This commit is contained in:
Funtowicz Morgan 2025-02-13 09:20:01 +08:00 committed by GitHub
commit 5398594077
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
9 changed files with 722 additions and 33 deletions

82
Cargo.lock generated
View File

@ -594,7 +594,7 @@ dependencies = [
"semver",
"serde",
"serde_json",
"thiserror",
"thiserror 1.0.69",
]
[[package]]
@ -1629,7 +1629,7 @@ dependencies = [
"reqwest 0.11.27",
"serde",
"serde_json",
"thiserror",
"thiserror 1.0.69",
"tokio",
"ureq",
]
@ -2085,7 +2085,7 @@ checksum = "94bd26b1b737bc11f183620072e188d1c6ede67e0e78682228d66b49ec510e17"
dependencies = [
"opentelemetry 0.20.0",
"opentelemetry-otlp",
"thiserror",
"thiserror 1.0.69",
"tracing",
"tracing-opentelemetry 0.21.0",
]
@ -2421,7 +2421,7 @@ dependencies = [
"metrics",
"metrics-util",
"quanta",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tracing",
]
@ -2552,7 +2552,7 @@ dependencies = [
"futures",
"pin-project",
"rand",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tokio-util",
"tracing",
@ -2604,7 +2604,7 @@ dependencies = [
"rustls-pemfile",
"serde",
"serde_json",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tokio-retry",
"tokio-util",
@ -2908,7 +2908,7 @@ dependencies = [
"js-sys",
"once_cell",
"pin-project-lite",
"thiserror",
"thiserror 1.0.69",
"urlencoding",
]
@ -2926,7 +2926,7 @@ dependencies = [
"opentelemetry_api",
"opentelemetry_sdk 0.20.0",
"prost 0.11.9",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tonic 0.9.2",
]
@ -2964,7 +2964,7 @@ dependencies = [
"js-sys",
"once_cell",
"pin-project-lite",
"thiserror",
"thiserror 1.0.69",
"urlencoding",
]
@ -2986,7 +2986,7 @@ dependencies = [
"rand",
"regex",
"serde_json",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tokio-stream",
]
@ -3008,7 +3008,7 @@ dependencies = [
"ordered-float 4.5.0",
"percent-encoding",
"rand",
"thiserror",
"thiserror 1.0.69",
]
[[package]]
@ -3545,7 +3545,7 @@ dependencies = [
"rand_chacha",
"simd_helpers",
"system-deps",
"thiserror",
"thiserror 1.0.69",
"v_frame",
"wasm-bindgen",
]
@ -3622,7 +3622,7 @@ checksum = "ba009ff324d1fc1b900bd1fdb31564febe58a8ccc8a6fdbb93b543d33b13ca43"
dependencies = [
"getrandom",
"libredox",
"thiserror",
"thiserror 1.0.69",
]
[[package]]
@ -4487,13 +4487,31 @@ dependencies = [
"pkg-config",
"pyo3",
"text-generation-router",
"thiserror",
"thiserror 1.0.69",
"tokenizers",
"tokio",
"tokio-stream",
"tracing",
]
[[package]]
name = "text-generation-backends-vllm"
version = "3.0.2-dev0"
dependencies = [
"async-trait",
"clap 4.5.21",
"crossbeam-channel",
"log",
"pyo3",
"text-generation-router",
"thiserror 2.0.11",
"tokio",
"tokio-stream",
"tracing",
"tracing-subscriber",
"uuid",
]
[[package]]
name = "text-generation-benchmark"
version = "3.1.1-dev0"
@ -4507,7 +4525,7 @@ dependencies = [
"serde_json",
"tabled",
"text-generation-client",
"thiserror",
"thiserror 1.0.69",
"tokenizers",
"tokio",
"tracing",
@ -4524,7 +4542,7 @@ dependencies = [
"grpc-metadata",
"prost 0.12.6",
"prost-build",
"thiserror",
"thiserror 1.0.69",
"tokio",
"tonic 0.10.2",
"tonic-build",
@ -4547,7 +4565,7 @@ dependencies = [
"reqwest 0.11.27",
"serde",
"serde_json",
"thiserror",
"thiserror 1.0.69",
"tracing",
"tracing-subscriber",
"vergen",
@ -4590,7 +4608,7 @@ dependencies = [
"serde",
"serde_json",
"sysinfo",
"thiserror",
"thiserror 1.0.69",
"tokenizers",
"tokio",
"tokio-stream",
@ -4639,7 +4657,7 @@ dependencies = [
"serde_json",
"slotmap",
"text-generation-router",
"thiserror",
"thiserror 1.0.69",
"tokenizers",
"tokio",
"tokio-stream",
@ -4690,7 +4708,7 @@ dependencies = [
"serde_json",
"slotmap",
"text-generation-router",
"thiserror",
"thiserror 1.0.69",
"tokenizers",
"tokio",
"tokio-stream",
@ -4720,7 +4738,16 @@ version = "1.0.69"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "b6aaf5339b578ea85b50e080feb250a3e8ae8cfcdff9a461c9ec2904bc923f52"
dependencies = [
"thiserror-impl",
"thiserror-impl 1.0.69",
]
[[package]]
name = "thiserror"
version = "2.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d452f284b73e6d76dd36758a0c8684b1d5be31f92b89d07fd5822175732206fc"
dependencies = [
"thiserror-impl 2.0.11",
]
[[package]]
@ -4734,6 +4761,17 @@ dependencies = [
"syn 2.0.89",
]
[[package]]
name = "thiserror-impl"
version = "2.0.11"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "26afc1baea8a989337eeb52b6e72a039780ce45c3edfcc9c5b9d112feeb173c2"
dependencies = [
"proc-macro2",
"quote",
"syn 2.0.89",
]
[[package]]
name = "thread_local"
version = "1.1.8"
@ -4835,7 +4873,7 @@ dependencies = [
"serde",
"serde_json",
"spm_precompiled",
"thiserror",
"thiserror 1.0.69",
"unicode-normalization-alignments",
"unicode-segmentation",
"unicode_categories",

