Update the doc.

This commit is contained in:
Nicolas Patry 2024-02-08 09:26:38 +00:00
parent bc95292eb8
commit 4b524a305c

View File

@ -60,9 +60,9 @@ Options:
[env: QUANTIZE=] [env: QUANTIZE=]
Possible values: Possible values:
- awq: 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=awq. Should replace GPTQ models whereever possible because of the better latency - awq: 4 bit quantization. Requires a specific AWQ quantized model: https://hf.co/models?search=awq. Should replace GPTQ models wherever possible because of the better latency
- eetq: 8 bit quantization, doesn't require specific model. Should be a drop-in replacement to bitsandbytes with much better performance. Kernels are from https://github.com/NetEase-FuXi/EETQ.git - eetq: 8 bit quantization, doesn't require specific model. Should be a drop-in replacement to bitsandbytes with much better performance. Kernels are from https://github.com/NetEase-FuXi/EETQ.git
- gptq: 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq. text-generation-inference will use exllama (faster) kernels whereever possible, and use triton kernel (wider support) when it's not. AWQ has faster kernels - gptq: 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq. text-generation-inference will use exllama (faster) kernels wherever possible, and use triton kernel (wider support) when it's not. AWQ has faster kernels
- bitsandbytes: Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half, but it is known that the model will be much slower to run than the native f16 - bitsandbytes: Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-nf4: Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x, but it is known that the model will be much slower to run than the native f16 - bitsandbytes-nf4: Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x, but it is known that the model will be much slower to run than the native f16
- bitsandbytes-fp4: Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better perplexity performance for you model - bitsandbytes-fp4: Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better perplexity performance for you model
@ -371,6 +371,14 @@ Options:
[env: NGROK_EDGE=] [env: NGROK_EDGE=]
```
## TOKENIZER_CONFIG_PATH
```shell
--tokenizer-config-path <TOKENIZER_CONFIG_PATH>
The path to the tokenizer config file. This path is used to load the tokenizer configuration which may include a `chat_template`. If not provided, the default config will be used from the model hub
[env: TOKENIZER_CONFIG_PATH=]
``` ```
## ENV ## ENV
```shell ```shell