(stream_token);
if let Some(captures) = function_regex.captures(&json_buffer) {
let function_name = captures[1].to_string();
if function_name == "no_tool" {
state = StreamState::BufferTrailing;
response_as_tool = false;
buffer.clear();
json_buffer.clear();
} else {
state = StreamState::Content {
skip_close_quote: false,
};
// send all the buffered messages
for stream_token in &buffer {
let event = create_event_from_stream_token(
stream_token,
logprobs,
stream_options.clone(),
response_as_tool,
system_fingerprint.clone(),
model_id.clone(),
);
yield Ok::<Event, Infallible>(event);
}
}
}
}
}
// if we skipped sending the buffer we need to avoid sending the following json key and quotes
StreamState::BufferTrailing => {
let infix_text = "\"content\":\"";
json_buffer.push_str(&token_text.replace(" ", ""));
// keep capturing until we find the infix text
match json_buffer.find(infix_text) {
Some(content_key_index) => {
json_buffer =
json_buffer[content_key_index + infix_text.len()..].to_string();
// if we skipped sending the buffer we need to avoid sending the following json key and quotes
StreamState::BufferTrailing => {
let infix_text = "\"content\":\"";
json_buffer.push_str(&token_text.replace(" ", ""));
// keep capturing until we find the infix text
match json_buffer.find(infix_text) {
Some(content_key_index) => {
json_buffer =
json_buffer[content_key_index + infix_text.len()..].to_string();
}
None => {
continue;
}
}
None => {
continue;
// if there is leftover text after removing the infix text, we need to send it
if !json_buffer.is_empty() {
let event = Event::default();
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
let chat_complete =
CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
Some(json_buffer.clone()),
None,
current_time,
None,
None,
None,
));
yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
InferError::StreamSerializationError(e.to_string()).into()
}));
}
// cleanup the buffers
buffer.clear();
json_buffer.clear();
state = StreamState::Content {
skip_close_quote: true,
};
}
// if there is leftover text after removing the infix text, we need to send it
if !json_buffer.is_empty() {
let event = Event::default();
let current_time = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_else(|_| std::time::Duration::from_secs(0))
.as_secs();
let chat_complete =
CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
Some(json_buffer.clone()),
None,
current_time,
None,
None,
None,
));
yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
InferError::StreamSerializationError(e.to_string()).into()
}));
}
// cleanup the buffers
buffer.clear();
json_buffer.clear();
state = StreamState::Content {
skip_close_quote: true,
};
}
StreamState::Content { skip_close_quote } => {
if skip_close_quote && token_text.contains('"') {
break;
}
StreamState::Content { skip_close_quote } => {
if skip_close_quote && token_text.contains('"') {
break;
}
// send the content
let event = create_event_from_stream_token(
&stream_token,
logprobs,
stream_options.clone(),
response_as_tool,
system_fingerprint.clone(),
model_id.clone(),
);
// send the content
let event = create_event_from_stream_token(
&stream_token,
logprobs,
stream_options.clone(),
response_as_tool,
system_fingerprint.clone(),
model_id.clone(),
);
yield Ok::<Event, Infallible>(event);
yield Ok::<Event, Infallible>(event);
}
}
}
},
Err(err) => yield Event::from_openai(err)
Err(err) => {
let event = Event::default()
.json_data(ErrorEvent::into_api_error(err, 422))
.unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into());
yield Ok::<Event, Infallible>(event);
break;
}
}
}
yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
@ -1475,8 +1469,35 @@ async fn tokenize(
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
let input = req.inputs.clone();
let encoding = infer.tokenize(req).await?;
let tokens = encoding_to_tokens(&encoding, &input);
Ok(Json(TokenizeResponse(tokens)))
if let Some(encoding) = encoding {
let tokens: Vec<SimpleToken> = encoding
.get_ids()
.iter()
.zip(encoding.get_offsets())
.map(|(&id, &(start, stop))| {
let text = input
.chars()
.skip(start)
.take(stop - start)
.collect::<String>();
SimpleToken {
id,
text,
start,
stop,
}
})
.collect();
