Factoring cu_seqlen_qk for better abstracting over every model.

This commit is contained in:
Nicolas Patry 2024-07-01 10:55:00 +00:00
parent 65980ed75a
commit 4b1364da92
17 changed files with 54 additions and 75 deletions

View File

@ -1,6 +1,8 @@
from text_generation_server.utils.import_utils import SYSTEM
import os
from .common import Seqlen
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
raise ImportError("`USE_FLASH_ATTENTION` is false.")
if SYSTEM == "cuda":

View File

@ -0,0 +1,31 @@
from dataclasses import dataclass
from text_generation_server.models.globals import FLASH_DECODING
import torch
from typing import Optional
@dataclass
class Seqlen:
input_lengths: torch.Tensor
cu_seqlen_q: Optional[torch.Tensor]
cu_seqlen_k: Optional[torch.Tensor]
def __init__(self, input_lengths):
self.input_lengths = input_lengths
if FLASH_DECODING:
device = self.input_lengths.device
shape = self.input_lengths.shape
cu_seqlen_q = torch.arange(
shape[0] + 1,
device=device,
dtype=torch.int32,
)
cu_seqlen_k = torch.empty(shape[-1] + 1, device=device, dtype=torch.int32)
cu_seqlen_k[0] = 0
torch.cumsum(self.input_lengths, -1, out=cu_seqlen_k[1:])
self.cu_seqlen_q = cu_seqlen_q
self.cu_seqlen_k = cu_seqlen_k
else:
self.cu_seqlen_q = None
self.cu_seqlen_k = None

View File

@ -1,6 +1,7 @@
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import FLASH_DECODING, BLOCK_SIZE
from text_generation_server.layers.attention import Seqlen
major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
@ -40,8 +41,7 @@ def paged_attention(
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
cu_seqlen_q: torch.Tensor,
cu_seqlen_k: torch.Tensor,
seqlen: Seqlen,
max_s: int,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
@ -66,7 +66,6 @@ def paged_attention(
block_size = BLOCK_SIZE
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
input_lengths = cu_seqlen_k
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
@ -88,8 +87,8 @@ def paged_attention(
key_cache,
value_cache,
None,
cu_seqlen_q,
cu_seqlen_k,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None,
block_tables,
None,
@ -106,6 +105,7 @@ def paged_attention(
)
return out2[0]
else:
input_lengths = seqlen.input_lengths
from vllm._C import ops
use_v1 = max_s <= 8192 and (

View File

@ -260,8 +260,7 @@ class FlashCohereAttention(torch.nn.Module):
cu_seqlen_prefill,
kv_cache,
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
slots,
max_s,
):
@ -314,8 +313,7 @@ class FlashCohereAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
)
@ -389,8 +387,7 @@ class FlashCohereLayer(nn.Module):
cu_seqlen_prefill,
kv_cache,
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
slots,
max_s,
):
@ -404,8 +401,7 @@ class FlashCohereLayer(nn.Module):
cu_seqlen_prefill,
kv_cache,
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
slots,
max_s,
)
@ -469,23 +465,6 @@ class FlashCohereModel(torch.nn.Module):
)
residual = None
if cu_seqlen_prefill is None and FLASH_DECODING:
cu_seqlen_q = torch.arange(
input_lengths.shape[0] + 1,
device=input_ids.device,
dtype=torch.int32,
)
cu_seqlen_k = torch.cat(
[
torch.zeros(
(1,), device=input_lengths.device, dtype=input_lengths.dtype
),
input_lengths.cumsum(dim=-1),
]
).to(dtype=torch.int32)
else:
cu_seqlen_q = None
cu_seqlen_k = input_lengths
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
@ -496,8 +475,7 @@ class FlashCohereModel(torch.nn.Module):
cu_seqlen_prefill,
kv_cache[i],
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
slots,
max_s,
)

