mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
working rocm build
This commit is contained in:
parent
f9910d13e2
commit
52bdcf797d
135
Dockerfile_amd
Normal file
135
Dockerfile_amd
Normal file
@ -0,0 +1,135 @@
|
||||
# Rust builder
|
||||
FROM lukemathwalker/cargo-chef:latest-rust-1.71 AS chef
|
||||
WORKDIR /usr/src
|
||||
|
||||
ARG CARGO_REGISTRIES_CRATES_IO_PROTOCOL=sparse
|
||||
|
||||
FROM chef as planner
|
||||
COPY Cargo.toml Cargo.toml
|
||||
COPY rust-toolchain.toml rust-toolchain.toml
|
||||
COPY proto proto
|
||||
COPY benchmark benchmark
|
||||
COPY router router
|
||||
COPY launcher launcher
|
||||
RUN cargo chef prepare --recipe-path recipe.json
|
||||
|
||||
FROM chef AS builder
|
||||
|
||||
ARG GIT_SHA
|
||||
ARG DOCKER_LABEL
|
||||
|
||||
RUN PROTOC_ZIP=protoc-21.12-linux-x86_64.zip && \
|
||||
curl -OL https://github.com/protocolbuffers/protobuf/releases/download/v21.12/$PROTOC_ZIP && \
|
||||
unzip -o $PROTOC_ZIP -d /usr/local bin/protoc && \
|
||||
unzip -o $PROTOC_ZIP -d /usr/local 'include/*' && \
|
||||
rm -f $PROTOC_ZIP
|
||||
|
||||
COPY --from=planner /usr/src/recipe.json recipe.json
|
||||
RUN cargo chef cook --release --recipe-path recipe.json
|
||||
|
||||
COPY Cargo.toml Cargo.toml
|
||||
COPY rust-toolchain.toml rust-toolchain.toml
|
||||
COPY proto proto
|
||||
COPY benchmark benchmark
|
||||
COPY router router
|
||||
COPY launcher launcher
|
||||
RUN cargo build --release
|
||||
|
||||
# Text Generation Inference base image
|
||||
FROM rocm/dev-ubuntu-20.04:5.7 as base
|
||||
|
||||
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --no-install-recommends \
|
||||
build-essential \
|
||||
ca-certificates \
|
||||
ccache \
|
||||
curl \
|
||||
git \
|
||||
make \
|
||||
libssl-dev \
|
||||
g++ \
|
||||
wget \
|
||||
# Needed to build VLLM.
|
||||
rocthrust-dev \
|
||||
hipsparse-dev \
|
||||
hipblas-dev && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# TGI seem to require libssl.so.1.1 instead of libssl.so.3 so we can't use ubuntu 22.04. Ubuntu 20.04 has python==3.8, and TGI requires python>=3.9, hence the need for miniconda.
|
||||
|
||||
RUN wget \
|
||||
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
|
||||
&& mkdir .conda \
|
||||
&& bash Miniconda3-latest-Linux-x86_64.sh -b \
|
||||
&& rm -f Miniconda3-latest-Linux-x86_64.sh
|
||||
|
||||
ENV PATH="/root/miniconda3/bin:${PATH}"
|
||||
ARG PATH="/root/user/miniconda3/bin:${PATH}"
|
||||
RUN conda init bash
|
||||
|
||||
ARG PYTORCH_VERSION='2.2.0.dev0'
|
||||
ARG ROCM_VERSION='5.7'
|
||||
ARG PYTHON_VERSION='3.11.5'
|
||||
|
||||
RUN pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm5.7
|
||||
RUN pip install -U ninja
|
||||
|
||||
WORKDIR /usr/src
|
||||
|
||||
# Install VLLM.
|
||||
RUN git clone https://github.com/fxmarty/vllm-public.git && cd vllm-public && git checkout --track origin/port-to-rocm