View File

@ -5,15 +5,18 @@ members = [
"backends/v3",
"backends/grpc-metadata",
"backends/trtllm",
"backends/vllm",
"launcher",
"router"
"router",
]
default-members = [
"benchmark",
"backends/v2",
"backends/v3",
"backends/grpc-metadata",
# "backends/trtllm",
# "backends/vllm",
"launcher",
"router"
]
@ -33,7 +36,7 @@ metrics = { version = "0.23.0" }
metrics-exporter-prometheus = { version = "0.15.1", features = [] }
minijinja = { version = "2.2.0", features = ["json"] }
minijinja-contrib = { version = "2.0.2", features = ["pycompat"] }
pyo3 = { version = "0.22.2", features = ["auto-initialize"] }
pyo3 = { version = "0.22", features = ["auto-initialize"] }
[profile.release]
incremental = true

20
backends/vllm/Cargo.toml Normal file
View File

@ -0,0 +1,20 @@
[package]
name = "text-generation-backends-vllm"
version.workspace = true
edition.workspace = true
authors.workspace = true
homepage.workspace = true
[dependencies]
async-trait = "0.1.83"
clap = { version = "4.5.21", features = ["derive"] }
crossbeam-channel = "0.5"
pyo3 = { workspace = true }
text-generation-router = { path = "../../router" }
thiserror = "2.0"
tokio = { version = "1.43", features = ["full"] }
tokio-stream = "0.1"
uuid = { version = "1.11.0", features = ["v4"] }
log = "0.4.22"
tracing = "0.1.40"
tracing-subscriber = "0.3.18"

