mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
Neox (non flash) port + kernel.
This commit is contained in:
parent
e36e42a3f4
commit
55045be42f
250
server/custom_kernels/custom_kernels/fused_attention_cuda.cu
Normal file
250
server/custom_kernels/custom_kernels/fused_attention_cuda.cu
Normal file
@ -0,0 +1,250 @@
|
||||
#include <ATen/Dispatch.h>
|
||||
#include <THC/THCAtomics.cuh>
|
||||
#include <ATen/ATen.h>
|
||||
#include <torch/torch.h>
|
||||
#include <vector>
|
||||
|
||||
#include <optional>
|
||||
|
||||
/**
|
||||
* Friendly reminder of how multithreading works in CUDA: https://developer.nvidia.com/blog/even-easier-introduction-cuda
|
||||
* Check example at https://github.com/thomasw21/LinearTransformers/blob/main/model/attention/fast_weight/fast_weight_cuda.cu
|
||||
**/
|
||||
|
||||
// Available in pytorch main
|
||||
//#define DISPATCH_CASE_FLOATING_TYPES(...) \
|
||||
// at::AT_DISPATCH_CASE(at::ScalarType::Double, __VA_ARGS__) \
|
||||
// at::AT_DISPATCH_CASE(at::ScalarType::Float, __VA_ARGS__) \
|
||||
// at::AT_DISPATCH_CASE(at::ScalarType::Half, __VA_ARGS__) \
|
||||
// at::AT_DISPATCH_CASE(at::ScalarType::BFloat16, __VA_ARGS__) \
|
||||
|
||||
/*
|
||||
* Forward passes
|
||||
*/
|
||||
|
||||
/**
|
||||
* cast to fp32 if in fp16 + mask + softmax computation in fp32 + cast back to original dtype
|
||||
**/
|
||||
template<typename attention_scores_scalar, int64_t min_kv_length_shard_size_per_thread>
|
||||
__global__ void forward_masked_softmax_kernel(
|
||||
const torch::PackedTensorAccessor32<attention_scores_scalar, 2, torch::RestrictPtrTraits> attention_scores, // [B, KV]
|
||||
const torch::PackedTensorAccessor32<bool, 2, torch::RestrictPtrTraits> mask, // [B, KV]
|
||||
torch::PackedTensorAccessor32<attention_scores_scalar, 2, torch::RestrictPtrTraits> result, // [B, KV]
|
||||
const int64_t effective_kv_length,
|
||||
const dim3 blockDim,
|
||||
const int64_t rows_per_block,
|
||||
const int64_t kv_length,
|
||||
const int64_t batch_size
|
||||
) {
|
||||
const auto row_id = threadIdx.x / effective_kv_length;
|
||||
const auto effective_kv_length_id = threadIdx.x % effective_kv_length;
|
||||
const auto kv_length_start = effective_kv_length_id * min_kv_length_shard_size_per_thread;
|
||||
auto kv_length_end_ = (effective_kv_length_id + 1) * min_kv_length_shard_size_per_thread;
|
||||
kv_length_end_ = (kv_length_end_ > kv_length) ? kv_length : kv_length_end_;
|
||||
const auto kv_length_end = kv_length_end_;
|
||||
|
||||
const auto batch_id = blockIdx.x * rows_per_block + row_id;
|
||||
|
||||
// We need 2 float storage for each row, one for max computation, the other for normalizing exponential
|
||||
extern __shared__ float temp_storage[];
|
||||
const auto row_id_mem_offset = row_id * 2;
|
||||
if (effective_kv_length_id == 0) {
|
||||
temp_storage[row_id_mem_offset] = -std::numeric_limits<float>::infinity();
|
||||
temp_storage[row_id_mem_offset + 1] = 0;
|
||||
}
|
||||
__syncthreads();
|
||||
|
||||
// Compute mask and max
|
||||
if (batch_id < batch_size) {
|
||||
float thread_max = -std::numeric_limits<float>::infinity();
|
||||
for (int kv_length_id = kv_length_start; kv_length_id < kv_length_end; ++kv_length_id) {
|
||||
if (mask[batch_id][kv_length_id] == 0) {
|
||||
const float candidate = attention_scores[batch_id][kv_length_id];
|
||||
thread_max = (thread_max < candidate) ? candidate : thread_max;
|
||||
}
|
||||
}
|
||||
if (thread_max != -std::numeric_limits<float>::infinity()) {
|
||||
// TODO @thomasw21 with more memory we can probably compute a much faster `max-reduce` in parallel O(ln(n)) operations in each memory slot
|
||||
gpuAtomicMax(&temp_storage[row_id_mem_offset], thread_max);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Compute exp(elt - max) masked
|
||||
float exponential[min_kv_length_shard_size_per_thread];
|
||||
if (batch_id < batch_size) {
|
||||
float thread_add = 0;
|
||||
for (int kv_length_id = kv_length_start; kv_length_id < kv_length_end; ++kv_length_id) {
|
||||
if (mask[batch_id][kv_length_id] == 0) {
|
||||
exponential[kv_length_id - kv_length_start] = std::exp(static_cast<float>(attention_scores[batch_id][kv_length_id]) - temp_storage[row_id_mem_offset]);
|
||||
thread_add = thread_add + exponential[kv_length_id - kv_length_start];
|
||||
} else {
|
||||
exponential[kv_length_id - kv_length_start] = 0.;
|
||||
}
|
||||
}
|
||||
if (thread_add > 0) {
|
||||
// TODO @thomasw21 with more memory we can probably compute a much faster `sum-reduce` in parallel O(ln(n)) operations in each memory slot
