mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-11 12:24:53 +00:00
fix: create new idefic3 file, simplify logic and adjust llama weight loading
This commit is contained in:
parent
0d1bf9e983
commit
575d97339c
@ -151,6 +151,8 @@ try:
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.idefics2 import (
|
||||
Idefics2ForConditionalGeneration,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.idefics3 import (
|
||||
Idefics3ForConditionalGeneration,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.qwen2_vl import (
|
||||
|
@ -507,6 +507,7 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
process_group = weights.process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
base_model = "" if prefix.endswith("text_model") else ".model"
|
||||
|
||||
# Skip fp8 quant for first and last layers
|
||||
self.layers = nn.ModuleList()
|
||||
@ -515,7 +516,11 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
self.layers.append(
|
||||
FlashLlamaLayer(
|
||||
index=0,
|
||||
prefix=f"{prefix}.layers.0" if prefix else "model.layers.0",
|
||||
prefix=(
|
||||
"model.layers.0"
|
||||
if not prefix
|
||||
else f"{prefix}{base_model}.layers.0"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
@ -532,9 +537,9 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
FlashLlamaCrossLayer(
|
||||
index=layer_id,
|
||||
prefix=(
|
||||
f"{prefix}.layers.{layer_id}"
|
||||
if prefix
|
||||
else f"model.layers.{layer_id}"
|
||||
f"model.layers.{layer_id}"
|
||||
if not prefix
|
||||
else f"{prefix}{base_model}.layers.{layer_id}"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
@ -545,9 +550,9 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
FlashLlamaLayer(
|
||||
index=layer_id,
|
||||
prefix=(
|
||||
f"{prefix}.layers.{layer_id}"
|
||||
if prefix
|
||||
else f"model.layers.{layer_id}"
|
||||
f"model.layers.{layer_id}"
|
||||
if not prefix
|
||||
else f"{prefix}{base_model}.layers.{layer_id}"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
@ -560,9 +565,9 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
FlashLlamaLayer(
|
||||
index=last_layer_id,
|
||||
prefix=(
|
||||
f"{prefix}.layers.{last_layer_id}"
|
||||
if prefix
|
||||
else f"model.layers.{last_layer_id}"
|
||||
f"model.layers.{last_layer_id}"
|
||||
if not prefix
|
||||
else f"{prefix}{base_model}.layers.{last_layer_id}"
|
||||
),
|
||||
config=config,
|
||||
weights=weights,
|
||||
@ -570,7 +575,7 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
)
|
||||
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm" if prefix else "model.norm",
|
||||
prefix="model.norm" if not prefix else f"{prefix}{base_model}.norm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
@ -629,18 +634,20 @@ class FlashLlamaModel(torch.nn.Module):
|
||||
class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
|
||||
if config.model_type == "mllama_text_model":
|
||||
prefix = f"{prefix}.model"
|
||||
base_model = "" if prefix.endswith("text_model") else ".model"
|
||||
|
||||
with no_fp8(weights):
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=(f"{prefix}.embed_tokens" if prefix else "model.embed_tokens"),
|
||||
prefix=(
|
||||
"model.embed_tokens"
|
||||
if not prefix
|
||||
else f"{prefix}{base_model}.embed_tokens"
|
||||
),
|
||||
weights=weights,
|
||||
)
|
||||
self.model = FlashLlamaModel(prefix, config, weights)
|
||||
if config.tie_word_embeddings:
|
||||
suffix = "model.embed_tokens"
|
||||
suffix = f"model.embed_tokens"
|
||||
else:
|
||||
suffix = "lm_head"
|
||||
|
||||
@ -649,17 +656,17 @@ class FlashLlamaForCausalLM(torch.nn.Module):
|
||||
if embedding_multiplier is not None:
|
||||
self.embed_tokens.weight.data *= embedding_multiplier
|
||||
|
||||
if config.model_type == "mllama_text_model":
|
||||
prefix = prefix.replace(".model", "")
|
||||
suffix = f"{prefix}.{suffix}"
|
||||
|
||||
if config.model_type == "granite":
|
||||
suffix = f"{prefix}.{suffix}"
|
||||
if not prefix:
|
||||
head_prefix = suffix
|
||||
elif prefix.endswith("text_model"):
|
||||
head_prefix = suffix
|
||||
else:
|
||||
head_prefix = f"{prefix}.{suffix}"
|
||||
|
||||
with no_fp8(weights):
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix=suffix,
|
||||
