mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-19 15:52:08 +00:00
optional rust validation
This commit is contained in:
parent
45eacb782d
commit
47e93409f3
@ -27,7 +27,8 @@ serde = {version = "1.0.142", features = ["derive"]}
|
||||
serde_json = "1.0"
|
||||
text-generation-client = { path = "../router/client" }
|
||||
thiserror = "1.0.38"
|
||||
tokenizers = "0.13.2"
|
||||
#tokenizers = "0.13.2"
|
||||
tokenizers = { git = "https://github.com/huggingface/tokenizers.git" }
|
||||
tokio = { version = "1.25.0", features = ["rt", "rt-multi-thread", "parking_lot", "signal", "sync"] }
|
||||
tui = {package = "ratatui", version = "0.20", default-features = false, features = ["crossterm"]}
|
||||
tracing = "0.1.37"
|
||||
|
@ -63,10 +63,12 @@ message Request {
|
||||
uint64 id = 1;
|
||||
/// The generation context
|
||||
string inputs = 2;
|
||||
/// Context truncation
|
||||
uint32 truncate = 3;
|
||||
/// Next Token Chooser Parameters
|
||||
NextTokenChooserParameters parameters = 3;
|
||||
NextTokenChooserParameters parameters = 4;
|
||||
/// Stopping Criteria Parameters
|
||||
StoppingCriteriaParameters stopping_parameters = 4;
|
||||
StoppingCriteriaParameters stopping_parameters = 5;
|
||||
}
|
||||
|
||||
message Batch {
|
||||
|
@ -94,11 +94,11 @@ fn main() -> Result<(), std::io::Error> {
|
||||
if local_path.exists() && local_path.is_dir() && local_path.join("tokenizer.json").exists()
|
||||
{
|
||||
// Load local tokenizer
|
||||
Tokenizer::from_file(local_path.join("tokenizer.json")).unwrap()
|
||||
Tokenizer::from_file(local_path.join("tokenizer.json")).ok()
|
||||
} else {
|
||||
// Download and instantiate tokenizer
|
||||
// We need to download it outside of the Tokio runtime
|
||||
Tokenizer::from_pretrained(tokenizer_name.clone(), None).unwrap()
|
||||
Tokenizer::from_pretrained(tokenizer_name.clone(), None).ok()
|
||||
};
|
||||
|
||||
// Launch Tokio runtime
|
||||
@ -109,6 +109,13 @@ fn main() -> Result<(), std::io::Error> {
|
||||
.block_on(async {
|
||||
init_logging(otlp_endpoint, json_output);
|
||||
|
||||
if tokenizer.is_none() {
|
||||
tracing::warn!(
|
||||
"Could not find a fast tokenizer implementation for {tokenizer_name}"
|
||||
);
|
||||
tracing::warn!("Rust input length validation and truncation is disabled");
|
||||
}
|
||||
|
||||
// Get pipeline tag
|
||||
let model_info = reqwest::get(format!(
|
||||
"https://huggingface.co/api/models/{tokenizer_name}"
|
||||
|
@ -174,6 +174,7 @@ impl State {
|
||||
batch_requests.push(Request {
|
||||
id,
|
||||
inputs: entry.request.inputs.clone(),
|
||||
truncate: entry.request.truncate,
|
||||
parameters: Some(entry.request.parameters.clone()),
|
||||
stopping_parameters: Some(entry.request.stopping_parameters.clone()),
|
||||
});
|
||||
@ -226,6 +227,7 @@ mod tests {
|
||||
Entry {
|
||||
request: ValidGenerateRequest {
|
||||
inputs: "".to_string(),
|
||||
truncate: 0,
|
||||
parameters: NextTokenChooserParameters {
|
||||
temperature: 0.0,
|
||||
top_k: 0,
|
||||
|
@ -455,7 +455,7 @@ pub async fn run(
|
||||
max_batch_size: usize,
|
||||
max_waiting_tokens: usize,
|
||||
client: ShardedClient,
|
||||
tokenizer: Tokenizer,
|
||||
tokenizer: Option<Tokenizer>,
|
||||
validation_workers: usize,
|
||||
addr: SocketAddr,
|
||||
allow_origin: Option<AllowOrigin>,
|
||||
|
@ -23,7 +23,7 @@ pub struct Validation {
|
||||
impl Validation {
|
||||
pub(crate) fn new(
|
||||
workers: usize,
|
||||
tokenizer: Tokenizer,
|
||||
tokenizer: Option<Tokenizer>,
|
||||
max_best_of: usize,
|
||||
max_stop_sequences: usize,
|
||||
max_input_length: usize,
|
||||
@ -85,7 +85,7 @@ impl Validation {
|
||||
/// Load balance the validation requests between multiple validation workers
|
||||
async fn validation_task(
|
||||
workers: usize,
|
||||
tokenizer: Tokenizer,
|
||||
tokenizer: Option<Tokenizer>,
|
||||
max_stop_sequences: usize,
|
||||
max_input_length: usize,
|
||||
max_total_tokens: usize,
|
||||
@ -95,7 +95,7 @@ async fn validation_task(
|
||||
|
||||