View File

@ -0,0 +1,197 @@
use crate::engine::RequestOutput;
use crate::errors::VllmBackendError;
use crate::{EngineArgs, LlmEngine, STARTUP_INSTANT};
use async_trait::async_trait;
use crossbeam_channel::{unbounded, Receiver, RecvTimeoutError, Sender};
use std::collections::HashMap;
use std::hint::spin_loop;
use std::sync::Arc;
use std::thread::spawn;
use std::time::{Duration, Instant as StdInstant, UNIX_EPOCH};
use text_generation_router::infer::{Backend, GeneratedText, InferError, InferStreamResponse};
use text_generation_router::validation::{
ValidGenerateRequest, ValidParameters, ValidStoppingParameters,
};
use text_generation_router::{FinishReason, Token};
use tokio::sync::mpsc::{unbounded_channel, UnboundedSender};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tracing::{debug, error, info, warn};
type InferResult = Result<InferStreamResponse, InferError>;
impl TryFrom<&RequestOutput> for InferStreamResponse {
type Error = InferError;
fn try_from(output: &RequestOutput) -> Result<Self, Self::Error> {
if let Some(last) = output.outputs.last() {
if let Some(token_id) = last.token_ids.last() {
let token = Token {
id: *token_id,
text: last.text.clone(),
// logprob: last.logprobs[0],
logprob: 0.0f32,
special: false,
};
if !output.finished {
Ok(InferStreamResponse::Intermediate {
token,
top_tokens: vec![],
})
} else {
// TODO: Let's see how to request metrics
// let metrics = output
// .metrics
// .last()
// .expect("metrics should be set if token was unpacked");
//
// debug!("Request: {} -> {metrics:?}", &output.request_id);
Ok(InferStreamResponse::End {
token,
top_tokens: vec![],
generated_text: GeneratedText {
text: last.text.clone(),
generated_tokens: last.token_ids.len() as u32,
finish_reason: last
.finish_reason
.as_ref()
.map(|reason| match reason.as_str() {
"length" => FinishReason::Length,
_ => FinishReason::StopSequence,
})
.unwrap(),
seed: None,
},
// start: STARTUP_INSTANT
// .checked_sub(Duration::from_secs_f32(metrics.first_scheduled_time))
// .unwrap_or_else(Instant::now),
// queued: STARTUP_INSTANT
// .checked_sub(Duration::from_secs_f32(metrics.arrival_time))
// .unwrap_or_else(Instant::now),
start: Instant::now(),
queued: Instant::now(),
})
}
} else {
Err(InferError::GenerationError("No token returned".to_string()))
}
} else {
Err(InferError::GenerationError("No token returned".to_string()))
}
}
}
struct VllmRequestContext {
tokens: Arc<Vec<u32>>,
params: ValidParameters,
stopping_params: ValidStoppingParameters,
stream: UnboundedSender<InferResult>,
}
pub struct VllmBackend {
waiting_requests: Sender<VllmRequestContext>,
}
impl VllmBackend {
pub fn from_engine_args(args: EngineArgs) -> Result<VllmBackend, VllmBackendError> {
let engine = LlmEngine::from_engine_args(args)?;
let (sender, receiver) = unbounded();
let _ = spawn(|| engine_background_loop(engine, receiver));
Ok(Self {
waiting_requests: sender,
})
}
}
#[async_trait]
impl Backend for VllmBackend {
fn schedule(
&self,
request: ValidGenerateRequest,
) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError> {
let (sender, receiver) = unbounded_channel();
// Send the query to the vLLM Engine
if let Some(input_ids) = request.input_ids {
debug!("Queuing new request");
if let Err(err) = self.waiting_requests.send(VllmRequestContext {
tokens: Arc::clone(&input_ids),
params: request.parameters,
stopping_params: request.stopping_parameters,
stream: sender,
}) {
warn!("Waiting Requests queue has been closed: {err}")
}
};
Ok(UnboundedReceiverStream::new(receiver))
}
async fn health(&self, _current_health: bool) -> bool {
true
}
}
fn engine_background_loop(mut engine: LlmEngine, waiting_requests: Receiver<VllmRequestContext>) {
info!("Starting vLLM engine background loop");
static DURATION_100_MS: Duration = Duration::from_millis(100);
let mut in_flight_requests = HashMap::with_capacity(256);
'outer: loop {
if !waiting_requests.is_empty() {
match waiting_requests.recv_timeout(DURATION_100_MS) {
Ok(context) => match engine.add_request(
&context.tokens,
&context.params,
&context.stopping_params,
) {
Ok(request_id) => {
debug!("Successfully scheduled request {request_id}");
in_flight_requests.insert(request_id.to_string(), context);
}
Err(err) => {
warn!("Failed to schedule new request: {err}");
}
},
Err(err) => match err {
RecvTimeoutError::Disconnected => break 'outer,
_ => {} // timeout all fine
},
}
}
// If there are tracked requests, let's pick the intermediate results
if !in_flight_requests.is_empty() {
match engine.step() {
Ok(outputs) => outputs.iter().for_each(|output| {
// Retrieve the context
{
let ctx = &in_flight_requests[&output.request_id];
let result = InferStreamResponse::try_from(output);
// We only need to check on Err meaning the channel is not open anymore, so abort the request
if let Err(_) = ctx.stream.send(result) {
debug!("Request {}'s channel dropped, aborting", &output.request_id);
in_flight_requests.remove(&output.request_id);
engine.abort_request(&output.request_id);
}
}
// Drop the request if done
if output.finished {
in_flight_requests.remove(&output.request_id);
}
}),
Err(err) => {
error!("LLMEngine::step got an error: {err}");
// TODO: Shall we exit from here? We can't link this to any particular user,
// it's Rust <> Python FFI which failed
}
}
}
spin_loop();
}
info!("Shutting down vLLM engine background loop");
}