|
||||
WORKDIR /usr/src/vllm-public
|
||||
RUN pip install -r requirements.txt
|
||||
RUN python setup.py install
|
||||
|
||||
# Install Flash Attention v1.
|
||||
WORKDIR /usr/src
|
||||
RUN git clone https://github.com/ROCmSoftwarePlatform/flash-attention.git && cd flash-attention && git submodule init && git submodule update && python setup.py install
|
||||
|
||||
# Not working for RoCm
|
||||
# RUN cd flash-attention/csrc/rotary && python setup.py build && cd flash-attention/csrc/layer_norm && python setup.py build
|
||||
|
||||
# COPY server/Makefile-flash-att Makefile
|
||||
|
||||
# Build specific version of flash attention
|
||||
# RUN make build-flash-attention
|
||||
|
||||
# Build Transformers CUDA kernels
|
||||
# NOTE: gpt-neox and bloom fused kernels
|
||||
|
||||
# FROM kernel-builder as custom-kernels-builder
|
||||
# WORKDIR /usr/src
|
||||
# COPY server/custom_kernels/ .
|
||||
# Build specific version of transformers
|
||||
# RUN python setup.py build
|
||||
|
||||
# Text Generation Inference base env
|
||||
ENV HUGGINGFACE_HUB_CACHE=/data \
|
||||
HF_HUB_ENABLE_HF_TRANSFER=1 \
|
||||
PORT=80
|
||||
|
||||
# Copy build artifacts from flash attention builder
|
||||
# COPY --from=flash-att-builder /usr/src/flash-attention/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
# COPY --from=flash-att-builder /usr/src/flash-attention/csrc/layer_norm/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
# COPY --from=flash-att-builder /usr/src/flash-attention/csrc/rotary/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
|
||||
# Copy build artifacts from custom kernels builder
|
||||
# COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-39 /opt/conda/lib/python3.9/site-packages
|
||||
|
||||
# Install server
|
||||
COPY proto proto
|
||||
COPY server server
|
||||
COPY server/Makefile server/Makefile
|
||||
RUN cd server && pip3 install -r requirements.txt
|
||||
RUN cd server && \
|
||||
make gen-server && \
|
||||
pip3 install ".[accelerate]" --no-cache-dir
|
||||
|
||||
# Install benchmarker
|
||||
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark
|
||||
# Install router
|
||||
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router
|
||||
# Install launcherg
|
||||
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
|
||||
|
||||
# ENTRYPOINT ["text-generation-launcher"]
|
||||
# CMD ["--json-output"]
|
@ -4,7 +4,8 @@ aiosignal==1.3.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
async-timeout==4.0.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
attrs==23.1.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
backoff==2.2.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
bitsandbytes==0.41.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
# bitsandbytes is broken on RoCm systems
|
||||
# bitsandbytes==0.41.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
certifi==2023.7.22 ; python_version >= "3.9" and python_version < "3.13"
|
||||
charset-normalizer==3.2.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
click==8.1.7 ; python_version >= "3.9" and python_version < "3.13"
|
||||
@ -62,7 +63,8 @@ six==1.16.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
sympy==1.12 ; python_version >= "3.9" and python_version < "3.13"
|
||||
texttable==1.6.7 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tokenizers==0.13.3 ; python_version >= "3.9" and python_version < "3.13"
|
||||
torch==2.0.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
# We use nightly
|
||||
torch>2.1.0 ; python_version >= "3.9" and python_version < "3.13"
|
||||
tqdm==4.66.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
transformers==4.33.2 ; python_version >= "3.9" and python_version < "3.13"
|
||||
typer==0.6.1 ; python_version >= "3.9" and python_version < "3.13"
|
||||
|
@ -26,8 +26,10 @@ from transformers.activations import ACT2FN
|
||||
from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from loguru import logger
|
||||
|
||||
# Flash attention imports
|
||||
import dropout_layer_norm
|
||||
# import dropout_layer_norm
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.layers import (
|
||||
@ -39,6 +41,9 @@ from text_generation_server.utils.layers import (
|
||||
get_linear,
|
||||
)
|
||||
|
||||
from vllm import layernorm_ops
|
||||
|
||||
torch.set_printoptions(threshold=10000000, sci_mode=True)
|
||||
|
||||
class LlamaConfig(PretrainedConfig):
|
||||
def __init__(
|
||||
@ -121,28 +126,43 @@ class LlamaRMSNorm(nn.Module):