// Create workers
|
||||
for _ in 0..workers {
|
||||
let tokenizer_clone: Tokenizer = tokenizer.clone().into();
|
||||
let tokenizer_clone: Option<Tokenizer> = tokenizer.clone().into();
|
||||
// Create channel to communicate with worker
|
||||
let (worker_sender, worker_receiver) = mpsc::channel(workers);
|
||||
workers_senders.push(worker_sender);
|
||||
@ -127,7 +127,7 @@ async fn validation_task(
|
||||
/// Check the parameters inside the payload and get the number of tokens inside the input using
|
||||
/// the tokenizer
|
||||
fn validation_worker(
|
||||
tokenizer: Tokenizer,
|
||||
tokenizer: Option<Tokenizer>,
|
||||
max_stop_sequences: usize,
|
||||
max_input_length: usize,
|
||||
max_total_tokens: usize,
|
||||
@ -143,7 +143,7 @@ fn validation_worker(
|
||||
.send(
|
||||
validate(
|
||||
request,
|
||||
&tokenizer,
|
||||
tokenizer.as_ref(),
|
||||
max_stop_sequences,
|
||||
max_input_length,
|
||||
max_total_tokens,
|
||||
@ -162,7 +162,7 @@ fn validation_worker(
|
||||
|
||||
fn validate(
|
||||
request: GenerateRequest,
|
||||
tokenizer: &Tokenizer,
|
||||
tokenizer: Option<&Tokenizer>,
|
||||
max_stop_sequences: usize,
|
||||
max_input_length: usize,
|
||||
max_total_tokens: usize,
|
||||
@ -272,35 +272,43 @@ fn validate(
|
||||
})
|
||||
.unwrap_or(Ok(None))?;
|
||||
|
||||
// Get the number of tokens in the input
|
||||
let mut encoding = tokenizer
|
||||
.encode(request.inputs.clone(), true)
|
||||
.map_err(|err| ValidationError::Tokenizer(err.to_string()))?;
|
||||
|
||||
let (inputs, input_length) = if let Some(truncate) = truncate {
|
||||
// truncate encoding and decode new inputs
|
||||
encoding.truncate(truncate, 0, TruncationDirection::Left);
|
||||
let inputs = tokenizer
|
||||
.decode(Vec::from(encoding.get_ids()), false)
|
||||
// If we have a fast tokenizer
|
||||
let inputs = if let Some(tokenizer) = tokenizer {
|
||||
// Get the number of tokens in the input
|
||||
let mut encoding = tokenizer
|
||||
.encode(request.inputs.clone(), true)
|
||||
.map_err(|err| ValidationError::Tokenizer(err.to_string()))?;
|
||||
(inputs, encoding.len())
|
||||
|
||||
let (inputs, input_length) = if let Some(truncate) = truncate {
|
||||
// truncate encoding and decode new inputs
|
||||
encoding.truncate(truncate, 0, TruncationDirection::Left);
|
||||
let inputs = tokenizer
|
||||
.decode(Vec::from(encoding.get_ids()), false)
|
||||
.map_err(|err| ValidationError::Tokenizer(err.to_string()))?;
|
||||
(inputs, encoding.len())
|
||||
} else {
|
||||
(request.inputs, encoding.len())
|
||||
};
|
||||
|
||||
if input_length > max_input_length {
|
||||
return Err(ValidationError::InputLength(max_input_length, input_length));
|
||||
}
|
||||
|
||||
let total_tokens = input_length + max_new_tokens as usize;
|
||||
if total_tokens > max_total_tokens {
|
||||
return Err(ValidationError::MaxTotalTokens(
|
||||
max_total_tokens,
|
||||
input_length,
|
||||
max_new_tokens,
|
||||
));
|
||||
}
|
||||
|
||||
metrics::histogram!("tgi_request_input_length", input_length as f64);
|
||||
inputs
|
||||
} else {
|
||||
(request.inputs, encoding.len())
|
||||
request.inputs
|
||||
};
|
||||
|
||||
if input_length > max_input_length {
|
||||
return Err(ValidationError::InputLength(max_input_length, input_length));
|
||||
}
|
||||
|
||||
let total_tokens = input_length + max_new_tokens as usize;
|
||||
if total_tokens > max_total_tokens {
|
||||
return Err(ValidationError::MaxTotalTokens(
|
||||
max_total_tokens,
|
||||
input_length,
|
||||
max_new_tokens,
|
||||
));
|
||||
}
|
||||
|
||||
// Return ValidGenerateRequest
|
||||
let parameters = NextTokenChooserParameters {
|
||||
temperature,
|
||||
@ -318,11 +326,11 @@ fn validate(
|
||||
ignore_eos_token: false,
|
||||
};
|
||||
|
||||
metrics::histogram!("tgi_request_input_length", input_length as f64);
|
||||
metrics::histogram!("tgi_request_max_new_tokens", max_new_tokens as f64);
|
||||
|
||||
Ok(ValidGenerateRequest {
|
||||
inputs,
|
||||
truncate: truncate.unwrap_or(max_input_length) as u32,