249
backends/vllm/src/engine.rs Normal file
View File

@ -0,0 +1,249 @@
use crate::errors::VllmBackendError;
use crate::{sampling_params, tokens_prompt, TryToPyObject};
use pyo3::intern;
use pyo3::prelude::*;
use pyo3::sync::GILOnceCell;
use pyo3::types::{IntoPyDict, PyDict, PyList, PyString};
use text_generation_router::validation::{ValidParameters, ValidStoppingParameters};
use tracing::{info, instrument};
use uuid::Uuid;
pub struct EngineArgs {
pub model: String,
pub pipeline_parallel_size: u32,
pub tensor_parallel_size: u32,
}
impl IntoPyDict for EngineArgs {
fn into_py_dict_bound(self, py: Python<'_>) -> Bound<'_, PyDict> {
PyDict::from_sequence_bound(
PyList::new_bound(
py,
[
("model", self.model.into_py(py)),
(
"pipeline_parallel_size",
self.pipeline_parallel_size.into_py(py),
),
(
"tensor_parallel_size",
self.tensor_parallel_size.into_py(py),
),
],
)
.as_any(),
)
.expect("Failed to create Python Dict from EngineArgs")
}
}
static FINAL_OUTPUT_ONLY: GILOnceCell<PyObject> = GILOnceCell::new();
pub struct SamplingParams<'a> {
sampling_params: &'a ValidParameters,
stopping_params: &'a ValidStoppingParameters,
}
impl TryToPyObject for SamplingParams<'_> {
fn try_to_object(&self, py: Python<'_>) -> Result<PyObject, PyErr> {
let py_sampling_params_class = sampling_params(py);
let kwargs = PyDict::from_sequence_bound(&PyList::new_bound(
py,
[
(intern!(py, "output_kind"), 2.into_py(py)),
(intern!(py, "logprobs"), 1.into_py(py)),
(intern!(py, "n"), 1.into_py(py)),
(intern!(py, "seed"), self.sampling_params.seed.into_py(py)),
(intern!(py, "top_k"), self.sampling_params.top_k.into_py(py)),
(intern!(py, "top_p"), self.sampling_params.top_p.into_py(py)),
(
intern!(py, "temperature"),
self.sampling_params.temperature.into_py(py),
),
(
intern!(py, "frequency_penalty"),
self.sampling_params.frequency_penalty.into_py(py),
),
(
intern!(py, "repetition_penalty"),
self.sampling_params.repetition_penalty.into_py(py),
),
(
intern!(py, "ignore_eos"),
self.stopping_params.ignore_eos_token.into_py(py),
),
(
intern!(py, "max_tokens"),
self.stopping_params.max_new_tokens.into_py(py),
),
(
intern!(py, "stop"),
PyList::new_bound(py, self.stopping_params.stop_sequences.iter()).into(),
),
],
));
Ok(py_sampling_params_class
.call_method_bound(py, "from_optional", (), Some(&kwargs?))?
.to_object(py))
}
}
#[derive(Debug)]
pub(crate) struct CompletionOutput {
pub token_ids: Vec<u32>, // TODO: TinyVec?
pub text: String, // TODO: SmallString?
// pub logprobs: Vec<f32>, // TODO: TinyVec?
pub finish_reason: Option<String>, // lora_request: LATER
pub index: usize,
}
#[derive(Debug, Copy, Clone)]
pub(crate) struct RequestMetrics {
pub arrival_time: f32,
pub first_scheduled_time: f32,
pub first_token_time: f32,
pub time_in_queue: f32,
}
impl<'py> FromPyObject<'py> for RequestMetrics {
fn extract_bound(ob: &Bound<'py, PyAny>) -> PyResult<Self> {
let py = ob.py();
Ok(Self {
arrival_time: ob.getattr(intern!(py, "arrival_time"))?.extract()?,
first_scheduled_time: ob.getattr(intern!(py, "first_scheduled_time"))?.extract()?,
first_token_time: ob.getattr(intern!(py, "first_token_time"))?.extract()?,
time_in_queue: ob.getattr(intern!(py, "time_in_queue"))?.extract()?,
})
}
}
#[derive(Debug)]
pub(crate) struct RequestOutput {
pub outputs: Vec<CompletionOutput>,
// pub metrics: Vec<RequestMetrics>,
pub request_id: String,