Ok(Json(TokenizeResponse(tokens)))
} else {
Err((
StatusCode::NOT_FOUND,
Json(ErrorResponse {
error: "No fast tokenizer or tokenizer.json for this model".to_string(),
error_type: "no fast tokenizer".to_string(),
}),
))
}
}
/// Prometheus metrics scrape endpoint
@ -1507,14 +1528,11 @@ completions,
tokenize,
metrics,
openai_get_model_info,
sagemaker_compatibility,
get_chat_tokenize,
),
components(
schemas(
Info,
CompatGenerateRequest,
SagemakerRequest,
GenerateRequest,
GrammarType,
ChatRequest,
@ -1537,8 +1555,6 @@ ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
SagemakerResponse,
SagemakerStreamResponse,
Chunk,
Completion,
CompletionFinal,
@ -1566,7 +1582,6 @@ Function,
FunctionDefinition,
ToolChoice,
ModelInfo,
ChatTokenizeResponse,
)
),
tags(
@ -1586,71 +1601,6 @@ pub fn schema() -> ApiDoc {
ApiDoc
}
fn py_resolve_tokenizer(
py: pyo3::Python,
tokenizer_name: &str,
revision: Option<&str>,
trust_remote_code: bool,
) -> pyo3::PyResult<()> {
let transformers = py.import_bound("transformers")?;
let auto = transformers.getattr("AutoTokenizer")?;
let from_pretrained = auto.getattr("from_pretrained")?;
let args = (tokenizer_name,);
let kwargs = if let Some(rev) = &revision {
[
("revision", rev.to_string().into_py(py)),
("trust_remote_code", trust_remote_code.into_py(py)),
]
.into_py_dict_bound(py)
} else {
[("trust_remote_code", trust_remote_code.into_py(py))].into_py_dict_bound(py)
};
let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
let save = tokenizer.getattr("save_pretrained")?;
let args = ("out".to_string(),);
save.call1(args)?;
Ok(())
}
fn legacy_tokenizer_handle(config_filename: Option<&PathBuf>) -> Option<()> {
// XXX Legacy case for FasterDecoding/medusa-vicuna-7b-v1.3
// and state-spaces/mamba-130m
tracing::warn!("Odd tokenizer detected, falling back on legacy tokenization");
#[derive(serde::Deserialize)]
struct FallbackConfig {
base_model_name_or_path: Option<String>,
model_type: Option<String>,
ssm_config: Option<serde_json::Value>,
}
config_filename.and_then(|filename| {
std::fs::read_to_string(filename)
.ok()
.as_ref()
.and_then(|c| {
let config: Result<FallbackConfig, _> = serde_json::from_str(c);
if let Ok(config) = config {
if config.model_type.is_none() {
if let Some(base) = config.base_model_name_or_path {
pyo3::Python::with_gil(|py| -> PyResult<()> {
py_resolve_tokenizer(py, &base, Some("main"), false)
})
.ok()?;
}
}
if config.ssm_config.is_some() {
// XXX Legacy mamba
pyo3::Python::with_gil(|py| -> PyResult<()> {
py_resolve_tokenizer(py, "EleutherAI/gpt-neox-20b", Some("main"), false)
})
.ok()?;
}
}
Some(())
})
})
}
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
@ -1666,13 +1616,13 @@ pub async fn run(
tokenizer_name: String,
tokenizer_config_path: Option<String>,
revision: Option<String>,
trust_remote_code: bool,
hostname: String,
port: u16,
cors_allow_origin: Option<Vec<String>>,
ngrok: bool,
_ngrok_authtoken: Option<String>,
_ngrok_edge: Option<String>,
messages_api_enabled: bool,
disable_grammar_support: bool,
max_client_batch_size: usize,
usage_stats_level: usage_stats::UsageStatsLevel,
@ -1744,6 +1694,7 @@ pub async fn run(
// Load tokenizer and model info
let (
tokenizer_filename,
config_filename,
tokenizer_config_filename,
preprocessor_config_filename,
@ -1751,6 +1702,7 @@ pub async fn run(
model_info,
) = match api {
Type::None => (
Some(local_path.join("tokenizer.json")),
Some(local_path.join("config.json")),
Some(local_path.join("tokenizer_config.json")),
Some(local_path.join("preprocessor_config.json")),
@ -1764,6 +1716,10 @@ pub async fn run(
revision.clone().unwrap_or_else(|| "main".to_string()),
));
let tokenizer_filename = match api_repo.get("tokenizer.json").await {
Ok(tokenizer_filename) => Some(tokenizer_filename),
Err(_) => get_base_tokenizer(&api, &api_repo).await,
};
let config_filename = api_repo.get("config.json").await.ok();
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
@ -1776,6 +1732,7 @@ pub async fn run(
None
};
(
tokenizer_filename,
config_filename,
tokenizer_config_filename,
preprocessor_config_filename,
@ -1790,6 +1747,7 @@ pub async fn run(
revision.clone().unwrap_or_else(|| "main".to_string()),
));
(
repo.get("tokenizer.json"),
repo.get("config.json"),