|
||||
parameters,
|
||||
stopping_parameters,
|
||||
})
|
||||
@ -337,6 +345,7 @@ type ValidationRequest = (
|
||||
#[derive(Debug)]
|
||||
pub(crate) struct ValidGenerateRequest {
|
||||
pub inputs: String,
|
||||
pub truncate: u32,
|
||||
pub parameters: NextTokenChooserParameters,
|
||||
pub stopping_parameters: StoppingCriteriaParameters,
|
||||
}
|
||||
|
@ -66,6 +66,7 @@ class CausalLMBatch(Batch):
|
||||
stopping_criterias = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
inputs.append(r.inputs)
|
||||
@ -74,6 +75,7 @@ class CausalLMBatch(Batch):
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
max_truncation = max(max_truncation, r.truncate)
|
||||
padding_right_offset = max(
|
||||
padding_right_offset, stopping_criteria.max_new_tokens
|
||||
)
|
||||
@ -83,6 +85,8 @@ class CausalLMBatch(Batch):
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
return_token_type_ids=False,
|
||||
truncation=True,
|
||||
max_length=max_truncation,
|
||||
).to(device)
|
||||
|
||||
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
||||
@ -388,6 +392,7 @@ class CausalLM(Model):
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text = self.decode_token(
|
||||
all_input_ids[-2, 0],
|
||||
next_token_id_squeezed,
|
||||
)
|
||||
|
||||
|
@ -21,21 +21,18 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
|
||||
from text_generation_server.models.custom_modeling.tensor_parallel import (
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.linear import FastLinear
|
||||
from text_generation_server.models.custom_modeling.rotary import PositionRotaryEmbedding
|
||||
|
||||
# Flash attention imports
|
||||
import rotary_emb
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
||||
|
||||
class LlamaRMSNorm(nn.Module):
|
||||
def __init__(self, hidden_size, eps=1e-6):
|
||||
@ -87,6 +84,184 @@ class LlamaRMSNorm(nn.Module):
|
||||
return normed_hidden_states, res
|
||||
|
||||
|
||||
class FastLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def transpose_weight(self):
|
||||
self.weight = nn.Parameter(self.weight.T)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self.bias is not None:
|
||||
return torch.addmm(self.bias, input, self.weight)
|
||||
return torch.matmul(input, self.weight)
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = super(TensorParallelRowLinear, self).forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
# Additional entry that will map to zero
|
||||
# Used for masking
|
||||
self.null_idx = block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def add_null_idx(self):
|
||||
"""Additional 0 entry used for masking"""
|
||||
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = torch.where(
|
||||
(self.min_id > input) | (input >= self.max_id),
|
||||
self.null_idx,
|
||||
input - self.min_id,
|
||||
)
|
||||
out = super().forward(input)
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
if (
|
||||
seqlen > self._seq_len_cached
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
# Don't do einsum, it converts fp32 to fp16
|
||||
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
Return cos and sin for the asked position ids
|
||||
"""
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
return qkv
|
||||
|
||||
|
||||
class FlashLlamaAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
|
@ -21,23 +21,20 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig
|
||||
|
||||
from text_generation_server.models.custom_modeling.tensor_parallel import (
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.linear import FastLinear
|
||||
from text_generation_server.models.custom_modeling.rotary import PositionRotaryEmbedding
|
||||
|
||||
# Flash attention imports
|
||||
import rotary_emb
|
||||
import flash_attn_cuda
|
||||
import dropout_layer_norm
|
||||
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
||||
|
||||
class FastLayerNorm(nn.LayerNorm):
|
||||
def forward(self, hidden_states, residual=None):
|
||||