prefix=head_prefix,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
|
@ -679,215 +679,6 @@ class Idefics2Connector(nn.Module):
|
||||
return image_hidden_states
|
||||
|
||||
|
||||
class Idefics3Connector(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
self.modality_projection = TensorParallelRowLinear.load(
|
||||
prefix=f"{prefix}.modality_projection.proj",
|
||||
config=config,
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.scale_factor = config.scale_factor
|
||||
|
||||
def pixel_shuffle(self, x, scale_factor=2):
|
||||
bsz, seq, embed_dim = x.size()
|
||||
height = width = int(seq**0.5)
|
||||
x = x.view(bsz, height, width, embed_dim)
|
||||
x = x.view(bsz, height, int(width / scale_factor), embed_dim * scale_factor)
|
||||
x = x.permute(0, 2, 1, 3)
|
||||
x = x.reshape(
|
||||
bsz,
|
||||
int(width / scale_factor),
|
||||
int(height / scale_factor),
|
||||
embed_dim * (scale_factor**2),
|
||||
)
|
||||
x = x.permute(0, 2, 1, 3)
|
||||
x = x.reshape(bsz, int(seq / (scale_factor**2)), embed_dim * (scale_factor**2))
|
||||
return x
|
||||
|
||||
def forward(self, image_hidden_states, attention_mask):
|
||||
print(image_hidden_states.device, self.modality_projection.linear.weight.device)
|
||||
image_hidden_states = self.pixel_shuffle(image_hidden_states, self.scale_factor)
|
||||
image_hidden_states = self.modality_projection(image_hidden_states)
|
||||
return image_hidden_states
|
||||
|
||||
|
||||
class Idefics3ForConditionalGeneration(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
config.vision_config.quantize = None
|
||||
config.vision_config.speculator = config.speculator
|
||||
config.text_config.quantize = config.quantize
|
||||
config.text_config.speculator = config.speculator
|
||||
|
||||
vision_config = config.vision_config
|
||||
self.text_model = load_text_model(
|
||||
prefix=f"{prefix}.model.text_model" if prefix else "model.text_model",
|
||||
config=config.text_config,
|
||||
weights=weights,
|
||||
name="text_model",
|
||||
)
|
||||
self.dtype = weights.dtype
|
||||
|
||||
# The vision and connector models are not quantized.
|
||||
with weights.use_loader(DefaultWeightsLoader(UnquantizedWeight)):
|
||||
self.vision_model = Idefics2VisionTransformer(
|
||||
prefix=(
|
||||
f"{prefix}.model.vision_model" if prefix else "model.vision_model"
|
||||
),
|
||||
config=vision_config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
config.quantize = None
|
||||
self.connector = Idefics3Connector(
|
||||
prefix=f"{prefix}.model.connector" if prefix else "model.connector",
|
||||
config=config,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.config = config
|
||||
self.image_token_id = config.image_token_id
|
||||
self.pad_token_id = (
|
||||
config.pad_token_id if config.pad_token_id is not None else -1
|
||||
)
|
||||
|
||||
def _merge_input_ids_with_image_features(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
inputs_embeds: torch.Tensor,
|
||||
image_features: torch.Tensor,
|
||||
):
|
||||
"""In place merges in vision_embeddings with inputs_embeds."""
|
||||
# mask = input_ids == self.config.image_token_index
|
||||
mask = input_ids == self.config.image_token_id
|
||||
# Let's pray we have enabled enough slots !
|
||||
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
|
||||
return inputs_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
pixel_values: torch.FloatTensor = None,
|
||||
pixel_attention_mask: Optional[torch.BoolTensor] = None,
|
||||
# Unused here
|
||||
image_sizes: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
image_grid_thw: Optional[torch.LongTensor] = None,
|
||||
video_grid_thw: Optional[torch.LongTensor] = None,
|
||||
cross_attention_states: Optional[torch.Tensor] = None,
|
||||
image_indices=None,
|
||||
):
|
||||
inputs_embeds = self.text_model.embed_tokens(input_ids)
|
||||
if pixel_values is not None:
|
||||
batch_size, num_images, num_channels, height, width = pixel_values.shape
|
||||
all_states = []
|
||||
all_pixel_values = pixel_values
|
||||
all_pixel_mask = pixel_attention_mask
|
||||
for i in range(batch_size):
|
||||
pixel_values = all_pixel_values.to(
|
||||
dtype=self.dtype
|
||||
) # fp16 compatibility
|
||||
pixel_values = pixel_values[i : i + 1]