pub finished: bool,
}
impl<'py> FromPyObject<'py> for CompletionOutput {
fn extract_bound(ob: &Bound<'py, PyAny>) -> PyResult<Self> {
let py = ob.py();
Ok(Self {
index: ob.getattr(intern!(py, "index"))?.extract()?,
text: ob.getattr(intern!(py, "text"))?.extract()?,
token_ids: ob.getattr(intern!(py, "token_ids"))?.extract()?,
// logprobs: ob.getattr(intern!(py, "logprobs"))?.extract()?,
finish_reason: ob.getattr(intern!(py, "finish_reason"))?.extract()?,
})
}
}
impl<'py> FromPyObject<'py> for RequestOutput {
fn extract_bound(ob: &Bound<'py, PyAny>) -> PyResult<Self> {
let py = ob.py();
Ok(Self {
request_id: ob.getattr(intern!(py, "request_id"))?.extract()?,
outputs: ob.getattr(intern!(py, "outputs"))?.extract()?,
finished: ob.getattr(intern!(py, "finished"))?.extract()?,
// metrics: ob.getattr(intern!(py, "metrics"))?.extract()?,
})
}
}
pub struct LlmEngine {
engine: PyObject,
}
impl LlmEngine {
fn py_from_engine_args(args: EngineArgs) -> PyResult<PyObject> {
Python::with_gil(|py| {
// Create the EngineArgs from Rust
// from vllm.engine.arg_util import EngineArgs
// engine_args = EngineArgs(**args)
let py_engine_args_mod = PyModule::import_bound(py, "vllm.engine.arg_utils")?;
let py_engine_args_class = py_engine_args_mod.getattr("EngineArgs")?;
let py_engine_args =
py_engine_args_class.call((), Some(&args.into_py_dict_bound(py)))?;
// Next create the LLMEngine from the EngineArgs
// from vllm.engine.llm_engine import LLMEngine
// engine = LLMEngine.from_engine_args(engine_args)
let py_engine_llm_mod = PyModule::import_bound(py, "vllm.v1.engine.llm_engine")?;
let py_engine_llm_class = py_engine_llm_mod.getattr("LLMEngine")?;
py_engine_llm_class
.call_method("from_engine_args", (py_engine_args,), None)?
.extract()
})
}
fn py_add_request(
&self,
request_id: &str,
prompt: &[u32],
sampling_params: SamplingParams,
) -> Result<(), VllmBackendError> {
Python::with_gil(|py| {
// Create vllm.Tokens
let kwargs = [(intern!(py, "prompt_token_ids"), prompt)].into_py_dict_bound(py);
let py_tokens_prompt_class = tokens_prompt(py);
let py_tokens_prompt = py_tokens_prompt_class.call_bound(py, (), Some(&kwargs))?;
let py_sampling_params = sampling_params.try_to_object(py)?;
self.engine.call_method1(
py,
intern!(py, "add_request"),
(
PyString::new_bound(py, request_id),
py_tokens_prompt,
py_sampling_params,
),
)?;
self.engine.call_method0(py, intern!(py, "step"))
})?;
Ok(())
}
fn py_step(&self) -> Result<Vec<RequestOutput>, VllmBackendError> {
Ok(Python::with_gil(|py| {
self.engine
.call_method0(py, intern!(py, "step"))?
.extract::<Vec<RequestOutput>>(py)
})?)
}
pub fn from_engine_args(args: EngineArgs) -> Result<LlmEngine, VllmBackendError> {
let engine = Self::py_from_engine_args(args)?;
Ok(Self { engine })
}
#[instrument(skip_all)]
pub fn add_request(
&self,
prompt: &[u32],
sampling_params: &ValidParameters,
stopping_params: &ValidStoppingParameters,
) -> Result<Uuid, VllmBackendError> {
let request_id = Uuid::new_v4();
let sampling_params = SamplingParams {
sampling_params,
stopping_params,
};
self.py_add_request(&request_id.to_string(), prompt, sampling_params)?;
info!("Submitted new request: {request_id}");
Ok(request_id)
}
#[instrument(skip_all)]
pub fn abort_request(&self, _request_id: &str) {}
#[instrument(skip_all)]
pub fn step(&mut self) -> Result<Vec<RequestOutput>, VllmBackendError> {
self.py_step()
}
}