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
else:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
# We use VLLM kernels that are compiled for RoCm instead of Flash Attention ones that can't be used.
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
out = torch.empty_like(hidden_states)
|
||||
layernorm_ops.rms_norm(
|
||||
out,
|
||||
hidden_states,
|
||||
self.weight.data,
|
||||
self.variance_epsilon,
|
||||
)
|
||||
return out, residual
|
||||
|
||||
# else:
|
||||
# # faster post attention rms norm
|
||||
# normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
# hidden_states,
|
||||
# residual,
|
||||
# self.weight,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# 0.0,
|
||||
# self.variance_epsilon,
|
||||
# 1.0,
|
||||
# 0,
|
||||
# None,
|
||||
# False,
|
||||
# True, # Activate RMSNorm
|
||||
# )
|
||||
# if res is None:
|
||||
# res = hidden_states
|
||||
|
||||
# return normed_hidden_states, res
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
@ -262,6 +282,11 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
query = query.view(-1, self.num_heads, self.head_size)
|
||||
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
|
||||
|
||||
# logger.info(f"query before rotary {query[:10, ..., :8]}")
|
||||
# logger.info(f"cos before rotary {cos[:10]}")
|
||||
# logger.info(f"sin before rotary {sin[:10]}")
|
||||
# TODO: maybe we can use VLLM rotary here, which would require position_ids? Probably too big of a change...
|
||||
# Flash Attention kernel may be usable since it is Triton-based
|
||||
self.rotary_emb(query, cos, sin)
|
||||
self.rotary_emb(torch.select(kv, dim=1, index=0), cos, sin)
|
||||
|
||||
@ -272,6 +297,9 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
# output tensor
|
||||
attn_output = torch.empty_like(query)
|
||||
|
||||
|
||||
# logger.info(f"query {query.shape}")
|
||||
# logger.info(f"query piece {query[:10, ..., :8]}")
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
@ -297,6 +325,9 @@ class FlashLlamaAttention(torch.nn.Module):
|
||||
input_lengths,
|
||||
max_s,
|
||||
)
|
||||
|
||||
# logger.info(f"attn_output {attn_output.shape}")
|
||||
# logger.info(f"attn_output piece {attn_output[:10, ..., :8]}")
|
||||
|
||||
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
|
||||
|
||||
|
@ -27,7 +27,7 @@ from transformers.configuration_utils import PretrainedConfig
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
# Flash attention imports
|
||||
import dropout_layer_norm
|
||||
# import dropout_layer_norm
|
||||
|
||||
from text_generation_server.utils import paged_attention, flash_attn
|
||||
from text_generation_server.utils.flash_attn import attention, HAS_FLASH_ATTN_V2
|
||||
@ -110,45 +110,45 @@ class MistralRMSNorm(nn.Module):
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
# if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states, residual
|
||||
else:
|
||||
# faster post attention rms norm
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
return self.weight * hidden_states, residual
|
||||
# else:
|
||||
# # faster post attention rms norm
|
||||
# normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
# hidden_states,
|
||||
# residual,
|
||||
# self.weight,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# 0.0,
|
||||
# self.variance_epsilon,
|
||||
# 1.0,
|
||||
# 0,
|
||||
# None,
|
||||
# False,
|
||||
# True, # Activate RMSNorm
|
||||
# )
|
||||
# if res is None:
|
||||
# res = hidden_states
|
||||
|
||||
return normed_hidden_states, res
|
||||
# return normed_hidden_states, res
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights):
|
||||
|
@ -55,7 +55,7 @@ from text_generation_server.utils.layers import (
|
||||
PositionRotaryEmbedding,
|
||||
FastLinear,
|
||||
)
|
||||
import dropout_layer_norm
|
||||
# import dropout_layer_norm
|
||||
|
||||
|
||||
@dataclass
|
||||