|
||||
gpuAtomicAdd(&temp_storage[row_id_mem_offset + 1], thread_add);
|
||||
}
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
// Compute softmax
|
||||
if (batch_id < batch_size) {
|
||||
// If sum of all exponential is 0, we set the softmax values to 0
|
||||
if (temp_storage[row_id_mem_offset + 1] == 0.) {
|
||||
for (int kv_length_id = kv_length_start; kv_length_id < kv_length_end; ++kv_length_id) {
|
||||
result[batch_id][kv_length_id] = 0.;
|
||||
}
|
||||
} else {
|
||||
for (int kv_length_id = kv_length_start; kv_length_id < kv_length_end; ++kv_length_id) {
|
||||
result[batch_id][kv_length_id] = static_cast<attention_scores_scalar>(exponential[kv_length_id - kv_length_start] / temp_storage[row_id_mem_offset + 1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define CHECK_CUDA(x) TORCH_CHECK(x.device().is_cuda(), #x " must be a CUDA tensor")
|
||||
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
||||
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
||||
|
||||
std::tuple<at::Tensor, std::optional<std::vector<at::Tensor>>, at::Tensor> forward(
|
||||
const at::Tensor query,
|
||||
const at::Tensor key,
|
||||
const at::Tensor value,
|
||||
const std::optional<std::vector<at::Tensor>> layer_past,
|
||||
const at::Tensor attention_mask,
|
||||
const std::optional<at::Tensor> head_mask,
|
||||
const float inv_norm_factor,
|
||||
const int num_heads,
|
||||
const bool use_cache
|
||||
) {
|
||||
auto query_layer = query;
|
||||
auto key_layer = key;
|
||||
auto value_layer = value;
|
||||
|
||||
if (layer_past) {
|
||||
const auto past_key = (*layer_past).at(0);
|
||||
const auto past_value = (*layer_past).at(1);
|
||||
key_layer = at::cat({past_key, key_layer}, 2);
|
||||
value_layer = at::cat({past_value, value_layer}, 2);
|
||||
}
|
||||
|
||||
std::optional<std::vector<at::Tensor>> present;
|
||||
if (use_cache) {
|
||||
present = {key_layer, value_layer};
|
||||
} else {
|
||||
present = {};
|
||||
}
|
||||
|
||||
const auto batch_size = query_layer.size(0);
|
||||
const auto q_length = query_layer.size(2);
|
||||
const auto attn_head_size = query_layer.size(3);
|
||||
const auto batch_size_times_num_heads = batch_size * num_heads;
|
||||
const auto kv_length = key_layer.size(2);
|
||||
|
||||
const auto query_view = query_layer.reshape({batch_size_times_num_heads, q_length, attn_head_size});
|
||||
auto key_view = key_layer.reshape({batch_size_times_num_heads, kv_length, attn_head_size}).transpose(1, 2);
|
||||
auto value_view = value_layer.reshape({batch_size_times_num_heads, kv_length, attn_head_size});
|
||||
|
||||
auto query_scaled = query_view * inv_norm_factor;
|
||||
auto attention_scores = at::bmm(query_scaled, key_view);
|
||||
|
||||
// Computing `optionally_cast_fp16_to_fp32 + masked_fill + softmax + cast_to_intial_dtype`
|
||||
at::Tensor attention_probs;
|
||||
if (true) {
|
||||
// TODO @thomasw21: it's easier to think of attention_scores as 2D tensors
|
||||
const auto attention_scores_2d = attention_scores.view({batch_size_times_num_heads * q_length, kv_length});
|
||||
const auto attention_mask_2d = attention_mask.view({batch_size_times_num_heads * q_length, kv_length});
|
||||
|
||||
// Custom kernel
|
||||
attention_probs = at::empty_like(attention_scores_2d);
|
||||
|
||||
// Check that inputs and contiguous + cuda tensors
|
||||
CHECK_INPUT(attention_scores_2d);
|
||||
CHECK_INPUT(attention_mask_2d);
|
||||
|
||||
// TODO @thomas21: change by to this as it's cleaner when pytorch 1.13 comes out
|
||||
// DISPATCH_CASE_FLOATING_TYPES(attention_scores.scalar_type(), "masked_softmax", [&] {
|
||||
AT_DISPATCH_FLOATING_TYPES_AND2(at::ScalarType::Half, at::ScalarType::BFloat16, attention_scores.scalar_type(), "masked_softmax", [&] {
|
||||
/*
|
||||
* Understanding how GPUs work: https://developer.nvidia.com/blog/cuda-refresher-cuda-programming-model/
|
||||
* A100 specifications: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
|
||||
* - SMs: 108
|
||||
* - TPCs: 56 (What's that?)
|
||||
* - Memory size: 40 GB
|
||||
* - L2 Cache size: 40960 KB (shared across all SMs)
|
||||
* - L1/Shared memory size: 192 KB (shared across all threads within a SM)
|
||||
* - Max Threads / SM: 2048
|
||||
* - Max Thread Blocks / SM: 32
|
||||
*/
|
||||
|
||||
/*
|
||||
* We should split [batch_size_times_num_heads_block, q_length] in seperate blocks and [batch_size_times_num_heads_block_size, kv_length] a single block
|
||||
* with multiple threads as we need to `sync_threads` to run exponential sum.