@ -75,6 +72,184 @@ class FastLayerNorm(nn.LayerNorm):
|
||||
return normed_hidden_states, residual
|
||||
|
||||
|
||||
class FastLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def transpose_weight(self):
|
||||
self.weight = nn.Parameter(self.weight.T)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self.bias is not None:
|
||||
return torch.addmm(self.bias, input, self.weight)
|
||||
return torch.matmul(input, self.weight)
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = super(TensorParallelRowLinear, self).forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
# Additional entry that will map to zero
|
||||
# Used for masking
|
||||
self.null_idx = block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def add_null_idx(self):
|
||||
"""Additional 0 entry used for masking"""
|
||||
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = torch.where(
|
||||
(self.min_id > input) | (input >= self.max_id),
|
||||
self.null_idx,
|
||||
input - self.min_id,
|
||||
)
|
||||
out = super().forward(input)
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
if (
|
||||
seqlen > self._seq_len_cached
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
# Don't do einsum, it converts fp32 to fp16
|
||||
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
Return cos and sin for the asked position ids
|
||||
"""
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
return qkv
|
||||
|
||||
|
||||
class FlashNeoxAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
@ -201,12 +376,7 @@ class FlashMLP(nn.Module):
|
||||
self.act = (
|
||||
ACT2FN[act]
|
||||
if "gelu" not in act
|
||||
else lambda x: torch.nn.functional.gelu(
|
||||
x,
|
||||
approximate="tanh"
|
||||
if act in ["gelu_fast", "gelu_pytorch_tanh"]
|
||||
else None,
|
||||
)
|
||||
else lambda x: torch.nn.functional.gelu(x, approximate="tanh")
|
||||
)
|
||||
|
||||
if process_group is None:
|
||||
|
@ -1,22 +0,0 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class FastLinear(nn.Linear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features: int,
|
||||
out_features: int,
|
||||
bias: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(FastLinear, self).__init__(in_features, out_features, bias, device, dtype)
|
||||
|
||||
def transpose_weight(self):
|
||||
self.weight = nn.Parameter(self.weight.T)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
if self.bias is not None:
|
||||
return torch.addmm(self.bias, input, self.weight)
|
||||
return torch.matmul(input, self.weight)
|
@ -1,42 +0,0 @@
|
||||
import torch
|
||||
import rotary_emb
|
||||
|
||||
from flash_attn.layers.rotary import RotaryEmbedding
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def _update_cos_sin_cache(self, dtype, device, seqlen):
|
||||
# Reset the tables if the sequence length has changed,
|
||||
# or if we're on a new device (possibly due to tracing for instance)
|
||||
if (
|
||||
seqlen > self._seq_len_cached
|
||||
or self._cos_cached.device != device
|
||||
or self._cos_cached.dtype != dtype
|
||||
):
|
||||
self._seq_len_cached = seqlen
|
||||
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
||||
freqs = torch.outer(t, self.inv_freq.to(device=t.device))
|
||||
self._cos_cached = torch.cos(freqs).to(dtype)
|
||||
self._sin_cached = torch.sin(freqs).to(dtype)
|
||||
|
||||
def get_cos_sin(self, position_ids: torch.Tensor, max_s: int, dtype: torch.dtype):
|
||||
"""
|
||||
Return cos and sin for the asked position ids
|
||||
"""
|
||||
|
||||
self._update_cos_sin_cache(dtype, position_ids.device, max_s)
|
||||
|
||||
cos = torch.index_select(self._cos_cached, 0, position_ids)
|
||||
sin = torch.index_select(self._sin_cached, 0, position_ids)
|
||||
return cos.unsqueeze(1), sin.unsqueeze(1)
|
||||
|
||||
def forward(self, qkv: torch.Tensor, cos: torch.Tensor, sin: torch.Tensor):
|
||||
rotary_dim = cos.shape[-1]
|
||||
q1 = qkv[:, 0, :, :rotary_dim]
|
||||
q2 = qkv[:, 0, :, rotary_dim : 2 * rotary_dim]
|
||||
k1 = qkv[:, 1, :, :rotary_dim]
|
||||
