mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-04-27 21:12:07 +00:00
Initial fp8.
This commit is contained in:
parent
30620a9a44
commit
50d5a3c11e
@ -47,6 +47,9 @@ enum Quantization {
|
||||
/// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
|
||||
/// perplexity performance for you model
|
||||
BitsandbytesFP4,
|
||||
/// [FP8](https://developer.nvidia.com/blog/nvidia-arm-and-intel-publish-fp8-specification-for-standardization-as-an-interchange-format-for-ai/) (e4m3) works on H100 and above
|
||||
/// This dtype has native ops should be the fastest if available.
|
||||
Fp8,
|
||||
}
|
||||
|
||||
impl std::fmt::Display for Quantization {
|
||||
@ -73,6 +76,9 @@ impl std::fmt::Display for Quantization {
|
||||
Quantization::Eetq => {
|
||||
write!(f, "eetq")
|
||||
}
|
||||
Quantization::Fp8 => {
|
||||
write!(f, "fp8")
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -19,6 +19,7 @@ class Quantization(str, Enum):
|
||||
gptq = "gptq"
|
||||
awq = "awq"
|
||||
eetq = "eetq"
|
||||
fp8 = "fp8"
|
||||
|
||||
|
||||
class Dtype(str, Enum):
|
||||
|
@ -181,6 +181,40 @@ class EETQLinear(nn.Module):
|
||||
output = output + self.bias if self.bias is not None else output
|
||||
return output
|
||||
|
||||
class Fp8Linear(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
weight,
|
||||
bias,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
device = weight.device
|
||||
# weight, scale = quant_weights(weight, torch.int8, False)
|
||||
finfo = torch.finfo(weight.dtype)
|
||||
qdtype = torch.float8_e4m3fn
|
||||
# Calculate the scale as dtype max divided by absmax
|
||||
scale = finfo.max / weight.abs().max().clamp(min=1e-12)
|
||||
# scale and clamp the tensor to bring it to
|
||||
# the representative range of float8 data type
|
||||
# (as default cast is unsaturated)
|
||||
x_scl_sat = (weight * scale).clamp(min=finfo.min, max=finfo.max)
|
||||
# Return both float8 data and the inverse scale (as float),
|
||||
# as both required as inputs to torch._scaled_mm
|
||||
self.dtype = weight.dtype
|
||||
self.qweight = x_scl_sat.to(qdtype).to(device=device)
|
||||
self.scale = scale.float().reciprocal().to(device=device)
|
||||
self.bias = bias.cuda(device) if bias is not None else None
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
finfo = torch.finfo(input.dtype)
|
||||
scale = finfo.max / input.abs().max().clamp(min=1e-12)
|
||||
qinput = (input * scale).clamp(min=finfo.min, max=finfo.max)
|
||||
|
||||
output, _ = torch._scaled_mm(qinput, self.qweight, out_dtype=torch.float16,
|
||||
scale_a=scale , scale_b=self.scale)
|
||||
output = output + self.bias if self.bias is not None else output
|
||||
return output
|
||||
|
||||
|
||||
class Linear8bitLt(nn.Module):
|
||||
def __init__(
|
||||
@ -293,6 +327,12 @@ def get_linear(weight, bias, quantize):
|
||||
raise ImportError(
|
||||
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
||||
)
|
||||
elif quantize == "fp8":
|
||||
linear = Fp8Linear(weight, bias)
|
||||
else:
|
||||
raise ImportError(
|
||||
"Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
|
||||
)
|
||||
elif quantize == "bitsandbytes":
|
||||
warn_deprecate_bnb()
|
||||
linear = Linear8bitLt(
|
||||
|
Loading…
Reference in New Issue
Block a user