@ -354,54 +354,54 @@ class IdeficsRMSNorm(nn.Module):
|
||||
self.variance_epsilon = eps
|
||||
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
# if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
hidden_states = hidden_states.to(torch.float32)
|
||||
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
||||
hidden_states = hidden_states * torch.rsqrt(
|
||||
variance + self.variance_epsilon
|
||||
)
|
||||
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
# convert into half-precision if necessary
|
||||
if self.weight.dtype in [torch.float16, torch.bfloat16]:
|
||||
hidden_states = hidden_states.to(self.weight.dtype)
|
||||
|
||||
return self.weight * hidden_states
|
||||
else:
|
||||
# faster post attention rms norm
|
||||
unwrap = False
|
||||
if len(hidden_states.shape) > 2:
|
||||
unwrap = True
|
||||
shape = hidden_states.shape
|
||||
hidden_states = hidden_states.reshape(-1, shape[-1])
|
||||
return self.weight * hidden_states
|
||||
# else:
|
||||
# # faster post attention rms norm
|
||||
# unwrap = False
|
||||
# if len(hidden_states.shape) > 2:
|
||||
# unwrap = True
|
||||
# shape = hidden_states.shape
|
||||
# hidden_states = hidden_states.reshape(-1, shape[-1])
|
||||
|
||||
normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.variance_epsilon,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
True, # Activate RMSNorm
|
||||
)
|
||||
if res is None:
|
||||
res = hidden_states
|
||||
# normed_hidden_states, res, *rest = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
# hidden_states,
|
||||
# residual,
|
||||
# self.weight,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# 0.0,
|
||||
# self.variance_epsilon,
|
||||
# 1.0,
|
||||
# 0,
|
||||
# None,
|
||||
# False,
|
||||
# True, # Activate RMSNorm
|
||||
# )
|
||||
# if res is None:
|
||||
# res = hidden_states
|
||||
|
||||
if unwrap:
|
||||
normed_hidden_states = normed_hidden_states.view(*shape)
|
||||
# if unwrap:
|
||||
# normed_hidden_states = normed_hidden_states.view(*shape)
|
||||
|
||||
return normed_hidden_states
|
||||
# return normed_hidden_states
|
||||
|
||||
|
||||
# this was adapted from LlamaMLP
|
||||
|
@ -3,6 +3,8 @@ import torch
|
||||
|
||||
from loguru import logger
|
||||
|
||||
from .import_utils import is_cuda_system, is_rocm_system
|
||||
|
||||
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
|
||||
raise ImportError("`USE_FLASH_ATTENTION` is false.")
|
||||
|
||||
@ -41,10 +43,17 @@ except ImportError as e:
|
||||
"or install flash attention with `cd server && make install install-flash-attention`"
|
||||
) from e
|
||||
|
||||
if not (is_sm75 or is_sm8x or is_sm90):
|
||||
if is_cuda_system() and not (is_sm75 or is_sm8x or is_sm90):
|
||||
raise ImportError(
|
||||
f"GPU with CUDA capability {major} {minor} is not supported"
|
||||
) from e
|
||||
elif is_rocm_system():
|
||||
for idx in range(torch.cuda.device_count()):
|
||||
if "MI210" not in torch.cuda.get_device_name(idx) and "MI250" not in torch.cuda.get_device_name(idx):
|
||||
raise ImportError(
|
||||
f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
|
||||
)
|
||||
|
||||
logger.warning(f"Unable to use Flash Attention V2: {e}")
|
||||
HAS_FLASH_ATTN = True
|
||||
|
||||
@ -59,6 +68,7 @@ def attention(
|
||||
softmax_scale,
|
||||
window_size_left=-1,
|
||||
):
|
||||
# logger.info(f"HAS_FLASH_ATTN_V2 {HAS_FLASH_ATTN_V2}")
|
||||
if HAS_FLASH_ATTN_V2:
|
||||
return flash_attn_2_cuda.varlen_fwd(
|
||||
q,
|
||||
@ -78,7 +88,8 @@ def attention(
|
||||
False,
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
# logger.info(f"HAS_FLASH_ATTN {HAS_FLASH_ATTN}")
|
||||
if HAS_FLASH_ATTN:
|
||||
if window_size_left != -1:
|
||||
raise NotImplementedError(
|
||||
@ -124,7 +135,8 @@ def attention(
|
||||
softmax_scale,
|
||||
False,
|
||||
True,
|
||||
False,
|
||||
False, # is_deterministic => rocm specific argument
|
||||
False, # return_softmax
|
||||
0,