View File

@ -0,0 +1,31 @@
use pyo3::PyErr;
use text_generation_router::infer::InferError;
use text_generation_router::server::WebServerError;
use thiserror::Error;
#[derive(Debug, Error)]
pub enum VllmBackendError {
#[error("[Python] {0}")]
Python(PyErr),
#[error("[WebServer] {0}")]
WebServer(WebServerError),
}
impl From<PyErr> for VllmBackendError {
fn from(value: PyErr) -> Self {
Self::Python(value)
}
}
impl From<WebServerError> for VllmBackendError {
fn from(value: WebServerError) -> Self {
Self::WebServer(value)
}
}
impl From<VllmBackendError> for InferError {
fn from(value: VllmBackendError) -> Self {
InferError::GenerationError(value.to_string())
}
}

43
backends/vllm/src/lib.rs Normal file
View File

@ -0,0 +1,43 @@
mod backend;
mod engine;
mod errors;
pub use backend::VllmBackend;
pub use engine::{EngineArgs, LlmEngine};
pub use errors::VllmBackendError;
use pyo3::prelude::PyAnyMethods;
use pyo3::sync::GILOnceCell;
use pyo3::types::PyModule;
use pyo3::{Py, PyAny, PyErr, PyObject, Python};
use tokio::time::Instant;
pub(crate) static STARTUP_INSTANT: Instant = Instant::now();
static PY_TOKENS_PROMPT_CLASS: GILOnceCell<Py<PyAny>> = GILOnceCell::new();
static PY_SAMPLING_PARAMS_CLASS: GILOnceCell<Py<PyAny>> = GILOnceCell::new();
#[inline]
pub(crate) fn tokens_prompt(py: Python) -> &Py<PyAny> {
PY_TOKENS_PROMPT_CLASS.get_or_init(py, || {
PyModule::import_bound(py, "vllm.inputs")
.expect("Failed to import vllm.inputs")
.getattr("TokensPrompt")
.expect("Failed to import vllm.inputs.TokensPrompt")
.unbind()
})
}
#[inline]
pub(crate) fn sampling_params(py: Python) -> &Py<PyAny> {
PY_SAMPLING_PARAMS_CLASS.get_or_init(py, || {
PyModule::import_bound(py, "vllm")
.expect("Failed to import vllm")
.getattr("SamplingParams")
.expect("Failed to import vllm.SamplingParams")
.unbind()
})
}
pub(crate) trait TryToPyObject {
fn try_to_object(&self, py: Python<'_>) -> Result<PyObject, PyErr>;
}

