remove bookkeeping field

This commit is contained in:
Mohit Sharma 2025-01-17 10:21:34 +00:00
parent 8ffb5b3697
commit 5b10e5bccf
2 changed files with 28 additions and 22 deletions

View File

@ -65,11 +65,6 @@ class KVCache:
"float8_e5m2 FP8 KV cache is not supported on AMD ROCm"
)
self.kv_cache_dtype = "auto"
if SYSTEM == "rocm" and dtype == torch.float8_e4m3fn:
self.kv_cache_dtype = "fp8"
dtype = torch.uint8
element_size = torch.tensor([], dtype=dtype).element_size()
if SYSTEM == "ipex" and device.type == "xpu":
x = 1
@ -120,12 +115,9 @@ class KVCache:
"""Check if the cache can be scaled by the given scales."""
if kv_scales.key_scale_cpu == 1.0 and kv_scales.value_scale_cpu == 1.0:
return False
elif (
self.dtype == torch.float8_e4m3fn
and ATTENTION == "flashinfer"
and SYSTEM == "cuda"
) or (
self.kv_cache_dtype == "fp8" and ATTENTION == "paged" and SYSTEM == "rocm"
elif self.dtype == torch.float8_e4m3fn and (
(ATTENTION == "flashinfer" and SYSTEM == "cuda")
or (ATTENTION == "paged" and SYSTEM == "rocm")
):
log_once(logger.info, "Using FP8 KV cache scales")
return True
@ -203,7 +195,6 @@ class KVCache:
key_cache,
value_cache,
slots,
self.kv_cache_dtype,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
)
@ -215,7 +206,6 @@ def paged_reshape_and_cache(
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
kv_cache_dtype: str = "auto",
k_scale: float = 1.0,
v_scale: float = 1.0,
):
@ -237,6 +227,13 @@ def paged_reshape_and_cache(
raise ImportError(
f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
)
kv_cache_dtype = "auto"
if key_cache.dtype == torch.float8_e4m3fn:
key_cache = key_cache.view(torch.uint8)
value_cache = value_cache.view(torch.uint8)
kv_cache_dtype = "fp8"
ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, kv_cache_dtype, k_scale, v_scale
)

View File

@ -133,6 +133,15 @@ def paged_attention(
out = torch.empty_like(query)
if kv_cache.dtype == torch.float8_e4m3fn:
key = kv_cache.key.view(torch.uint8)
value = kv_cache.value.view(torch.uint8)
kv_cache_dtype = "fp8"
else:
key = kv_cache.key
value = kv_cache.value
kv_cache_dtype = "auto"
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
# V1 to avoid the overhead of reduction. Also, if the number of
@ -147,8 +156,8 @@ def paged_attention(
ops.paged_attention_v1(
out,
query,
kv_cache.key,
kv_cache.value,
key,
value,
num_kv_heads,
softmax_scale,
block_tables,
@ -156,7 +165,7 @@ def paged_attention(
block_size,
max_s,
None,
kv_cache.kv_cache_dtype,
kv_cache_dtype,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
)
@ -182,8 +191,8 @@ def paged_attention(
max_logits,
tmp_output,
query,
kv_cache.key,
kv_cache.value,
key,
value,
num_kv_heads,
softmax_scale,
block_tables,
@ -191,7 +200,7 @@ def paged_attention(
block_size,
max_s,
None,
kv_cache.kv_cache_dtype,
kv_cache_dtype,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
)
@ -202,8 +211,8 @@ def paged_attention(
max_logits,
tmp_output,
query,
kv_cache.key,
kv_cache.value,
key,
value,
num_kv_heads,
softmax_scale,
block_tables,
@ -211,7 +220,7 @@ def paged_attention(
block_size,
max_s,
None,
kv_cache.kv_cache_dtype,
kv_cache_dtype,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
None,