|
||||
* We maximise the usage of threads within a single block
|
||||
*/
|
||||
// TODO @thomasw21 figure out everything warp related:
|
||||
// - why do they have to be power of 2
|
||||
// TODO @thomas21 check why everyone is setting 1024 when officially it's 2048
|
||||
const auto MAX_THREADS_PER_SM = 1024;
|
||||
// TODO @thomasw21 figure out how to have longer sequences, currently the maximum is `max_kv_length = MAX_THREADS_PER_SM * MIN_KV_LENGTH_SHARD_SIZE_PER_THREAD`
|
||||
const auto MIN_KV_LENGTH_SHARD_SIZE_PER_THREAD = 4;
|
||||
// `effective_kv_length = ceil(kv_length / MIN_KV_LENGTH_SHARD_SIZE_PER_THREAD)`
|
||||
const auto effective_kv_length = (kv_length - 1)/ MIN_KV_LENGTH_SHARD_SIZE_PER_THREAD + 1;
|
||||
const auto rows_per_block = MAX_THREADS_PER_SM / effective_kv_length;
|
||||
const auto num_blocks = (batch_size_times_num_heads * q_length - 1) / rows_per_block + 1;
|
||||
|
||||
const dim3 gridDim(num_blocks); // Number of blocks that run
|
||||
const dim3 blockDim(MAX_THREADS_PER_SM); // Number of threads that run per block
|
||||
const int shared_mem_forward = rows_per_block * 2 * sizeof(float);
|
||||
|
||||
// 192 * 2 ** 10
|
||||
// const auto MAX_L1_MEMORY = 196608;
|
||||
// const auto MAX_SMs = 108;
|
||||
// TORCH_CHECK(batch_size_times_num_heads * q_length <= MAX_L1_MEMORY, "Shared memory exceeds 192KB limitation.");
|
||||
// TORCH_CHECK(gridDim.x * gridDim.y * gridDim.z <= MAX_SMs, "A100s only have 108 SMs. Raising as require blocks is bigger.");
|
||||
// TORCH_CHECK(blockDim.x * blockDim.y * blockDim.z <= MAX_THREADS_PER_SM, "A100s only have 2048 threads per block. Raising as require requested threads is higher.");
|
||||
|
||||
forward_masked_softmax_kernel<scalar_t, MIN_KV_LENGTH_SHARD_SIZE_PER_THREAD><<<gridDim, blockDim, shared_mem_forward>>>(
|
||||
attention_scores_2d.packed_accessor32<scalar_t, 2, torch::RestrictPtrTraits>(),
|
||||
attention_mask_2d.packed_accessor32<bool, 2, torch::RestrictPtrTraits>(),
|
||||
attention_probs.packed_accessor32<scalar_t, 2, torch::RestrictPtrTraits>(),
|
||||
effective_kv_length,
|
||||
blockDim,
|
||||
rows_per_block,
|
||||
kv_length,
|
||||
batch_size_times_num_heads * q_length
|
||||
);
|
||||
});
|
||||
attention_probs = attention_probs.view({batch_size_times_num_heads, q_length, kv_length});
|
||||
} else {
|
||||
// Pytorch C++ API
|
||||
auto input_dtype = attention_scores.scalar_type();
|
||||
if (input_dtype == at::ScalarType::Float) {
|
||||
attention_scores = attention_scores.to(at::ScalarType::Float);
|
||||
};
|
||||
// TODO @thomasw21 Figure out how to get minimum value
|
||||
auto attn_weights = attention_scores.masked_fill_(attention_mask, -1e34);
|
||||
attention_probs = attn_weights.softmax(-1, at::ScalarType::Float).to(input_dtype);
|
||||
}
|
||||
|
||||
auto context_layer = attention_probs.bmm(value_view);
|
||||
|
||||
// `_merge_heads`
|
||||
context_layer = context_layer.view({batch_size, num_heads, q_length, attn_head_size});
|
||||
context_layer = context_layer.permute({0, 2, 1, 3});
|
||||
context_layer = context_layer.reshape({batch_size, q_length, attn_head_size * num_heads});
|
||||
|
||||
return std::make_tuple(context_layer, present, attention_probs);
|
||||
}
|
||||
|
||||
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
||||
m.def(
|
||||
"forward",
|
||||
&forward,
|
||||
"GPT-Neox attention mechanism forward (CUDA)"
|
||||
);
|
||||
}
|
@ -8,6 +8,11 @@ setup(
|
||||
name="custom_kernels.fused_bloom_attention_cuda",
|
||||
sources=["custom_kernels/fused_bloom_attention_cuda.cu"],
|
||||
extra_compile_args=["-arch=compute_80", "-std=c++17"],
|
||||
),
|
||||
CUDAExtension(
|
||||
name="custom_kernels.fused_attention_cuda",
|
||||
sources=["custom_kernels/fused_attention_cuda.cu"],
|
||||
extra_compile_args=["-arch=compute_80", "-std=c++17"],
|
||||
)
|
||||
],
|
||||
cmdclass={"build_ext": BuildExtension},
|
||||
|
@ -15,6 +15,7 @@ from text_generation_server.models.opt import OPTSharded
|
||||
from text_generation_server.models.galactica import GalacticaSharded
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.t5 import T5Sharded
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
|
||||
try:
|
||||
if torch.cuda.is_available():
|
||||
@ -147,7 +148,7 @@ def get_model(
|
||||
)
|
||||
|
||||
elif model_type == "gpt_neox":
|
||||
if FLASH_ATTENTION:
|
||||
if FLASH_ATTENTION and False:
|
||||
return FlashNeoXSharded(
|
||||
model_id,
|
||||
revision,
|
||||
@ -155,7 +156,12 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Neox"))
|
||||
return GPTNeoxSharded(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
else:
|
||||
return CausalLM(
|
||||
model_id,
|
||||
|
@ -268,9 +268,7 @@ class FlashNeoXLayer(nn.Module):
|
||||
mlp_output = self.mlp(ln2_hidden_states)
|
||||
intermediate = mlp_output + attn_output
|
||||
|
||||
# Only reduce once and after the addition instead of once per layer
|
||||
if self.process_group is not None:
|
||||
torch.distributed.all_reduce(intermediate, group=self.process_group)
|
||||
torch.distributed.all_reduce(intermediate, group=self.process_group)
|
||||
|
||||
return intermediate + hidden_states, None
|
||||
else:
|
||||
|
@ -0,0 +1,707 @@
|
||||
# coding=utf-8
|
||||
# Copyright 2022 EleutherAI The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
""" PyTorch GPTNeoX model."""