108
backends/vllm/src/main.rs Normal file
View File

@ -0,0 +1,108 @@
use clap::Parser;
use text_generation_backends_vllm::{EngineArgs, VllmBackend, VllmBackendError};
use text_generation_router::{server, usage_stats};
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
#[clap(default_value = "128", long, env)]
max_concurrent_requests: usize,
#[clap(default_value = "2", long, env)]
max_best_of: usize,
#[clap(default_value = "4", long, env)]
max_stop_sequences: usize,
#[clap(default_value = "5", long, env)]
max_top_n_tokens: u32,
#[clap(long, env)]
max_input_tokens: Option<usize>,
#[clap(long, env)]
max_total_tokens: Option<usize>,
#[clap(default_value = "1.2", long, env)]
waiting_served_ratio: f32,
#[clap(default_value = "4096", long, env)]
max_batch_prefill_tokens: u32,
#[clap(long, env)]
max_batch_total_tokens: Option<u32>,
#[clap(default_value = "20", long, env)]
max_waiting_tokens: usize,
#[clap(long, env)]
max_batch_size: Option<usize>,
#[clap(default_value = "0.0.0.0", long, env)]
hostname: String,
#[clap(default_value = "3000", long, short, env)]
port: u16,
#[clap(default_value = "bigscience/bloom", long, env)]
tokenizer_name: String,
#[clap(long, env)]
tokenizer_config_path: Option<String>,
#[clap(long, env)]
revision: Option<String>,
#[clap(long, env, value_enum)]
trust_remote_code: bool,
#[clap(default_value = "2", long, env)]
validation_workers: usize,
#[clap(long, env)]
api_key: Option<String>,
#[clap(long, env)]
json_output: bool,
#[clap(long, env)]
otlp_endpoint: Option<String>,
#[clap(default_value = "text-generation-inference.router", long, env)]
otlp_service_name: String,
#[clap(long, env)]
cors_allow_origin: Option<Vec<String>>,
#[clap(long, env, default_value_t = false)]
disable_grammar_support: bool,
#[clap(default_value = "4", long, env)]
max_client_batch_size: usize,
#[clap(default_value = "on", long, env)]
usage_stats: usage_stats::UsageStatsLevel,
#[clap(default_value = "2000000", long, env)]
payload_limit: usize,
}
impl Into<EngineArgs> for &Args {
fn into(self) -> EngineArgs {
EngineArgs {
model: self.tokenizer_name.clone(),
pipeline_parallel_size: 1, // TODO
tensor_parallel_size: 1, // TODO
}
}
}
#[tokio::main]
async fn main() -> Result<(), VllmBackendError> {
tracing_subscriber::fmt::init();
let args = Args::parse();
let backend = VllmBackend::from_engine_args((&args).into())?;
server::run(
backend,
args.max_concurrent_requests,
args.max_best_of,
args.max_stop_sequences,
args.max_top_n_tokens,
args.max_input_tokens.unwrap_or(1024), // TODO
args.max_total_tokens.unwrap_or(2048), // TODO
args.validation_workers,
args.api_key,
args.tokenizer_name,
args.tokenizer_config_path,
args.revision,
args.trust_remote_code,
args.hostname,
args.port,
args.cors_allow_origin,
false,
None,
None,
args.disable_grammar_support,
args.max_batch_size.unwrap_or(16),
args.usage_stats,
args.payload_limit,
)
.await?;
Ok(())
}

View File

@ -31,11 +31,11 @@ serde_json = "1.0.107"
thiserror = "1.0.48"
tokenizers = { workspace = true }
tokio = { version = "1.32.0", features = [
"rt",
"rt-multi-thread",
"parking_lot",
"signal",
"sync",
"rt",
"rt-multi-thread",
"parking_lot",
"signal",
"sync",
] }
tokio-stream = "0.1.14"
tower-http = { version = "0.5.1", features = ["cors"] }
@ -46,7 +46,7 @@ utoipa = { version = "4.2.0", features = ["axum_extras"] }
utoipa-swagger-ui = { version = "6.0.0", features = ["axum"] }
ngrok = { version = "0.13.1", features = ["axum"], optional = true }
init-tracing-opentelemetry = { version = "0.14.1", features = [
"opentelemetry-otlp",
"opentelemetry-otlp",
] }
minijinja = { workspace = true }
minijinja-contrib = { workspace = true }
@ -57,9 +57,9 @@ image = "0.25.1"
base64 = { workspace = true }
sysinfo = "0.30.13"
uuid = { version = "1.9.1", default-features = false, features = [
"v4",
"fast-rng",
"macro-diagnostics",
"v4",
"fast-rng",
"macro-diagnostics",
] }
csv = "1.3.0"
ureq = "=2.9"