fix(neuron): adapt entrypoint

This commit is contained in:
David Corvoysier 2025-05-26 10:13:33 +00:00
parent 3e977bde99
commit 5d2b159182
5 changed files with 187 additions and 68 deletions

View File

@ -159,7 +159,7 @@ RUN pip install dist/text_generation_server*.tar.gz
# Final image
FROM neuron
COPY backends/neuron/tgi_env.py /tgi_env.py
COPY backends/neuron/tgi_entry_point.py /tgi_entry_point.py
COPY backends/neuron/tgi-entrypoint.sh /tgi-entrypoint.sh
RUN chmod +x /tgi-entrypoint.sh

View File

@ -6,12 +6,11 @@ import os
import sys
from typing import Any, Dict, List, Optional
from huggingface_hub import constants
from optimum.neuron.modeling_decoder import get_available_cores
from optimum.neuron.cache import get_hub_cached_entries
from optimum.neuron.configuration_utils import NeuronConfig
from optimum.neuron.utils.version_utils import get_neuronxcc_version
from optimum.neuron.utils import map_torch_dtype
logger = logging.getLogger(__name__)
@ -24,15 +23,9 @@ tgi_router_env_vars = [
]
tgi_server_env_vars = ["HF_NUM_CORES", "HF_AUTO_CAST_TYPE"]
env_config_peering = [
("MAX_BATCH_SIZE", "batch_size"),
("MAX_TOTAL_TOKENS", "sequence_length"),
("HF_AUTO_CAST_TYPE", "auto_cast_type"),
("HF_NUM_CORES", "num_cores"),
]
# By the end of this script all env var should be specified properly
env_vars = tgi_server_env_vars + tgi_router_env_vars
tgi_env_vars = tgi_server_env_vars + tgi_router_env_vars
available_cores = get_available_cores()
neuronxcc_version = get_neuronxcc_version()
@ -93,9 +86,17 @@ def parse_cmdline_and_set_env(argv: List[str] = None) -> argparse.Namespace:
def neuron_config_to_env(neuron_config):
if isinstance(neuron_config, NeuronConfig):
neuron_config = neuron_config.to_dict()
with open(os.environ["ENV_FILEPATH"], "w") as f:
for env_var, config_key in env_config_peering:
f.write("export {}={}\n".format(env_var, neuron_config[config_key]))
f.write("export MAX_BATCH_SIZE={}\n".format(neuron_config["batch_size"]))
f.write("export MAX_TOTAL_TOKENS={}\n".format(neuron_config["sequence_length"]))
f.write("export HF_NUM_CORES={}\n".format(neuron_config["tp_degree"]))
config_key = (
"auto_cast_type" if "auto_cast_type" in neuron_config else "torch_dtype"
)
auto_cast_type = neuron_config[config_key]
f.write("export HF_AUTO_CAST_TYPE={}\n".format(auto_cast_type))
max_input_tokens = os.getenv("MAX_INPUT_TOKENS")
if not max_input_tokens:
max_input_tokens = int(neuron_config["sequence_length"]) // 2
@ -111,7 +112,7 @@ def neuron_config_to_env(neuron_config):
def sort_neuron_configs(dictionary):
return -dictionary["num_cores"], -dictionary["batch_size"]
return -dictionary["tp_degree"], -dictionary["batch_size"]
def lookup_compatible_cached_model(
@ -119,7 +120,7 @@ def lookup_compatible_cached_model(
) -> Optional[Dict[str, Any]]:
# Reuse the same mechanic as the one in use to configure the tgi server part
# The only difference here is that we stay as flexible as possible on the compatibility part
entries = get_hub_cached_entries(model_id, "inference")
entries = get_hub_cached_entries(model_id)
logger.debug(
"Found %d cached entries for model %s, revision %s",
@ -155,15 +156,15 @@ def lookup_compatible_cached_model(
def check_env_and_neuron_config_compatibility(
neuron_config: Dict[str, Any], check_compiler_version: bool
neuron_config_dict: Dict[str, Any], check_compiler_version: bool
) -> bool:
logger.debug(
"Checking the provided neuron config %s is compatible with the local setup and provided environment",
neuron_config,
neuron_config_dict,
)
# Local setup compat checks
if neuron_config["num_cores"] > available_cores:
if neuron_config_dict["tp_degree"] > available_cores:
logger.debug(
"Not enough neuron cores available to run the provided neuron config"
)
@ -171,33 +172,65 @@ def check_env_and_neuron_config_compatibility(
if (
check_compiler_version
and neuron_config["compiler_version"] != neuronxcc_version
and neuron_config_dict["neuronxcc_version"] != neuronxcc_version
):
logger.debug(
"Compiler version conflict, the local one (%s) differs from the one used to compile the model (%s)",