|
||||
|
||||
from typing import Optional, Tuple, Union
|
||||
|
||||
import os
|
||||
import torch
|
||||
import torch.distributed
|
||||
import torch.utils.checkpoint
|
||||
from torch import nn
|
||||
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
||||
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.file_utils import (
|
||||
add_code_sample_docstrings,
|
||||
add_start_docstrings,
|
||||
add_start_docstrings_to_model_forward,
|
||||
replace_return_docstrings,
|
||||
)
|
||||
from transformers.modeling_outputs import (
|
||||
BaseModelOutputWithPast,
|
||||
CausalLMOutputWithPast,
|
||||
QuestionAnsweringModelOutput,
|
||||
SequenceClassifierOutputWithPast,
|
||||
TokenClassifierOutput,
|
||||
)
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers import GPTNeoXConfig
|
||||
from loguru import logger
|
||||
from text_generation_server.utils.layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelHead,
|
||||
)
|
||||
|
||||
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = False
|
||||
if not os.environ.get("DISABLE_CUSTOM_KERNELS", "False") == "True":
|
||||
try:
|
||||
from custom_kernels import fused_attention_cuda
|
||||
|
||||
CUSTOM_KERNELS_ENABLED = True
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
if not CUSTOM_KERNELS_ENABLED:
|
||||
logger.warning("We're not using custom kernels.")
|
||||
|
||||
|
||||
|
||||
def make_causal_mask(
|
||||
input_ids_shape: torch.Size, device: torch.device, past_key_values_length: int
|
||||
) -> torch.BoolTensor:
|
||||
"""
|
||||
Make causal mask used for self-attention.
|
||||
"""
|
||||
batch_size, target_length = input_ids_shape
|
||||
mask = torch.ones((target_length, target_length + past_key_values_length), dtype=torch.bool, device=device)
|
||||
mask = mask.triu(1 + past_key_values_length)
|
||||
|
||||
expanded_mask = mask.unsqueeze(0).expand(batch_size, target_length, target_length + past_key_values_length)
|
||||
return expanded_mask
|
||||
|
||||
|
||||
def expand_mask(mask: torch.Tensor, tgt_length: int) -> torch.BoolTensor:
|
||||
"""
|
||||
Expands attention_mask from `[batch_size, src_length]` to `[batch_size, 1, tgt_length, src_length]`.
|
||||
"""
|
||||
batch_size, src_length = mask.shape
|
||||
tgt_length = tgt_length if tgt_length is not None else src_length
|
||||
|
||||
expanded_mask = ~(mask[:, None, :].to(torch.bool))
|
||||
return expanded_mask.expand(batch_size, tgt_length, src_length)
|
||||
|
||||
|
||||
def prepare_attn_mask(
|
||||
attention_mask: torch.Tensor, input_shape: Tuple[int, int], past_key_values_length: int
|
||||
) -> torch.BoolTensor:
|
||||
# create causal mask
|
||||
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
||||
combined_attention_mask = None
|
||||
device = attention_mask.device
|
||||
_, src_length = input_shape
|
||||
|
||||
if src_length > 1:
|
||||
combined_attention_mask = make_causal_mask(
|
||||
input_shape, device=device, past_key_values_length=past_key_values_length
|
||||
)
|
||||
|
||||
# [batch_size, seq_length] -> [batch_size, tgt_length, src_length]
|
||||
expanded_attn_mask = expand_mask(attention_mask, tgt_length=src_length)
|
||||
combined_attention_mask = (
|
||||
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
||||
)
|
||||
|
||||
return combined_attention_mask
|
||||
|
||||
|
||||
class GPTNeoXPreTrainedModel(PreTrainedModel):
|
||||
"""
|
||||
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
||||
models.
