Add GPT-2 with flash attention

This commit is contained in:
Daniël de Kok 2024-05-10 15:54:18 +00:00
parent 59b3ffea14
commit 4ce8b6f0ee
5 changed files with 562 additions and 1 deletions

View File

@ -0,0 +1,44 @@
import pytest
@pytest.fixture(scope="module")
def flash_gpt2_handle(launcher):
with launcher("openai-community/gpt2", num_shard=1, max_total_tokens=1024) as handle:
yield handle
@pytest.fixture(scope="module")
async def flash_gpt2(flash_gpt2_handle):
await flash_gpt2_handle.health(300)
return flash_gpt2_handle.client
@pytest.mark.asyncio
async def test_flash_gpt2(flash_gpt2, response_snapshot):
response = await flash_gpt2.generate(
"<|USER|>What's your mood today?<|ASSISTANT|>",
max_new_tokens=10,
decoder_input_details=True,
)
assert response.details.generated_tokens == 10
assert response == response_snapshot
@pytest.mark.asyncio
async def test_flash_gpt2_load(flash_gpt2, generate_load, response_snapshot):
responses = await generate_load(
flash_gpt2,
"<|USER|>What's your mood today?<|ASSISTANT|>",
max_new_tokens=10,
n=4,
)
generated_texts = [r.generated_text for r in responses]
assert len(generated_texts) == 4
assert all(
[text == generated_texts[0] for text in generated_texts]
), generated_texts
assert responses == response_snapshot

View File

@ -132,6 +132,7 @@ pub enum Config {
Santacoder, Santacoder,
Bloom, Bloom,
Mpt, Mpt,
Gpt2,
GptNeox, GptNeox,
Phi, Phi,
#[serde(rename = "phi-msft")] #[serde(rename = "phi-msft")]

View File

@ -50,6 +50,7 @@ FLASH_ATTENTION = True
try: try:
from text_generation_server.models.flash_rw import FlashRWSharded from text_generation_server.models.flash_rw import FlashRWSharded
from text_generation_server.models.flash_gpt2 import FlashGPT2
from text_generation_server.models.flash_neox import FlashNeoXSharded from text_generation_server.models.flash_neox import FlashNeoXSharded
from text_generation_server.models.flash_llama import ( from text_generation_server.models.flash_llama import (
FlashLlama, FlashLlama,
@ -82,6 +83,7 @@ except ImportError as e:
HAS_FLASH_ATTN_V2_CUDA = False HAS_FLASH_ATTN_V2_CUDA = False
if FLASH_ATTENTION: if FLASH_ATTENTION:
__all__.append(FlashGPT2)
__all__.append(FlashNeoXSharded) __all__.append(FlashNeoXSharded)
__all__.append(FlashRWSharded) __all__.append(FlashRWSharded)
__all__.append(FlashSantacoderSharded) __all__.append(FlashSantacoderSharded)
@ -263,7 +265,27 @@ def get_model(
dtype=dtype, dtype=dtype,
trust_remote_code=trust_remote_code, trust_remote_code=trust_remote_code,
) )
elif model_type == "gpt2":
if FLASH_ATTENTION:
return FlashGPT2(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
else:
return CausalLM(
model_id,
revision,
quantize=quantize,
use_medusa=use_medusa,
dtype=dtype,
trust_remote_code=trust_remote_code,
)
elif model_type == "gpt_neox": elif model_type == "gpt_neox":
if FLASH_ATTENTION: if FLASH_ATTENTION:
return FlashNeoXSharded( return FlashNeoXSharded(