neuronxcc_version,
neuron_config["compiler_version"],
neuron_config_dict["neuronxcc_version"],
)
return False
for env_var, config_key in env_config_peering:
neuron_config_value = str(neuron_config[config_key])
env_value = os.getenv(env_var, str(neuron_config_value))
batch_size = os.getenv("MAX_BATCH_SIZE", None)
if batch_size is not None and neuron_config_dict["batch_size"] < int(batch_size):
logger.debug(
"The provided MAX_BATCH_SIZE (%s) is higher than the neuron config batch size (%s)",
os.getenv("MAX_BATCH_SIZE"),
neuron_config_dict["batch_size"],
)
return False
max_total_tokens = os.getenv("MAX_TOTAL_TOKENS", None)
if max_total_tokens is not None and neuron_config_dict["sequence_length"] < int(
max_total_tokens
):
logger.debug(
"The provided MAX_TOTAL_TOKENS (%s) is higher than the neuron config sequence length (%s)",
max_total_tokens,
neuron_config_dict["sequence_length"],
)
return False
num_cores = os.getenv("HF_NUM_CORES", None)
if num_cores is not None and neuron_config_dict["tp_degree"] < int(num_cores):
logger.debug(
"The provided HF_NUM_CORES (%s) is higher than the neuron config tp degree (%s)",
num_cores,
neuron_config_dict["tp_degree"],
)
return False
auto_cast_type = os.getenv("HF_AUTO_CAST_TYPE", None)
if auto_cast_type is not None:
config_key = (
"auto_cast_type"
if "auto_cast_type" in neuron_config_dict
else "torch_dtype"
)
neuron_config_value = map_torch_dtype(str(neuron_config_dict[config_key]))
env_value = map_torch_dtype(auto_cast_type)
if env_value != neuron_config_value:
logger.debug(
"The provided env var '%s' and the neuron config '%s' param differ (%s != %s)",
env_var,
config_key,
"The provided auto cast type and the neuron config param differ (%s != %s)",
env_value,
neuron_config_value,
)
return False
max_input_tokens = int(
os.getenv("MAX_INPUT_TOKENS", os.getenv("MAX_INPUT_LENGTH", 0))
)
if max_input_tokens > 0:
sequence_length = neuron_config["sequence_length"]
if hasattr(neuron_config_dict, "max_context_length"):
sequence_length = neuron_config_dict["max_context_length"]
else:
sequence_length = neuron_config_dict["sequence_length"]
if max_input_tokens >= sequence_length:
logger.debug(
"Specified max input tokens is not compatible with config sequence length ( %s >= %s)",
@ -211,48 +244,29 @@ def check_env_and_neuron_config_compatibility(
def get_env_dict() -> Dict[str, str]:
d = {}
for k in env_vars:
for k in tgi_env_vars:
d[k] = os.getenv(k)
return d
def main():
"""
This script determines proper default TGI env variables for the neuron precompiled models to
work properly
:return:
"""
args = parse_cmdline_and_set_env()
for env_var in env_vars:
if not os.getenv(env_var):
break
else:
logger.info(
"All env vars %s already set, skipping, user know what they are doing",
env_vars,
)
sys.exit(0)
cache_dir = constants.HF_HUB_CACHE
logger.info("Cache dir %s, model %s", cache_dir, args.model_id)
def get_neuron_config_for_model(
model_name_or_path: str, revision: Optional[str] = None
) -> NeuronConfig:
try:
neuron_config = NeuronConfig.from_pretrained(
args.model_id, revision=args.revision
model_name_or_path, revision=revision
)
except Exception as e:
logger.debug(
"NeuronConfig.from_pretrained failed for model %s, revision %s: %s",
args.model_id,
args.revision,
model_name_or_path,
revision,
e,
)
neuron_config = None
if neuron_config is not None:
compatible = check_env_and_neuron_config_compatibility(
neuron_config, check_compiler_version=False
neuron_config.to_dict(), check_compiler_version=False
)
if not compatible:
env_dict = get_env_dict()
@ -262,17 +276,6 @@ def main():
logger.error(msg)
raise Exception(msg)
else:
neuron_config = lookup_compatible_cached_model(args.model_id, args.revision)
neuron_config = lookup_compatible_cached_model(model_name_or_path, revision)
if not neuron_config:
msg = (
"No compatible neuron config found. Provided env {}, available cores {}, neuronxcc version {}"
).format(get_env_dict(), available_cores, neuronxcc_version)
logger.error(msg)
raise Exception(msg)
neuron_config_to_env(neuron_config)
if __name__ == "__main__":
main()
return neuron_config