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class GPTNeoXAttention(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
self.hidden_size = config.hidden_size
|
||||
self.head_size = self.hidden_size // self.num_attention_heads
|
||||
self.rotary_ndims = int(self.head_size * config.rotary_pct)
|
||||
max_positions = config.max_position_embeddings
|
||||
# ??? TODO
|
||||
# self.register_buffer(
|
||||
# "bias",
|
||||
# torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
||||
# 1, 1, max_positions, max_positions
|
||||
# ),
|
||||
# )
|
||||
# self.register_buffer("masked_bias", torch.tensor(-1e9))
|
||||
self.rotary_emb = RotaryEmbedding(
|
||||
self.rotary_ndims, config.max_position_embeddings, base=config.rotary_emb_base
|
||||
)
|
||||
self.rotary_emb.inv_freq = nn.Parameter(
|
||||
weights.get_tensor(f"{prefix}.rotary_emb.inv_freq")
|
||||
)
|
||||
self.inv_norm_factor = 1.0 / torch.sqrt(torch.tensor(self.head_size, dtype=torch.float32)).to(
|
||||
torch.get_default_dtype()
|
||||
)
|
||||
|
||||
assert self.num_attention_heads % weights.process_group.size() == 0
|
||||
self.num_attention_heads = self.num_attention_heads // weights.process_group.size()
|
||||
self.query_key_value = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.query_key_value", weights=weights, bias=True
|
||||
)
|
||||
self.dense = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.dense", weights=weights, bias=True
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
position_ids,
|
||||
attention_mask,
|
||||
head_mask=None,
|
||||
layer_past=None,
|
||||
use_cache=False,
|
||||
output_attentions=False,
|
||||
):
|
||||
has_layer_past = layer_past is not None
|
||||
|
||||
# Compute QKV
|
||||
# Attention heads [batch, seq_len, hidden_size]
|
||||
# --> [batch, seq_len, (np * 3 * head_size)]
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
|
||||
# [batch, seq_len, (num_heads * 3 * head_size)]
|
||||
# --> [batch, seq_len, num_heads, 3 * head_size]
|
||||
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
||||
qkv = qkv.view(*new_qkv_shape).permute(0, 2, 1, 3)
|
||||
# [batch, seq_len, num_attention_heads, 3 * head_size] --> 3 [batch, num_attention_heads, seq_len, head_size]
|
||||
query, key, value = qkv.split(self.head_size, -1)
|
||||
|
||||
# Compute token offset for rotary embeddings (when decoding)
|
||||
seq_len = key.shape[-2]
|
||||
if has_layer_past:
|
||||
seq_len += layer_past[0].shape[-2]
|
||||
|
||||
# Compute rotary embeddings on rotary_ndims
|
||||
query_rot = query[..., : self.rotary_ndims]
|
||||
key_rot = key[..., : self.rotary_ndims]
|
||||
|
||||
query_rot, key_rot = self.rotary_emb(query_rot, key_rot, position_ids, seq_len)
|
||||
|
||||
query[..., : self.rotary_ndims] = query_rot
|
||||
key[..., : self.rotary_ndims] = key_rot
|
||||
|
||||
if CUSTOM_KERNELS_ENABLED:
|
||||
attn_output, present, attn_weights = fused_attention_cuda.forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
layer_past,
|
||||
attention_mask,
|
||||
head_mask,
|
||||
self.inv_norm_factor,
|
||||
self.num_attention_heads,
|
||||
use_cache,
|
||||
)
|
||||
else:
|
||||
# Cache QKV values
|
||||
if has_layer_past:
|
||||
past_key = layer_past[0]
|
||||
past_value = layer_past[1]
|
||||
key = torch.cat((past_key, key), dim=-2)
|
||||
value = torch.cat((past_value, value), dim=-2)
|
||||
present = (key, value) if use_cache else None
|
||||
|
||||
# Compute attention
|
||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||
|
||||
# Reshape outputs
|
||||
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
||||
|
||||
attn_output = self.dense(attn_output)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs
|
||||
|
||||
@classmethod
|
||||
def _split_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||
"""
|
||||
Splits hidden dim into attn_head_size and num_attention_heads
|
||||
"""
|
||||
# tensor: [bs, seq_len, hidden_size]
|
||||
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
||||
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||
tensor = tensor.view(new_shape)
|
||||
# -> [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
tensor = tensor.permute(0, 2, 1, 3)
|
||||
return tensor
|
||||
|
||||
@classmethod
|
||||
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size):
|
||||
"""
|
||||
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
||||
"""
|
||||
# tensor [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
||||
# -> [bs, seq_len, num_attention_heads, attn_head_size]
|
||||
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size)
|
||||
# -> [bs, seq_len, hidden_size]
|
||||
return tensor
|
||||
|
||||
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
||||
# q, k, v: [bs, num_attention_heads, seq_len, attn_head_size]
|
||||
# compute causal mask from causal mask buffer
|
||||
batch_size, num_attention_heads, query_length, attn_head_size = query.size()
|
||||
key_length = key.size(-2)
|
||||
|
||||
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size)
|
||||
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size)
|
||||
attn_scores = torch.zeros(
|
||||
1,
|
||||
dtype=query.dtype,
|
||||
device=key.device,
|
||||
).expand(batch_size * num_attention_heads, query_length, key_length)
|
||||
attn_scores = torch.baddbmm(
|
||||
attn_scores,
|
||||
query,
|
||||
key.transpose(1, 2),
|
||||
beta=1.0,
|
||||
alpha=self.inv_norm_factor,
|
||||
)
|
||||
|
||||
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
|
||||
input_dtype = attn_scores.dtype
|
||||
if input_dtype in [torch.float16, torch.bfloat16]:
|
||||
attn_scores = attn_scores.to(torch.float)
|
||||
attn_scores = torch.where(attention_mask, torch.finfo(attn_scores.dtype).min, attn_scores)
|
||||
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length)
|
||||
|
||||
attn_weights = nn.functional.softmax(attn_scores, dim=-1)
|
||||
attn_weights = attn_weights.to(value.dtype)
|
||||
|
||||
# Mask heads if we want to
|
||||
if head_mask is not None:
|
||||
attn_weights = attn_weights * head_mask
|
||||
|
||||
attn_output = torch.matmul(attn_weights, value)
|
||||
return attn_output, attn_weights
|
||||
|
||||
|
||||
class RotaryEmbedding(torch.nn.Module):
|
||||
def __init__(self, dim, max_position_embeddings, base=10000, device=None):
|
||||
super().__init__()
|
||||
self.true_inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
|
||||
self.register_buffer("inv_freq", self.true_inv_freq)