|
||||
None,
|
||||
)
|
||||
|
15
server/text_generation_server/utils/import_utils.py
Normal file
15
server/text_generation_server/utils/import_utils.py
Normal file
@ -0,0 +1,15 @@
|
||||
import subprocess
|
||||
|
||||
def is_cuda_system():
|
||||
try:
|
||||
subprocess.check_output("nvidia-smi")
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
def is_rocm_system():
|
||||
try:
|
||||
subprocess.check_output("rocm-smi")
|
||||
return True
|
||||
except Exception:
|
||||
return False
|
@ -509,50 +509,50 @@ class TensorParallelEmbedding(nn.Module):
|
||||
|
||||
|
||||
try:
|
||||
import dropout_layer_norm
|
||||
# import dropout_layer_norm
|
||||
|
||||
class FastLayerNorm(nn.LayerNorm):
|
||||
def forward(self, hidden_states, residual=None):
|
||||
if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
# if hidden_states.shape[-1] > 8192:
|
||||
if residual is not None:
|
||||
hidden_states += residual
|
||||
residual = hidden_states
|
||||
|
||||
return super(FastLayerNorm, self).forward(hidden_states), residual
|
||||
else:
|
||||
(
|
||||
normed_hidden_states,
|
||||
residual,
|
||||
*rest,
|
||||
) = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.weight,
|
||||
self.bias,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
0.0,
|
||||
self.eps,
|
||||
1.0,
|
||||
0,
|
||||
None,
|
||||
False,
|
||||
False,
|
||||
)
|
||||
if residual is None:
|
||||
residual = hidden_states
|
||||
return super(FastLayerNorm, self).forward(hidden_states), residual
|
||||
# else:
|
||||
# (
|
||||
# normed_hidden_states,
|
||||
# residual,
|
||||
# *rest,
|
||||
# ) = dropout_layer_norm.dropout_add_ln_fwd(
|
||||
# hidden_states,
|
||||
# residual,
|
||||
# self.weight,
|
||||
# self.bias,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# None,
|
||||
# 0.0,
|
||||
# self.eps,
|
||||
# 1.0,
|
||||
# 0,
|
||||
# None,
|
||||
# False,
|
||||
# False,
|
||||
# )
|
||||
# if residual is None:
|
||||
# residual = hidden_states
|
||||
|
||||
return normed_hidden_states, residual
|
||||
# return normed_hidden_states, residual
|
||||
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
|
||||
try:
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
import rotary_emb
|
||||
# from flash_attn.layers.rotary import RotaryEmbedding
|
||||
# import rotary_emb
|
||||
|
||||
def _create_inv_freq(dim, base, device):
|
||||
inv_freq = 1.0 / (
|
||||
@ -692,11 +692,19 @@ try:
|
||||
|
||||
def forward(self, x: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
x1 = x[..., :rotary_dim]
|
||||
x2 = x[..., rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
|
||||
return x
|
||||
dtype = x.dtype
|
||||
x_upcast = x.to(torch.float32)
|
||||
cos = cos.to(torch.float32)
|
||||
sin = sin.to(torch.float32)
|
||||
|
||||
x1 = x_upcast[..., :rotary_dim]
|
||||
x2 = x_upcast[..., rotary_dim : 2 * rotary_dim]
|
||||
|
||||
# rotary_emb.apply_rotary(x1, x2, cos, sin, x1, x2, False)
|
||||
# Flash Attention kernel casts everything to float, not sure why. In place op here
|
||||
x[..., :rotary_dim] = (x1 * cos - x2 * sin).to(dtype)
|
||||
x[..., rotary_dim : 2 * rotary_dim] = (x1 * sin + x2 * cos).to(dtype)
|
||||
|
||||
class DynamicPositionRotaryEmbedding(PositionRotaryEmbedding):
|
||||
def __init__(self, dim, max_position_embeddings, base, device, scaling_factor):
|
||||
|
@ -4,6 +4,8 @@ import torch
|
||||
from vllm import cache_ops
|
||||
from vllm import attention_ops
|
||||
|
||||
from loguru import logger
|
||||
|
||||
_PARTITION_SIZE = 512
|
||||
|
||||
|
||||
@ -54,6 +56,7 @@ def attention(
|
||||
# sequences or heads is large, we use V1 since there is enough work
|
||||
# to parallelize.
|
||||
use_v1 = max_num_partitions == 1 or num_seqs * num_heads > 512
|
||||
logger.info(f"paged attention use_v1 {use_v1}")
|
||||
if use_v1:
|
||||
attention_ops.paged_attention_v1(
|
||||
out,
|
||||
|
Loading…
Reference in New Issue
Block a user