repo.get("tokenizer_config.json"),
repo.get("preprocessor_config.json"),
@ -1811,31 +1769,36 @@ pub async fn run(
HubTokenizerConfig::default()
});
let tokenizer: Tokenizer = {
let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
use pyo3::prelude::*;
pyo3::Python::with_gil(|py| -> PyResult<()> {
py_resolve_tokenizer(py, &tokenizer_name, revision.as_deref(), trust_remote_code)?;
let convert = pyo3::Python::with_gil(|py| -> PyResult<()> {
let transformers = py.import_bound("transformers")?;
let auto = transformers.getattr("AutoTokenizer")?;
let from_pretrained = auto.getattr("from_pretrained")?;
let args = (tokenizer_name.to_string(),);
let kwargs = [(
"revision",
revision.clone().unwrap_or_else(|| "main".to_string()),
)]
.into_py_dict_bound(py);
let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
let save = tokenizer.getattr("save_pretrained")?;
let args = ("out".to_string(),);
save.call1(args)?;
Ok(())
})
.inspect_err(|err| {
tracing::error!("Failed to import python tokenizer {err}");
})
.or_else(|err| {
let out = legacy_tokenizer_handle(config_filename.as_ref());
out.ok_or(err)
})
.expect("We cannot load a tokenizer");
let filename = "out/tokenizer.json";
if let Ok(tok) = tokenizers::Tokenizer::from_file(filename) {
Tokenizer::Rust(tok)
});
let filename = if convert.is_ok() {
// If we have correctly loaded and resaved with transformers
// We might have modified the tokenizer.json according to transformers
"out/tokenizer.json".into()
} else {
Tokenizer::Python {
tokenizer_name: tokenizer_name.clone(),
revision: revision.clone(),
trust_remote_code,
}
}
};
filename
};
Tokenizer::from_file(filename).ok()
});
let config: Option<Config> = config_filename.and_then(|filename| {
std::fs::read_to_string(filename)
@ -1863,6 +1826,10 @@ pub async fn run(
preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);
tracing::info!("Using config {config:?}");
if tokenizer.is_none() {
tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
tracing::warn!("Rust input length validation and truncation is disabled");
}
// Only send usage stats when TGI is run in container and the function returns Some
let is_container = matches!(usage_stats::is_container(), Ok(true));
@ -1884,6 +1851,7 @@ pub async fn run(
// max_batch_size,
revision.clone(),
validation_workers,
messages_api_enabled,
disable_grammar_support,
max_client_batch_size,
usage_stats_level,
@ -1925,6 +1893,7 @@ pub async fn run(
ngrok,
_ngrok_authtoken,
_ngrok_edge,
messages_api_enabled,
disable_grammar_support,
max_client_batch_size,
model_info,
@ -1977,13 +1946,14 @@ async fn start(
validation_workers: usize,
api_key: Option<String>,
config: Option<Config>,
(tokenizer, tokenizer_config): (Tokenizer, HubTokenizerConfig),
(tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
(preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
hostname: String,
port: u16,
ngrok: bool,
_ngrok_authtoken: Option<String>,
_ngrok_edge: Option<String>,
messages_api_enabled: bool,
disable_grammar_support: bool,
max_client_batch_size: usize,
model_info: HubModelInfo,
@ -2298,7 +2268,6 @@ async fn start(
.route("/v1/chat/completions", post(chat_completions))
.route("/v1/completions", post(completions))
.route("/vertex", post(vertex_compatibility))
.route("/invocations", post(sagemaker_compatibility))
.route("/tokenize", post(tokenize));
if let Some(api_key) = api_key {
@ -2334,6 +2303,13 @@ async fn start(
.route("/metrics", get(metrics))
.route("/v1/models", get(openai_get_model_info));
// Conditional AWS Sagemaker route
let aws_sagemaker_route = if messages_api_enabled {
Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
} else {
Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
};
let compute_type =
ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));
@ -2341,7 +2317,8 @@ async fn start(
let mut app = Router::new()
.merge(swagger_ui)
.merge(base_routes)
.merge(info_routes);
.merge(info_routes)
.merge(aws_sagemaker_route);
#[cfg(feature = "google")]
{
@ -2437,6 +2414,30 @@ pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
}
}
/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
let config_filename = api_repo.get("config.json").await.ok()?;
// Open the file in read-only mode with buffer.