View File

@ -0,0 +1,398 @@
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
from transformers.configuration_utils import PretrainedConfig
from typing import Optional, List, Tuple
from text_generation_server.utils import paged_attention, flash_attn
from text_generation_server.utils.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
TensorParallelEmbedding,
SpeculativeHead,
get_linear,
FastLayerNorm,
)
def _load_qkv(config, prefix: str, weights, head_size, num_heads):
slice_ = weights._get_slice(f"{prefix}.c_attn.weight")
shape = slice_.get_shape()
total_size = shape[1]
assert total_size % 3 == 0, f"Prepacked is not divisible by {3}"
world_size = weights.process_group.size()
single_size = total_size // 3
rank = weights.process_group.rank()
# Weights
block_size = single_size // world_size
start = rank * block_size
stop = (rank + 1) * block_size
tensors = []
for i in range(3):
tensor = slice_[:, start + i * single_size : stop + i * single_size]
tensors.append(tensor)
weight = torch.cat(tensors, dim=1).T
weight = weight.to(device=weights.device)
weight = weight.to(dtype=weights.dtype)
# Bias
slice_ = weights._get_slice(f"{prefix}.c_attn.bias")
shape = slice_.get_shape()
total_size = shape[0]
single_size = total_size // 3
block_size = single_size // world_size
assert single_size % world_size == 0
start = rank * block_size
stop = (rank + 1) * block_size
b = []
for i in range(3):
tensor = slice_[start + i * single_size : stop + i * single_size]
b.append(tensor)
bias = torch.cat(b, dim=0)
bias = bias.to(dtype=weights.dtype).to(device=weights.device)
assert list(bias.shape) == [
3 * num_heads * head_size
], f"{weight.shape} != {[3 * num_heads * head_size]}"
return TensorParallelColumnLinear(get_linear(weight, bias, config.quantize))
def load_row(config, transpose: bool, prefix: str, weights, bias: bool):
if transpose:
weight = weights.get_sharded(f"{prefix}.weight", dim=0).T
else:
weight = weights.get_multi_weights_row(prefix, quantize=config.quantize)
if bias and weights.process_group.rank() == 0:
# Rank is only on the first rank process
bias = weights.get_tensor(f"{prefix}.bias")
else:
bias = None
return TensorParallelRowLinear(
get_linear(weight, bias, config.quantize), process_group=weights.process_group
)
class FlashGPT2Attention(torch.nn.Module):
def __init__(
self,
prefix: str,
config,
weights,
):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
self.softmax_scale = self.head_size**-0.5
if self.num_heads % weights.process_group.size() != 0:
raise ValueError(
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
f"and `num_shards`: {weights.process_group.size()}"
)
self.num_heads = self.num_heads // weights.process_group.size()
self.num_key_value_heads = self.num_heads // weights.process_group.size()
self.query_key_value = _load_qkv(
config,
prefix=prefix,
weights=weights,
head_size=self.head_size,
num_heads=self.num_heads,
)
self.o_proj = load_row(
config,
transpose=True,
prefix=f"{prefix}.c_proj",
weights=weights,
bias=True,
)
self.num_groups = self.num_heads // self.num_key_value_heads
self.kv_head_mapping = torch.arange(
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
def forward(
self,
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
query, key, value = self.query_key_value(hidden_states).split(
self.head_size * self.num_heads, dim=1
)
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_heads, self.head_size)
value = value.view(-1, self.num_heads, self.head_size)
paged_attention.reshape_and_cache(key, value, kv_cache[0], kv_cache[1], slots)
# output tensor
attn_output = torch.empty_like(query)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
flash_attn.attention(
query,
key,
value,
attn_output,
cu_seqlen_prefill,
max_s,
self.softmax_scale,
)
# Decode
else:
paged_attention.attention(
attn_output,
query,
kv_cache[0],
kv_cache[1],
self.kv_head_mapping,
self.softmax_scale,
block_tables,
input_lengths,
max_s,
)
return self.o_proj(attn_output.view(-1, self.num_heads * self.head_size))
class GPT2MLP(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
act = config.activation_function
self.act = (
ACT2FN[act]
if "gelu" not in act
else lambda x: torch.nn.functional.gelu(
x,
approximate=(
"tanh" if act in ["gelu_fast", "gelu_pytorch_tanh"] else "none"
),
)
)
self.c_fc = load_row(
config, prefix=f"{prefix}.c_fc", weights=weights, transpose=True, bias=True
)
self.c_proj = load_row(
config,
prefix=f"{prefix}.c_proj",
weights=weights,
transpose=True,
bias=True,
)
intermediate_size = (
config.n_inner if config.n_inner is not None else 4 * config.hidden_size
)
self.intermediate_size = intermediate_size // weights.process_group.size()
def forward(self, hidden_states):
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
return self.c_proj(hidden_states)
class FlashGPT2Layer(nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.self_attn = FlashGPT2Attention(
prefix=f"{prefix}.attn", config=config, weights=weights
)
self.mlp = GPT2MLP(prefix=f"{prefix}.mlp", config=config, weights=weights)
self.input_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.ln_1", weights=weights, eps=config.layer_norm_epsilon
)
self.post_attention_layernorm = nn.LayerNorm.load(
prefix=f"{prefix}.ln_2",
weights=weights,
eps=config.layer_norm_epsilon,
)
def forward(
self,
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
attn_output = self.self_attn(
hidden_states,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
)
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
mlp_output = self.mlp(hidden_states)
return residual + mlp_output, residual
class FlashGPT2Model(torch.nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
process_group = weights.process_group
self.tp_rank = process_group.rank()
self.tp_world_size = process_group.size()
self.layers = nn.ModuleList(
[
FlashGPT2Layer(
prefix=(
f"h.{layer_id}" if not prefix else f"{prefix}.h.{layer_id}"
),
config=config,
weights=weights,
)
for layer_id in range(config.num_hidden_layers)
]
)
self.norm = nn.LayerNorm.load(
prefix="ln_f" if not prefix else f"{prefix}.ln_f",
weights=weights,
eps=config.layer_norm_epsilon,
)
self.gradient_checkpointing = False
self.head_size = self.layers[0].self_attn.head_size
self.num_heads = self.layers[0].self_attn.num_heads
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
true_max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
) -> torch.Tensor:
hidden_states = inputs_embeds
residual = None
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
residual,
cu_seqlen_prefill,
kv_cache[i],
block_tables,
slots,
input_lengths,
max_s,
)
hidden_states = self.norm(hidden_states)
return hidden_states
class FlashGPT2ForCausalLM(torch.nn.Module):
def __init__(self, prefix, config, weights):
super().__init__()
self.embed_tokens = TensorParallelEmbedding(
prefix=("wte" if not prefix else f"{prefix}.wte"),
weights=weights,
)
self.embed_positions = TensorParallelEmbedding(
prefix=("wpe" if not prefix else f"{prefix}.wpe"),
weights=weights,
)
self.model = FlashGPT2Model(prefix, config, weights)
self.lm_head = SpeculativeHead.load(
config,
prefix="wte" if not prefix else f"{prefix}.wte",
weights=weights,
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
block_tables: torch.Tensor,
slots: torch.Tensor,
input_lengths: torch.Tensor,
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
token_embeds = self.embed_tokens(input_ids)
position_embeds = self.embed_positions(position_ids)
inputs_embeds = token_embeds + position_embeds
hidden_states = self.model(
inputs_embeds,
position_ids,
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
max_s,
true_max_s=max_s,
prefill_cache_indices=prefill_cache_indices,
)
if lm_head_indices is not None:
hidden_states = hidden_states[lm_head_indices]
logits, speculative_logits = self.lm_head(hidden_states)
return logits, speculative_logits