View File

@ -0,0 +1,63 @@
import os
import pytest
from tempfile import TemporaryDirectory
from optimum.neuron.models.inference.nxd.backend.config import NxDNeuronConfig
from optimum.neuron.utils import map_torch_dtype
from text_generation_server.tgi_env import (
get_neuron_config_for_model,
lookup_compatible_cached_model,
neuron_config_to_env,
)
def test_get_neuron_config_for_model(neuron_model_config):
neuron_model_path = neuron_model_config["neuron_model_path"]
export_kwargs = neuron_model_config["export_kwargs"]
os.environ["MAX_BATCH_SIZE"] = str(export_kwargs["batch_size"])
os.environ["MAX_TOTAL_TOKENS"] = str(export_kwargs["sequence_length"])
os.environ["HF_AUTO_CAST_TYPE"] = export_kwargs["auto_cast_type"]
os.environ["HF_NUM_CORES"] = str(export_kwargs["num_cores"])
neuron_config = get_neuron_config_for_model(neuron_model_path)
assert neuron_config is not None
assert neuron_config.batch_size == export_kwargs["batch_size"]
assert neuron_config.sequence_length == export_kwargs["sequence_length"]
assert neuron_config.tp_degree == export_kwargs["num_cores"]
if isinstance(neuron_config, NxDNeuronConfig):
assert map_torch_dtype(neuron_config.torch_dtype) == map_torch_dtype(
export_kwargs["auto_cast_type"]
)
else:
assert map_torch_dtype(neuron_config.auto_cast_type) == map_torch_dtype(
export_kwargs["auto_cast_type"]
)
@pytest.mark.parametrize("model_id", ["unsloth/Llama-3.2-1B-Instruct"])
def test_lookup_compatible_cached_model(model_id: str):
neuron_config = lookup_compatible_cached_model(model_id, None)
assert neuron_config is not None
def test_neuron_config_to_env(neuron_model_config) -> None:
neuron_model_path = neuron_model_config["neuron_model_path"]
neuron_config = get_neuron_config_for_model(neuron_model_path)
with TemporaryDirectory() as temp_dir:
os.environ["ENV_FILEPATH"] = os.path.join(temp_dir, "env.sh")
neuron_config_to_env(neuron_config)
with open(os.environ["ENV_FILEPATH"], "r") as env_file:
env_content = env_file.read()
assert f"export MAX_BATCH_SIZE={neuron_config.batch_size}" in env_content
assert (
f"export MAX_TOTAL_TOKENS={neuron_config.sequence_length}"
in env_content
)
assert f"export HF_NUM_CORES={neuron_config.tp_degree}" in env_content
if hasattr(neuron_config, "torch_dtype"):
auto_cast_type = str(map_torch_dtype(neuron_config.torch_dtype)).split(
"."
)[-1]
else:
auto_cast_type = neuron_config.auto_cast_type
assert f"export HF_AUTO_CAST_TYPE={auto_cast_type}" in env_content

View File

@ -9,7 +9,7 @@ touch $ENV_FILEPATH
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
${SCRIPT_DIR}/tgi_env.py $@
${SCRIPT_DIR}/tgi_entry_point.py $@
source $ENV_FILEPATH

View File

@ -0,0 +1,53 @@
#!/usr/bin/env python
import logging
import os
import sys
from text_generation_server.tgi_env import (
available_cores,
get_env_dict,
get_neuron_config_for_model,
neuron_config_to_env,
neuronxcc_version,
parse_cmdline_and_set_env,
tgi_env_vars,
)
logger = logging.getLogger(__name__)
def main():
"""
This script determines proper default TGI env variables for the neuron precompiled models to
work properly
:return:
"""
args = parse_cmdline_and_set_env()
for env_var in tgi_env_vars:
if not os.getenv(env_var):
break
else:
logger.info(
"All env vars %s already set, skipping, user know what they are doing",
tgi_env_vars,
)
sys.exit(0)
neuron_config = get_neuron_config_for_model(args.model_id, args.revision)
if not neuron_config:
msg = (
"No compatible neuron config found. Provided env {}, available cores {}, neuronxcc version {}"
).format(get_env_dict(), available_cores, neuronxcc_version)
logger.error(msg)
raise Exception(msg)
neuron_config_to_env(neuron_config)
if __name__ == "__main__":
main()