|
||||
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
|
||||
|
||||
# Remove padding images - padding images are full 0.
|
||||
nb_values_per_image = pixel_values.shape[1:].numel()
|
||||
real_images_inds = (pixel_values == 0.0).sum(
|
||||
dim=(-1, -2, -3)
|
||||
) != nb_values_per_image
|
||||
pixel_values = pixel_values[real_images_inds].contiguous()
|
||||
|
||||
# Handle the vision attention mask
|
||||
if pixel_attention_mask is None:
|
||||
pixel_attention_mask = torch.ones(
|
||||
size=(
|
||||
pixel_values.size(0),
|
||||
pixel_values.size(2),
|
||||
pixel_values.size(3),
|
||||
),
|
||||
dtype=torch.bool,
|
||||
device=pixel_values.device,
|
||||
)
|
||||
else:
|
||||
# Remove padding images from the mask/pP p
|
||||
pixel_attention_mask = all_pixel_mask[i : i + 1]
|
||||
pixel_attention_mask = pixel_attention_mask.view(
|
||||
1 * num_images, *pixel_attention_mask.shape[2:]
|
||||
)
|
||||
pixel_attention_mask = pixel_attention_mask[
|
||||
real_images_inds
|
||||
].contiguous()
|
||||
|
||||
patch_size = self.config.vision_config.patch_size
|
||||
patches_subgrid = pixel_attention_mask.unfold(
|
||||
dimension=1, size=patch_size, step=patch_size
|
||||
)
|
||||
patches_subgrid = patches_subgrid.unfold(
|
||||
dimension=2, size=patch_size, step=patch_size
|
||||
)
|
||||
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
||||
|
||||
# Get sequence from the vision encoder
|
||||
image_hidden_states = self.vision_model(
|
||||
pixel_values=pixel_values,
|
||||
patch_attention_mask=patch_attention_mask,
|
||||
)
|
||||
|
||||
# Modality projection & resampling
|
||||
image_hidden_states = self.connector(
|
||||
image_hidden_states,
|
||||
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
|
||||
)
|
||||
|
||||
all_states.append(image_hidden_states)
|
||||
image_hidden_states = torch.stack(all_states, dim=0)
|
||||
# TODO: remove when prefill image tokens are handled correctly
|
||||
# * for now dummy tokens are added instead of the image tokens output byt the vision model
|
||||
mask_size = (input_ids == self.config.image_token_id).sum().item()
|
||||
unrolled_image_size = (
|
||||
image_hidden_states.shape[1] * image_hidden_states.shape[2]
|
||||
)
|
||||
diff = mask_size - unrolled_image_size
|
||||
if diff > 0:
|
||||
print(
|
||||
f"Mask size {mask_size} is greater than the number of images {unrolled_image_size}."
|
||||
)
|
||||
|
||||
if mask_size == unrolled_image_size:
|
||||
inputs_embeds = self._merge_input_ids_with_image_features(
|
||||
input_ids, inputs_embeds, image_hidden_states
|
||||
)
|
||||
|
||||
hidden_states = self.text_model.model(
|
||||
inputs_embeds=inputs_embeds,
|
||||
position_ids=position_ids,
|
||||
cu_seqlen_prefill=cu_seqlen_prefill,
|
||||
kv_cache=kv_cache,
|
||||
block_tables=block_tables,
|
||||
slots=slots,
|
||||
seqlen=seqlen,
|
||||
max_s=max_s,
|
||||
true_max_s=max_s,
|
||||
prefill_cache_indices=None,
|
||||
adapter_data=adapter_data,
|
||||
)
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits, speculative_logits = self.text_model.lm_head(hidden_states)
|
||||
return logits, speculative_logits
|
||||
|
||||
|
||||
class Idefics2ForConditionalGeneration(nn.Module):
|
||||
def __init__(self, prefix, config, weights):
|
||||
super().__init__()
|
||||
|
1040
server/text_generation_server/models/custom_modeling/idefics3.py
Normal file
1040
server/text_generation_server/models/custom_modeling/idefics3.py
Normal file
File diff suppressed because it is too large
Load Diff
@ -28,70 +28,27 @@ IDEFICS3_FAKE_IMAGE_TOKEN = "<fake_token_around_image>"
|
||||
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
|
||||
|
||||
|
||||
def _prompt_split_image(
|
||||
image_seq_len,
|
||||
image_rows,
|
||||
image_cols,
|
||||
fake_token_around_image,
|
||||
image_token,
|
||||
global_img_token,
|
||||
):
|
||||
"""Prompt with expanded image tokens for when the image is split into patches."""