View File

@ -0,0 +1,96 @@
import torch
import torch.distributed
from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer, GenerationConfig
from transformers.models.gpt2 import GPT2Tokenizer
from typing import Optional
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_gpt2_modeling import (
FlashGPT2ForCausalLM,
)
from text_generation_server.utils import (
initialize_torch_distributed,
weight_files,
Weights,
)
tracer = trace.get_tracer(__name__)
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM
class FlashGPT2(FlashCausalLM):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
quantize: Optional[str] = None,
use_medusa: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
self.process_group, rank, world_size = initialize_torch_distributed()
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
elif IS_XPU_SYSTEM:
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
raise NotImplementedError("FlashGPT2 is only available on GPU")
try:
tokenizer = GPT2Tokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
except Exception:
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
)
try:
generation_config = GenerationConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
if isinstance(generation_config.eos_token_id, (list, set)):
# TODO Huge hack
tokenizer._eos_token_ids = set(generation_config.eos_token_id)
except Exception:
pass
config = AutoConfig.from_pretrained(
model_id, revision=revision, trust_remote_code=trust_remote_code
)
config.quantize = quantize
config.use_medusa = use_medusa
torch.distributed.barrier(group=self.process_group)
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
weights = Weights(filenames, device, dtype, process_group=self.process_group)
if config.quantize in ["gptq", "awq"]:
weights._set_gptq_params(model_id, revision)
prefix = ""
model = FlashGPT2ForCausalLM(prefix, config, weights)
torch.distributed.barrier(group=self.process_group)
super(FlashGPT2, self).__init__(
model=model,
tokenizer=tokenizer,
num_layers=len(model.model.layers),
num_kv_heads=model.model.num_key_value_heads,
head_size=model.model.head_size,
dtype=dtype,
device=device,
rank=rank,
world_size=world_size,
)