|
||||
|
||||
# Build here to make `torch.jit.trace` work.
|
||||
self.max_seq_len_cached = max_position_embeddings
|
||||
self.cos_cached = None
|
||||
self.sin_cached = None
|
||||
|
||||
@staticmethod
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
@staticmethod
|
||||
def _create_cos_sin(inv_freq, max_position_embeddings, dtype, device):
|
||||
t = torch.arange(max_position_embeddings, device=inv_freq.device, dtype=inv_freq.dtype)
|
||||
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
||||
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
||||
emb = torch.cat((freqs, freqs), dim=-1)
|
||||
return emb.cos().to(device).to(dtype), emb.sin().to(device).to(dtype)
|
||||
|
||||
def forward(self, q, k, position_ids, seq_len=None):
|
||||
# x: [bs, num_attention_heads, seq_len, head_size]
|
||||
if seq_len > self.max_seq_len_cached or self.cos_cached is None or self.sin_cached is None:
|
||||
if seq_len > self.max_seq_len_cached:
|
||||
self.max_seq_len_cached = seq_len
|
||||
self.cos_cached, self.sin_cached = self._create_cos_sin(
|
||||
self.true_inv_freq, self.max_seq_len_cached, q.dtype, q.device
|
||||
)
|
||||
return rotary_forward(q, k, self.cos_cached, self.sin_cached, position_ids)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def rotary_forward(q, k, cos, sin, position_ids):
|
||||
cos = cos[position_ids].unsqueeze(1)
|
||||
sin = sin[position_ids].unsqueeze(1)
|
||||
|
||||
chunk_size = q.shape[-1] // 2
|
||||
q1, q2 = q.split(chunk_size, -1)
|
||||
q_rotated = torch.cat((-q2, q1), dim=-1)
|
||||
k1, k2 = k.split(chunk_size, -1)
|
||||
k_rotated = torch.cat((-k2, k1), dim=-1)
|
||||
|
||||
q_embed = (q * cos) + (q_rotated * sin)
|
||||
k_embed = (k * cos) + (k_rotated * sin)
|
||||
return q_embed, k_embed
|
||||
|
||||
|
||||
class GPTNeoXMLP(nn.Module):
|
||||
def __init__(self, config, prefix, weights):
|
||||
super().__init__()
|
||||
self.act = (
|
||||
ACT2FN[config.hidden_act]
|
||||
if "gelu_fast" not in config.hidden_act
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
)
|
||||
|
||||
self.dense_h_to_4h = TensorParallelColumnLinear.load(
|
||||
config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True
|
||||
)
|
||||
self.dense_4h_to_h = TensorParallelRowLinear.load(
|
||||
config, prefix=f"{prefix}.dense_h_to_4h", weights=weights, bias=True
|
||||
)
|
||||
|
||||
def forward(self, hidden_states):
|
||||
hidden_states = self.dense_h_to_4h(hidden_states)
|
||||
hidden_states = self.act(hidden_states)
|
||||
hidden_states = self.dense_4h_to_h(hidden_states)
|
||||
return hidden_states
|
||||
|
||||
|
||||
class GPTNeoXLayer(nn.Module):
|
||||
def __init__(self, layer_id, config, weights):
|
||||
super().__init__()
|
||||
self.use_parallel_residual = config.use_parallel_residual
|
||||
self.input_layernorm = nn.LayerNorm.load(prefix=f"gpt_neox.layers.{layer_id}.input_layernorm", weights=weights, eps=config.layer_norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm.load(prefix=f"gpt_neox.layers.{layer_id}.post_attention_layernorm", weights=weights, eps=config.layer_norm_eps)
|
||||
self.attention = GPTNeoXAttention(config, prefix=f"gpt_neox.layers.{layer_id}.attention", weights=weights)
|
||||
self.mlp = GPTNeoXMLP(config, prefix=f"gpt_neox.layers.{layer_id}.mlp", weights=weights)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
position_ids,
|
||||
attention_mask=None,
|
||||
head_mask=None,
|
||||
use_cache=False,
|
||||
layer_past=None,
|
||||
output_attentions=False,
|
||||
):
|
||||
attention_layer_outputs = self.attention(
|
||||
self.input_layernorm(hidden_states),
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
layer_past=layer_past,
|
||||
head_mask=head_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
attn_output = attention_layer_outputs[0] # output_attn: attn_output, present, (attn_weights)
|
||||
outputs = attention_layer_outputs[1:]
|
||||
|
||||
if self.use_parallel_residual:
|
||||
# pseudocode:
|
||||
# x = x + attn(ln1(x)) + mlp(ln2(x))
|
||||
mlp_output = self.mlp(self.post_attention_layernorm(hidden_states))
|
||||
hidden_states = mlp_output + attn_output + hidden_states
|
||||
else:
|
||||
# pseudocode:
|
||||
# x = x + attn(ln1(x))
|
||||
# x = x + mlp(ln2(x))
|
||||
attn_output = attn_output + hidden_states
|
||||
mlp_output = self.mlp(self.post_attention_layernorm(attn_output))
|
||||
hidden_states = mlp_output + attn_output
|
||||
|
||||
if use_cache:
|
||||
outputs = (hidden_states,) + outputs # hidden_states, present, (attn_weights)
|
||||
else:
|
||||
outputs = (hidden_states,) + outputs[1:] # hidden_states, (attn_weights)
|
||||
|
||||
return outputs
|
||||
|
||||
|
||||
class GPTNeoXModel(GPTNeoXPreTrainedModel):
|
||||
def __init__(self, config, weights):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.num_attention_heads = config.num_attention_heads
|
||||
|
||||
self.embed_in = TensorParallelEmbedding(prefix="gpt_neox.embed_in", weights=weights)
|
||||
self.layers = nn.ModuleList([GPTNeoXLayer(layer_id, config, weights) for layer_id in range(config.num_hidden_layers)])
|
||||
self.final_layer_norm = nn.LayerNorm.load(prefix="gpt_neox.final_layer_norm", weights=weights, eps=config.layer_norm_eps)
|
||||
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
position_ids=None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
||||
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
"""
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
||||
elif input_ids is not None:
|
||||
input_shape = input_ids.size()
|
||||
elif inputs_embeds is not None:
|
||||
input_shape = inputs_embeds.size()[:-1]
|
||||
else:
|
||||
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
if past_key_values is None:
|
||||
past_length = 0
|
||||
past_key_values = tuple([None] * self.config.num_hidden_layers)
|
||||
else:
|
||||
past_length = past_key_values[0][0].size(-2)
|
||||
|
||||
if position_ids is None:
|
||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
||||
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device)
|
||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
||||
else:
|
||||
position_ids = position_ids.view(-1, seq_length).long()
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_in(input_ids)
|
||||
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# Attention mask.