|
||||
text_split_images = ""
|
||||
for n_h in range(image_rows):
|
||||
for n_w in range(image_cols):
|
||||
text_split_images += (
|
||||
f"{fake_token_around_image}"
|
||||
+ f"<row_{n_h + 1}_col_{n_w + 1}>"
|
||||
+ f"{image_token}" * image_seq_len
|
||||
)
|
||||
text_split_images += "\n"
|
||||
|
||||
text_split_images += (
|
||||
f"\n{fake_token_around_image}"
|
||||
+ f"{global_img_token}"
|
||||
+ f"{image_token}" * image_seq_len
|
||||
+ f"{fake_token_around_image}"
|
||||
)
|
||||
return text_split_images
|
||||
|
||||
|
||||
def _prompt_single_image(
|
||||
image_seq_len, fake_token_around_image, image_token, global_img_token
|
||||
):
|
||||
"""Prompt with expanded image tokens for a single image."""
|
||||
return (
|
||||
f"{fake_token_around_image}"
|
||||
+ f"{global_img_token}"
|
||||
+ f"{image_token}" * image_seq_len
|
||||
+ f"{fake_token_around_image}"
|
||||
)
|
||||
|
||||
|
||||
def get_image_prompt_string(
|
||||
image_rows,
|
||||
image_cols,
|
||||
image_seq_len,
|
||||
fake_token_around_image,
|
||||
image_token,
|
||||
global_img_token,
|
||||
rows=0,
|
||||
cols=0,
|
||||
seq_len=1,
|
||||
fake_token=IDEFICS3_FAKE_IMAGE_TOKEN,
|
||||
img_token=IDEFICS3_IMAGE_TOKEN,
|
||||
global_token=IDEFICS3_GLOBAL_IMG_TOKEN,
|
||||
):
|
||||
if image_rows == 0 and image_cols == 0:
|
||||
return _prompt_single_image(
|
||||
image_seq_len,
|
||||
fake_token_around_image=fake_token_around_image,
|
||||
image_token=image_token,
|
||||
global_img_token=global_img_token,
|
||||
)
|
||||
return _prompt_split_image(
|
||||
image_seq_len,
|
||||
image_rows,
|
||||
image_cols,
|
||||
fake_token_around_image,
|
||||
image_token,
|
||||
global_img_token,
|
||||
tokens = img_token * seq_len
|
||||
end_token = f"{fake_token}{global_token}{tokens}{fake_token}"
|
||||
|
||||
if rows == 0 or cols == 0:
|
||||
return end_token
|
||||
|
||||
grid = "\n".join(
|
||||
"".join(f"{fake_token}<row_{i+1}_col_{j+1}>{tokens}" for j in range(cols))
|
||||
for i in range(rows)
|
||||
)
|
||||
|
||||
return f"{grid}\n\n{end_token}"
|
||||
|
||||
|
||||
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
||||
"""
|
||||
@ -132,12 +89,12 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
||||
/ (config.scale_factor**2)
|
||||
)
|
||||
image_str = get_image_prompt_string(
|
||||
n_rows,
|
||||
n_cols,
|
||||
image_seq_len,
|
||||
image_token=IDEFICS3_IMAGE_TOKEN,
|
||||
fake_token_around_image=IDEFICS3_FAKE_IMAGE_TOKEN,
|
||||
global_img_token=IDEFICS3_GLOBAL_IMG_TOKEN,
|
||||
rows=n_rows,
|
||||
cols=n_cols,
|
||||
seq_len=image_seq_len,
|
||||
fake_token=IDEFICS3_FAKE_IMAGE_TOKEN,
|
||||
img_token=IDEFICS3_IMAGE_TOKEN,
|
||||
global_token=IDEFICS3_GLOBAL_IMG_TOKEN,
|
||||
)
|
||||
return image_str
|
||||
elif config.model_type == "llava_next":
|
||||
|
Loading…
Reference in New Issue
Block a user