transformers flash llm/vlm enabling in xpu

Signed-off-by: Wang, Yi A <yi.a.wang@intel.com>
This commit is contained in:
Wang, Yi A 2025-04-08 18:36:28 -07:00
parent 24bec29ffc
commit 50282e3cc1
5 changed files with 14 additions and 7 deletions

View File

@ -87,7 +87,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https:/
RUN mv /tmp/intel-for-pytorch-gpu-dev.list /etc/apt/sources.list.d
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc libnl-genl-3-200
# Text Generation Inference base env
ENV HF_HOME=/data \
@ -98,9 +98,7 @@ ENV HF_HOME=/data \
WORKDIR /usr/src
RUN pip install torch==2.6.0 --index-url https://download.pytorch.org/whl/test/xpu
RUN pip install triton-xpu==3.2.0b1 --no-cache-dir
RUN pip install torch==2.6.0 torchvision==0.21.0 --index-url https://download.pytorch.org/whl/xpu
# Install server
COPY proto proto

View File

@ -201,7 +201,9 @@ except ImportError as e:
if MAMBA_AVAILABLE:
__all__.append(Mamba)
FLASH_TRANSFORMERS_BACKEND = torch.cuda.is_available()
FLASH_TRANSFORMERS_BACKEND = torch.cuda.is_available() or (
hasattr(torch, "xpu") and torch.xpu.is_available()
)
try:
from text_generation_server.models.transformers_flash_causal_lm import (
TransformersFlashCausalLM,

View File

@ -116,7 +116,7 @@ class TransformersFlashCausalLM(FlashCausalLM):
device = torch.device(f"cuda:{rank}")
dtype = default_dtype if dtype is None else dtype
elif hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device("xpu")
device = torch.device(f"xpu:{rank}")
dtype = default_dtype if dtype is None else dtype
else:
raise ValueError(

View File

@ -175,7 +175,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
device = torch.device(f"cuda:{rank}")
dtype = default_dtype if dtype is None else dtype
elif hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device("xpu")
device = torch.device(f"xpu:{rank}")
dtype = default_dtype if dtype is None else dtype
else:
raise ValueError(

View File

@ -73,6 +73,13 @@ def initialize_torch_distributed():
if SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
if torch.xpu.is_available():
assert (
WORLD_SIZE <= torch.xpu.device_count()
), "Each process is one xpu"
device = RANK % torch.xpu.device_count()
torch.xpu.set_device(device)
ipex.distributed.init_process_group(
backend="ccl",
world_size=WORLD_SIZE,