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
past_key_values_length = past_key_values[0][0].shape[-1]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
|
||||
causal_mask = prepare_attn_mask(
|
||||
attention_mask,
|
||||
input_shape=(batch_size, seq_length),
|
||||
past_key_values_length=past_key_values_length,
|
||||
)
|
||||
|
||||
if hasattr(self, "tp_rank"):
|
||||
assert self.num_attention_heads % self.tp_world_size == 0
|
||||
block_size = self.num_attention_heads // self.tp_world_size
|
||||
causal_mask = torch.repeat_interleave(causal_mask, block_size, dim=0)
|
||||
else:
|
||||
causal_mask = torch.repeat_interleave(causal_mask, self.num_attention_heads, dim=0)
|
||||
|
||||
# Prepare head mask if needed
|
||||
# 1.0 in head_mask indicate we keep the head
|
||||
# attention_probs has shape bsz x n_heads x N x N
|
||||
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
||||
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
||||
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
||||
|
||||
presents = () if use_cache else None
|
||||
all_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)):
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
outputs = layer(
|
||||
hidden_states,
|
||||
position_ids=position_ids,
|
||||
attention_mask=causal_mask,
|
||||
head_mask=head_mask[i],
|
||||
layer_past=layer_past,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
if output_attentions:
|
||||
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
||||
|
||||
hidden_states = self.final_layer_norm(hidden_states)
|
||||
# Add last hidden state
|
||||
if output_hidden_states:
|
||||
all_hidden_states = all_hidden_states + (hidden_states,)
|
||||
|
||||
if not return_dict:
|
||||
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
||||
|
||||
return BaseModelOutputWithPast(
|
||||
last_hidden_state=hidden_states,
|
||||
past_key_values=presents,
|
||||
hidden_states=all_hidden_states,
|
||||
attentions=all_attentions,
|
||||
)
|
||||
|
||||
|
||||
class GPTNeoxForCausalLM(GPTNeoXPreTrainedModel):
|
||||
_keys_to_ignore_on_load_missing = [r"position_ids", r"predictions.decoder.bias"]
|
||||
|
||||
def __init__(self, config, weights):
|
||||
super().__init__(config)
|
||||
self.gpt_neox = GPTNeoXModel(config, weights)
|
||||
self.embed_out = TensorParallelHead.load(config, prefix="embed_out", weights=weights)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: Optional[torch.LongTensor] = None,
|
||||
attention_mask: Optional[torch.FloatTensor] = None,
|
||||
position_ids: Optional[torch.LongTensor] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
r"""
|
||||
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
||||
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
||||
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
||||
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are
|
||||
only required when the model is used as a decoder in a Sequence to Sequence model.
|
||||
|
||||
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see
|
||||
`past_key_values` input) to speed up sequential decoding.
|
||||
|
||||
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
||||
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
||||
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
||||
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
||||
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
|
||||
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
|
||||
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`.
|
||||
use_cache (`bool`, *optional*):
|
||||
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
||||
`past_key_values`).