View File

@ -344,7 +344,6 @@ class DbrxAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -253,7 +253,6 @@ class FlashGemmaAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -253,7 +253,6 @@ class FlashGPT2Attention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -173,8 +173,7 @@ class FlashLlamaAttention(torch.nn.Module):
kv_cache,
block_tables,
slots,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
adapter_data,
):
@ -218,8 +217,7 @@ class FlashLlamaAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
)
@ -356,8 +354,7 @@ class FlashLlamaLayer(nn.Module):
kv_cache,
block_tables,
slots,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
adapter_data,
):
@ -372,8 +369,7 @@ class FlashLlamaLayer(nn.Module):
kv_cache,
block_tables,
slots,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
adapter_data,
)
@ -443,23 +439,6 @@ class FlashLlamaModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
position_ids, max_s, hidden_states.dtype
)
if cu_seqlen_prefill is None and FLASH_DECODING:
cu_seqlen_q = torch.arange(
input_lengths.shape[0] + 1,
device=inputs_embeds.device,
dtype=torch.int32,
)
cu_seqlen_k = torch.cat(
[
torch.zeros(
(1,), device=input_lengths.device, dtype=input_lengths.dtype
),
input_lengths.cumsum(dim=-1),
]
).to(dtype=torch.int32)
else:
cu_seqlen_q = None
cu_seqlen_k = input_lengths
residual = None
for i, layer in enumerate(self.layers):
@ -472,8 +451,7 @@ class FlashLlamaModel(torch.nn.Module):
kv_cache[i],
block_tables,
slots,
cu_seqlen_q,
cu_seqlen_k,
input_lengths,
max_s,
adapter_data,
)

View File

@ -237,7 +237,6 @@ class MistralAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -299,7 +299,6 @@ class MixtralAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -176,7 +176,6 @@ class FlashNeoxAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -215,7 +215,6 @@ class FlashPhiAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -157,7 +157,6 @@ class Qwen2Attention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -225,7 +225,6 @@ class FlashRWAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)
@ -349,7 +348,6 @@ class FlashRWLargeAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -309,7 +309,6 @@ class FlashMQAttention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -263,7 +263,6 @@ class Starcoder2Attention(torch.nn.Module):
self.kv_head_mapping,
self.softmax_scale,
block_tables,
None,
input_lengths,
max_s,
)

View File

@ -31,10 +31,12 @@ from text_generation_server.pb import generate_pb2
from text_generation_server.models.globals import (
MEM_POOL,
FLASH_DECODING,
BLOCK_SIZE,
CUDA_GRAPHS,
get_adapter_to_index,
MODEL_ID,
)
from text_generation_server.layers.attention import Seqlen
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
from text_generation_server.utils.dist import MEMORY_FRACTION
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
@ -47,9 +49,6 @@ from text_generation_server.utils.import_utils import (
tracer = trace.get_tracer(__name__)
BLOCK_SIZE: int = (
256 if os.getenv("FLASH_DECODING", "").lower() in {"1", "true"} else 16
)
# Will be set in init
SLIDING_WINDOW: Optional[int] = None
@ -927,6 +926,7 @@ class FlashCausalLM(Model):
"slots": slots,
"input_lengths": input_lengths,
}
input_lengths = Seqlen(input_lengths=input_lengths)
graph = torch.cuda.CUDAGraph()
self.cuda_graphs[bs]["graph"] = graph
@ -1086,6 +1086,7 @@ class FlashCausalLM(Model):
# Dummy value, some models (starcoder2) don't accept `None`.
input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
seqlen = Seqlen(input_lengths=input_lengths)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
@ -1096,7 +1097,7 @@ class FlashCausalLM(Model):
),
kv_cache=self.kv_cache,
block_tables=None,
input_lengths=input_lengths,
seqlen=seqlen,
slots=slots,
max_s=seqlen,
lm_head_indices=None,
@ -1172,6 +1173,7 @@ class FlashCausalLM(Model):
cuda_graph = None
if cu_seqlen_prefill is not None or cuda_graph is None:
input_lengths = Seqlen(input_lengths=input_lengths)
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,