mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-11-18 23:15:59 +00:00
Multi modality fix (#3283)
Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
parent
6a2fa83540
commit
5284b5c654
@ -710,34 +710,41 @@ class MllamaTextCrossAttention(nn.Module):
|
|||||||
# )
|
# )
|
||||||
if SYSTEM == "ipex":
|
if SYSTEM == "ipex":
|
||||||
attn_output = torch.empty_like(query_states)
|
attn_output = torch.empty_like(query_states)
|
||||||
ipex.llm.functional.varlen_attention(
|
if query_states.device.type == "xpu":
|
||||||
(
|
ipex.llm.functional.varlen_attention(
|
||||||
query_states.contiguous()
|
query_states.contiguous(),
|
||||||
if query_states.device.type == "xpu"
|
key_states.contiguous(),
|
||||||
else query_states
|
value_states.contiguous(),
|
||||||
),
|
attn_output,
|
||||||
(
|
cu_seqlen_q,
|
||||||
key_states.contiguous()
|
cu_seqlen_k,
|
||||||
if key_states.device.type == "xpu"
|
None,
|
||||||
else key_states
|
max_q,
|
||||||
),
|
max_k,
|
||||||
(
|
0.0,
|
||||||
value_states.contiguous()
|
self.softmax_scale,
|
||||||
if value_states.device.type == "xpu"
|
False,
|
||||||
else value_states
|
causal,
|
||||||
),
|
False,
|
||||||
attn_output,
|
None,
|
||||||
cu_seqlen_q,
|
)
|
||||||
cu_seqlen_k,
|
else:
|
||||||
max_q,
|
ipex.llm.functional.varlen_attention(
|
||||||
max_k,
|
query_states,
|
||||||
0.0,
|
key_states,
|
||||||
self.softmax_scale,
|
value_states,
|
||||||
False,
|
attn_output,
|
||||||
causal,
|
cu_seqlen_q,
|
||||||
False,
|
cu_seqlen_k,
|
||||||
None,
|
max_q,
|
||||||
)
|
max_k,
|
||||||
|
0.0,
|
||||||
|
self.softmax_scale,
|
||||||
|
False,
|
||||||
|
causal,
|
||||||
|
False,
|
||||||
|
None,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
attn_output = flash_attn_2_cuda.varlen_fwd(
|
attn_output = flash_attn_2_cuda.varlen_fwd(
|
||||||
query_states,
|
query_states,
|
||||||
|
|||||||
@ -460,22 +460,41 @@ class Qwen2_5VLAttention(nn.Module):
|
|||||||
# execute flash attention
|
# execute flash attention
|
||||||
if SYSTEM == "ipex":
|
if SYSTEM == "ipex":
|
||||||
attn_output = torch.empty_like(query)
|
attn_output = torch.empty_like(query)
|
||||||
ipex.llm.functional.varlen_attention(
|
if query.device.type == "xpu":
|
||||||
(query.contiguous() if query.device.type == "xpu" else query),
|
ipex.llm.functional.varlen_attention(
|
||||||
(key.contiguous() if key.device.type == "xpu" else key),
|
query.contiguous(),
|
||||||
(value.contiguous() if value.device.type == "xpu" else value),
|
key.contiguous(),
|
||||||
attn_output,
|
value.contiguous(),
|
||||||
cu_seqlens,
|
attn_output,
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
max_seqlen,
|
cu_seqlens,
|
||||||
max_seqlen,
|
None,
|
||||||
0.0,
|
max_seqlen,
|
||||||
self.softmax_scale,
|
max_seqlen,
|
||||||
False,
|
0.0,
|
||||||
causal,
|
self.softmax_scale,
|
||||||
False,
|
False,
|
||||||
None,
|
causal,
|
||||||
)
|
False,
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
ipex.llm.functional.varlen_attention(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
attn_output,
|
||||||
|
cu_seqlens,
|
||||||
|
cu_seqlens,
|
||||||
|
max_seqlen,
|
||||||
|
max_seqlen,
|
||||||
|
0.0,
|
||||||
|
self.softmax_scale,
|
||||||
|
False,
|
||||||
|
causal,
|
||||||
|
False,
|
||||||
|
None,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
attn_output = flash_attn_2_cuda.varlen_fwd(
|
attn_output = flash_attn_2_cuda.varlen_fwd(
|
||||||
query,
|
query,
|
||||||
|
|||||||
@ -130,22 +130,41 @@ class Qwen2VLAttention(nn.Module):
|
|||||||
# execute flash attention
|
# execute flash attention
|
||||||
if SYSTEM == "ipex":
|
if SYSTEM == "ipex":
|
||||||
attn_output = torch.empty_like(query)
|
attn_output = torch.empty_like(query)
|
||||||
ipex.llm.functional.varlen_attention(
|
if query.device.type == "xpu":
|
||||||
(query.contiguous() if query.device.type == "xpu" else query),
|
ipex.llm.functional.varlen_attention(
|
||||||
(key.contiguous() if key.device.type == "xpu" else key),
|
query.contiguous(),
|
||||||
(value.contiguous() if value.device.type == "xpu" else value),
|
key.contiguous(),
|
||||||
attn_output,
|
value.contiguous(),
|
||||||
cu_seqlens,
|
attn_output,
|
||||||
cu_seqlens,
|
cu_seqlens,
|
||||||
max_seqlen,
|
cu_seqlens,
|
||||||
max_seqlen,
|
None,
|
||||||
0.0,
|
max_seqlen,
|
||||||
self.softmax_scale,
|
max_seqlen,
|
||||||
False,
|
0.0,
|
||||||
causal,
|
self.softmax_scale,
|
||||||
False,
|
False,
|
||||||
None,
|
causal,
|
||||||
)
|
False,
|
||||||
|
None,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
ipex.llm.functional.varlen_attention(
|
||||||
|
query,
|
||||||
|
key,
|
||||||
|
value,
|
||||||
|
attn_output,
|
||||||
|
cu_seqlens,
|
||||||
|
cu_seqlens,
|
||||||
|
max_seqlen,
|
||||||
|
max_seqlen,
|
||||||
|
0.0,
|
||||||
|
self.softmax_scale,
|
||||||
|
False,
|
||||||
|
causal,
|
||||||
|
False,
|
||||||
|
None,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
attn_output = flash_attn_2_cuda.varlen_fwd(
|
attn_output = flash_attn_2_cuda.varlen_fwd(
|
||||||
query,
|
query,
|
||||||
|
|||||||
@ -59,7 +59,7 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
|
|||||||
@tracer.start_as_current_span("filter")
|
@tracer.start_as_current_span("filter")
|
||||||
def filter(self, request_ids: List[int]):
|
def filter(self, request_ids: List[int]):
|
||||||
assert self.image_indices is not None
|
assert self.image_indices is not None
|
||||||
batch = super().filter(request_ids)
|
batch = super(VlmCausalLMBatch, self).filter(request_ids)
|
||||||
assert self.image_indices is not None
|
assert self.image_indices is not None
|
||||||
indices = []
|
indices = []
|
||||||
for i, request_id in enumerate(request_ids):
|
for i, request_id in enumerate(request_ids):
|
||||||
@ -85,6 +85,7 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
|
|||||||
]
|
]
|
||||||
else:
|
else:
|
||||||
batch.cross_attention_states = None
|
batch.cross_attention_states = None
|
||||||
|
batch.pixel_values = None
|
||||||
return batch
|
return batch
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
|
|||||||
Loading…
Reference in New Issue
Block a user