|
||||
|
||||
Returns:
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
>>> from transformers import AutoTokenizer, GPTNeoXForCausalLM, GPTNeoXConfig
|
||||
>>> import torch
|
||||
|
||||
>>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||
>>> config = GPTNeoXConfig.from_pretrained("EleutherAI/gpt-neox-20b")
|
||||
>>> config.is_decoder = True
|
||||
>>> model = GPTNeoXForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b", config=config)
|
||||
|
||||
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
||||
>>> outputs = model(**inputs)
|
||||
|
||||
>>> prediction_logits = outputs.logits
|
||||
```"""
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
outputs = self.gpt_neox(
|
||||
input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
inputs_embeds=inputs_embeds,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
lm_logits = self.embed_out(hidden_states)
|
||||
|
||||
lm_loss = None
|
||||
if labels is not None:
|
||||
# move labels to correct device to enable model parallelism
|
||||
labels = labels.to(lm_logits.device)
|
||||
# we are doing next-token prediction; shift prediction scores and input ids by one
|
||||
shift_logits = lm_logits[:, :-1, :].contiguous()
|
||||
labels = labels[:, 1:].contiguous()
|
||||
loss_fct = CrossEntropyLoss()
|
||||
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1))
|
||||
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + outputs[1:]
|
||||
return ((lm_loss,) + output) if lm_loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=lm_loss,
|
||||
logits=lm_logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
input_shape = input_ids.shape
|
||||
|
||||
# cut decoder_input_ids if past is used
|
||||
if past_key_values and past_key_values[0] is not None:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
||||
if attention_mask is None:
|
||||
attention_mask = input_ids.new_ones(input_shape)
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"attention_mask": attention_mask,
|
||||
"past_key_values": past_key_values,
|
||||
"position_ids": position_ids,
|
||||
}
|
||||
)
|
||||
|
||||
return model_inputs
|
||||
|
||||
def _reorder_cache(self, past_key_values, beam_idx):
|
||||
reordered_past = ()
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += (
|
||||
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
|
||||
)
|
||||
return reordered_past
|
@ -840,6 +840,11 @@ class T5Stack(T5PreTrainedModel):
|
||||
), "You have to initialize the model with valid token embeddings"
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
|
||||
from safetensors.torch import save_file
|
||||
save_file({"inputs_embeds": inputs_embeds}, f"inputs_embeds_{self.rank}_layer.safetensors")
|
||||
|
||||
|
||||
batch_size, seq_length = input_shape
|
||||
|
||||
# required mask seq length can be calculated via length of past
|
||||
@ -936,6 +941,8 @@ class T5Stack(T5PreTrainedModel):
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
)
|
||||
from safetensors.torch import save_file
|
||||
save_file({"layer": layer_outputs[0]}, f"layer_outputs_{self.rank}_layer_{i}.safetensors")
|
||||
|
||||
# layer_outputs is a tuple with:
|
||||
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
|
||||
|
@ -10,25 +10,16 @@ from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoConfig,
|
||||
)
|
||||
from transformers.models.gpt_neox.parallel_layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.models.custom_modeling.neox_modeling import (
|
||||
GPTNeoxForCausalLM,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
Weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Int8Params
|
||||
except Exception:
|
||||
HAS_BITS_AND_BYTES = False
|
||||
|
||||
|
||||
class GPTNeoxSharded(CausalLM):
|
||||
def __init__(
|
||||
@ -58,28 +49,18 @@ class GPTNeoxSharded(CausalLM):
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
tp_parallel=True,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
config.quantize = quantize
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(
|
||||
config, trust_remote_code=trust_remote_code
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
rank=rank,
|
||||
world_size=world_size,
|
||||
weights = Weights(
|
||||
filenames, device=device, dtype=dtype, process_group=self.process_group
|
||||
)
|
||||
|
||||
model = GPTNeoxForCausalLM(config, weights)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
model=model,
|
||||
@ -91,161 +72,16 @@ class GPTNeoxSharded(CausalLM):
|
||||
world_size=world_size,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: Optional[str],
|
||||
device: torch.device,
|
||||
dtype: torch.dtype,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if quantize is None else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
current_parameter_tensor = parameters.get(name, None)
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
if (
|
||||
current_parameter_tensor is not None
|
||||
and current_parameter_tensor.shape != tensor.shape
|
||||
):
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous().to(dtype)
|
||||
|
||||
if quantize == "bitsandbytes":
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
raise ImportError(
|
||||
"bitsandbytes is not available on your machine either because it is not installed "
|
||||
"or you don't have a GPU.\n"
|
||||
"You can install it with `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor,
|
||||
has_fp16_weights=False,
|
||||
requires_grad=False,
|
||||
).to(device)
|
||||
state = bnb.MatmulLtState()
|
||||
state.threshold = 6.0
|
||||
state.has_fp16_weights = False
|
||||
state.memory_efficient_backward = False
|
||||
state.use_pool = True
|
||||
state.CB = tensor.CB
|
||||
state.SCB = tensor.SCB
|
||||
tensor.CB = None
|
||||
tensor.SCB = None
|
||||
|
||||
def replace_linear(state):
|
||||
def linear(input, weight, bias):
|
||||
out = bnb.matmul(
|
||||
input,
|
||||
weight,
|
||||
state=state,
|
||||
threshold=state.threshold,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format
|
||||
# in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del state.CB
|
||||
weight.data = state.CxB
|
||||
|
||||
return out
|
||||
|
||||
return linear
|
||||
|
||||
module.linear = replace_linear(state)
|
||||
else:
|
||||
tensor = tensor.to(device)
|
||||
elif quantize == "gptq":
|
||||
raise NotImplementedError("`gptq` is not implemented for now")
|
||||
elif quantize is None:
|
||||
tensor = tensor.to(device)
|
||||
else:
|
||||
raise ValueError(f"Unexpected quantize `{quantize}`")
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
module._parameters[param_name] = tensor
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
):
|
||||
if self.model.gpt_neox.tp_embeddings:
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
position_ids=position_ids,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(
|
||||
logits, outputs.logits, group=self.process_group
|
||||
)
|
||||
logits = torch.cat(logits, dim=2)
|
||||
|
||||
return logits, outputs.past_key_values
|
||||
# While the model itself is sharded, the embeddings might not as they might not be dividable by num-shard
|
||||
else:
|
||||
return super(GPTNeoxSharded, self).forward(
|
||||
input_ids, attention_mask, position_ids, past_key_values
|
||||
)
|
||||
logits = outputs.logits
|
||||
return logits, outputs.past_key_values
|
||||
|
Loading…
Reference in New Issue
Block a user