let file = File::open(config_filename).ok()?;
let reader = BufReader::new(file);
// Read the JSON contents of the file as an instance of `User`.
let config: serde_json::Value = serde_json::from_reader(reader).ok()?;
if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
let api_base_repo = api.repo(Repo::with_revision(
base_model_id.to_string(),
RepoType::Model,
"main".to_string(),
));
api_base_repo.get("tokenizer.json").await.ok()
} else {
None
}
}
/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;
@ -2520,6 +2521,28 @@ impl From<InferError> for Event {
}
}
#[derive(serde::Serialize)]
pub struct APIError {
message: String,
http_status_code: usize,
}
#[derive(serde::Serialize)]
pub struct ErrorEvent {
error: APIError,
}
impl ErrorEvent {
fn into_api_error(err: InferError, http_status_code: usize) -> Self {
ErrorEvent {
error: APIError {
message: err.to_string(),
http_status_code,
},
}
}
}
#[derive(Debug, Error)]
pub enum WebServerError {
#[error("Axum error: {0}")]
@ -2579,11 +2602,10 @@ mod tests {
use crate::TokenizerConfigToken;
use crate::Tool;
use crate::tests::get_tokenizer;
use serde_json::json;
#[tokio::test]
async fn test_prepare_chat_input() {
#[test]
fn test_prepare_chat_input() {
// Mock Backend to avoid network requests
struct MockBackend;
@ -2624,11 +2646,9 @@ mod tests {
ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n {%- set system_message = messages[0][\"content\"] %}\n {%- set loop_messages = messages[1:] %}\n{%- else %}\n {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n {%- endif %}\n {%- set ns.index = ns.index + 1 %}\n {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n {%- if message[\"role\"] == \"user\" %}\n {%- if tools is not none and (message == user_messages[-1]) %}\n {{- \"[AVAILABLE_TOOLS] [\" }}\n {%- for tool in tools %}\n {%- set tool = tool.function %}\n {{- '{\"type\": \"function\", \"function\": {' }}\n {%- for key, val in tool.items() if key != \"return\" %}\n {%- if val is string %}\n {{- '\"' + key + '\": \"' + val + '\"' }}\n {%- else %}\n {{- '\"' + key + '\": ' + val|tojson }}\n {%- endif %}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \"}}\" }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" }}\n {%- endif %}\n {%- endfor %}\n {{- \"[/AVAILABLE_TOOLS]\" }}\n {%- endif %}\n {%- if loop.last and system_message is defined %}\n {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n {%- else %}\n {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n {%- endif %}\n {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n {{- \"[TOOL_CALLS] [\" }}\n {%- for tool_call in message.tool_calls %}\n {%- set out = tool_call.function|tojson %}\n {{- out[:-1] }}\n {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- else %}\n {{- \"]\" + eos_token }}\n {%- endif %}\n {%- endfor %}\n {%- elif message[\"role\"] == \"assistant\" %}\n {{- \" \" + message[\"content\"]|trim + eos_token}}\n {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n {%- if message.content is defined and message.content.content is defined %}\n {%- set content = message.content.content %}\n {%- else %}\n {%- set content = message.content %}\n {%- endif %}\n {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n {%- endif %}\n {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n {%- else %}\n {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n {%- endif %}\n{%- endfor %}\n".to_string())
);
let tokenizer = get_tokenizer();
let infer = Infer::new(
backend,
Validation::new(1, tokenizer, None, None, 1, 1, 1, 1, 1, false),
Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
1,
tokenizer_config,
HubProcessorConfig::default(),