This commit is contained in:
OlivierDehaene 2023-05-04 15:23:20 +02:00
parent 812de7ee50
commit 5d5a2de96c

View File

@ -1,6 +1,8 @@
import torch
import torch.distributed
import numpy as np
from torch.nn import functional as F
from dataclasses import dataclass
@ -33,12 +35,12 @@ class FlashCausalLMBatch(Batch):
requests_idx_mapping: Dict[int, int]
# Decoder values
input_ids: List[torch.Tensor]
position_ids: List[torch.Tensor]
input_ids: torch.Tensor
position_ids: torch.Tensor
# cumulative sequence lengths
cu_seqlens: List[int]
cu_seqlens: torch.Tensor
max_seqlen: int
past_key_values: Optional[Union[torch.Tensor, List[torch.Tensor]]]
past_key_values: Optional[torch.Tensor]
# All tokens
all_input_ids: List[List[int]]
@ -53,9 +55,6 @@ class FlashCausalLMBatch(Batch):
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
# Constant shared tensor, ref here just so that it's accessible in concatentate()
past_pad: Optional[torch.Tensor]
# Maximum number of tokens this batch will grow to
max_tokens: int
@ -69,12 +68,11 @@ class FlashCausalLMBatch(Batch):
@classmethod
def from_pb(
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
device: torch.device,
) -> "FlashCausalLMBatch":
input_ids = []
position_ids = []
cu_seqlens = [0]
max_seqlen = 0
@ -83,7 +81,6 @@ class FlashCausalLMBatch(Batch):
offsets = []
token_offsets = []
all_input_ids = []
all_input_ids_tensor = []
requests_idx_mapping = {}
next_token_choosers = []
@ -109,15 +106,11 @@ class FlashCausalLMBatch(Batch):
offsets.append(None)
token_offsets.append(None)
all_input_ids.append(tokenized_input)
tokenized_input = torch.tensor(tokenized_input, device=device)
input_ids.append(tokenized_input)
# Position ids
position_ids.append(
torch.arange(0, input_length, dtype=torch.int32, device=device)
)
position_ids.append(np.arange(0, input_length))
# Add cumulative lengths of all previous inputs
cu_seqlens.append(cumulative_length + input_length)
@ -130,14 +123,16 @@ class FlashCausalLMBatch(Batch):
max_new_tokens = stopping_criteria.max_new_tokens
stopping_criterias.append(stopping_criteria)
all_input_ids_tensor.append(
F.pad(tokenized_input, (0, stopping_criteria.max_new_tokens))
)
# Update
cumulative_length += input_length
max_tokens += input_length + max_new_tokens
input_ids = torch.tensor(np.concatenate(all_input_ids), dtype=torch.int32, device=device)
position_ids = torch.tensor(np.concatenate(position_ids), dtype=torch.int32, device=device)
cu_seqlens = torch.tensor(
cu_seqlens, device=device, dtype=torch.int32
)
return cls(
batch_id=pb.id,
requests=pb.requests,
@ -151,10 +146,9 @@ class FlashCausalLMBatch(Batch):
offsets=offsets,
token_offsets=token_offsets,
all_input_ids=all_input_ids,
all_input_ids_tensor=all_input_ids_tensor,
all_input_ids_tensor=[],
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
past_pad=None,
max_tokens=max_tokens,
)
@ -224,7 +218,7 @@ class FlashCausalLMBatch(Batch):
cumulative_length += request_input_length
max_tokens += request_input_length + (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
if single_request:
@ -360,14 +354,13 @@ class FlashCausalLMBatch(Batch):
class FlashCausalLM(Model):
def __init__(
self,
model_cls: Type[PreTrainedModel],
model_id: str,
revision: Optional[str] = None,
quantize: bool = False,
decode_buffer: int = 3,
self,
model_cls: Type[PreTrainedModel],
model_id: str,
revision: Optional[str] = None,
quantize: bool = False,
decode_buffer: int = 3,
):
self.past_pad = None
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
@ -406,13 +399,13 @@ class FlashCausalLM(Model):
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlens: torch.Tensor,
max_s: int,
past_key_values: Optional = None,
pre_allocate_past_size: Optional[int] = None,
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlens: torch.Tensor,
max_s: int,
past_key_values: Optional = None,
pre_allocate_past_size: Optional[int] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Model Forward
return self.model.forward(
@ -426,42 +419,24 @@ class FlashCausalLM(Model):
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: FlashCausalLMBatch
self, batch: FlashCausalLMBatch
) -> Tuple[List[Generation], Optional[FlashCausalLMBatch]]:
# Shortcut when batch_size == 1
if len(batch) == 1:
input_ids = batch.input_ids[0].view(-1)
else:
# Concatenate tensors
if not isinstance(batch.input_ids, torch.Tensor):
input_ids = torch.cat(batch.input_ids).view(-1)
else:
input_ids = batch.input_ids.view(-1)
# if prefill and bs == 1
if batch.past_key_values is None and len(batch) == 1:
# Ask to pre-allocate kv to its max size
# == number of tokens + max_new_tokens
pre_allocate_past_size = (
batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
batch.input_lengths[0] + batch.stopping_criterias[0].max_new_tokens
)
else:
pre_allocate_past_size = None
# Concatenate when prefill, torch.tensor when decode
if batch.past_key_values is None:
position_ids = torch.cat(batch.position_ids)
else:
position_ids = batch.position_ids
cu_seqlens = torch.tensor(
batch.cu_seqlens, device=self.device, dtype=torch.int32
)
out, present = self.forward(
input_ids,
position_ids,
cu_seqlens,
batch.input_ids,
batch.position_ids,
batch.cu_seqlens,
batch.max_seqlen,
batch.past_key_values,
pre_allocate_past_size,
@ -483,61 +458,72 @@ class FlashCausalLM(Model):
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
batch.all_input_ids_tensor,
)
next_input_ids = input_ids.new_empty(len(batch.requests))
past_indices = []
prefill = batch.past_key_values is None
# For each member of the batch
for i, (
request,
input_length,
offset,
token_offset,
next_token_chooser,
stopping_criteria,
all_input_ids,
all_input_ids_tensor,
request,
input_length,
offset,
token_offset,
next_token_chooser,
stopping_criteria,
all_input_ids,
) in enumerate(iterator):
# Indexing metadata
start_index = cumulative_length
end_index = cumulative_length + input_length
prefill = stopping_criteria.current_tokens == 0
if prefill:
# Prefill mode
# out is of shape [cumulative_sequence_lengths, vocab_size]
logits = out[start_index:end_index]
batch.all_input_ids_tensor.append(
F.pad(batch.input_ids[start_index:end_index], (0, stopping_criteria.max_new_tokens))
)
batch.position_ids[i] = input_length
else:
# Decode mode
# out is of shape [batch_size, vocab_size]
logits = out[i].unsqueeze(0)
all_input_ids_tensor = batch.all_input_ids_tensor[i]
# Select next token
next_token_id, logprobs = next_token_chooser(
all_input_ids_tensor[None, :input_length], logits
)
next_token_id_squeezed = next_token_id.squeeze()
all_input_ids_tensor[input_length] = next_token_id_squeezed
next_input_ids[i] = next_token_id_squeezed
past_indices.extend([j for j in range(start_index + i, end_index + i)])
batch.input_ids[i] = next_token_id_squeezed
if prefill:
batch.input_ids = batch.input_ids[:len(batch)]
batch.position_ids = batch.position_ids[:len(batch)]
else:
batch.position_ids += 1
# Initialize past_key_values in prefill
if batch.past_key_values is None and len(batch) == 1:
# present is already pre-padded
batch.past_key_values = present
if len(batch) > 1:
batch.past_key_values = present.new_empty((present.shape[0], present.shape[1] + len(batch.requests), *present.shape[2:]))
batch.past_key_values = present.new_empty(
(present.shape[0], present.shape[1] + len(batch.requests), *present.shape[2:]))
batch.past_key_values[:, past_indices] = present
if prefill:
batch.position_ids = torch.tensor(batch.input_lengths, device=self.device)
else:
batch.position_ids = batch.position_ids + 1
batch.cu_seqlens = batch.cu_seqlens + torch.arange(0, len(batch) + 1, device=self.device, dtype=torch.int32)
next_token_ids = next_input_ids.tolist()
next_token_ids = batch.input_ids.to("cpu").detach()
# Zipped iterator
iterator = zip(
@ -584,7 +570,7 @@ class FlashCausalLM(Model):
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :]
all_input_ids[-stopping_criteria.current_tokens:]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
@ -599,7 +585,6 @@ class FlashCausalLM(Model):
stopped = False
generated_text = None
prefill = stopping_criteria.current_tokens == 0
# # Prefill
# if prefill:
# # Remove generated token to only have prefill and add nan for first prompt token
@ -638,11 +623,6 @@ class FlashCausalLM(Model):
batch.token_offsets[i] = token_offset
batch.all_input_ids[i] = all_input_ids
batch.max_seqlen = max(batch.max_seqlen, new_input_length)
# Cumulative sum
batch.cu_seqlens[(i + 1)] = batch.cu_seqlens[i] + new_input_length
batch.input_ids = next_input_ids
# No need to return a batch if we know that all requests stopped
return generations, batch if not stopped else None