k2 = qkv[:, 1, :, rotary_dim : 2 * rotary_dim]
|
||||
|
||||
rotary_emb.apply_rotary(q1, q2, cos, sin, q1, q2, False)
|
||||
rotary_emb.apply_rotary(k1, k2, cos, sin, k1, k2, False)
|
||||
return qkv
|
@ -1,124 +0,0 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from text_generation_server.models.custom_modeling.linear import FastLinear
|
||||
|
||||
|
||||
class TensorParallelColumnLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
assert out_features % self.tp_world_size == 0
|
||||
out_features = out_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
|
||||
class TensorParallelRowLinear(FastLinear):
|
||||
def __init__(
|
||||
self,
|
||||
in_features,
|
||||
out_features,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
reduce=True,
|
||||
bias=True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_world_size = process_group.size()
|
||||
self.reduce = reduce
|
||||
assert in_features % self.tp_world_size == 0
|
||||
in_features = in_features // self.tp_world_size
|
||||
|
||||
super().__init__(
|
||||
in_features=in_features,
|
||||
out_features=out_features,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
out = super(TensorParallelRowLinear, self).forward(input)
|
||||
if self.reduce:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
# Additional entry that will map to zero
|
||||
# Used for masking
|
||||
self.null_idx = block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def add_null_idx(self):
|
||||
"""Additional 0 entry used for masking"""
|
||||
self.weight = nn.Parameter(F.pad(self.weight, (0, 0, 0, 1)))
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# default all out of bounds values to `self.null_idx` that will then be mapped to 0
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = torch.where(
|
||||
(self.min_id > input) | (input >= self.max_id),
|
||||
self.null_idx,
|
||||
input - self.min_id,
|
||||
)
|
||||
out = super().forward(input)
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
@ -78,7 +78,9 @@ class FlashCausalLMBatch(Batch):
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
tokenized_input = tokenizer(r.inputs)["input_ids"]
|
||||
tokenized_input = tokenizer(
|
||||
r.inputs, truncation=True, max_length=r.truncate
|
||||
)["input_ids"]
|
||||
input_length = len(tokenized_input)
|
||||
max_seqlen = max(max_seqlen, input_length)
|
||||
input_lengths.append(input_length)
|
||||
@ -333,6 +335,7 @@ class FlashCausalLM(Model):
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id_item]
|
||||
next_token_text = self.decode_token(
|
||||
all_input_ids[-2],
|
||||
next_token_id_item,
|
||||
)
|
||||
|
||||
|
@ -11,8 +11,6 @@ from typing import Optional, Tuple, List
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.tensor_parallel import (
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
|
@ -8,14 +8,12 @@ from transformers import AutoTokenizer, AutoConfig
|
||||
from typing import Optional, Tuple, List
|
||||
|
||||
from text_generation_server.models import FlashCausalLM
|
||||
from text_generation_server.models.custom_modeling.tensor_parallel import (
|
||||
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
|
||||
FlashGPTNeoXForCausalLM,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
|
||||
FlashGPTNeoXForCausalLM,
|
||||
)
|
||||
from text_generation_server.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
|
@ -96,6 +96,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
||||
input_lengths = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
max_sequence_length = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
@ -107,6 +108,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
max_truncation = max(max_truncation, r.truncate)
|
||||
max_sequence_length = max(max_sequence_length, r.input_length)
|
||||
padding_right_offset = max(
|
||||
padding_right_offset, stopping_criteria.max_new_tokens
|
||||
@ -118,6 +120,8 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
return_token_type_ids=False,
|
||||
truncation=True,
|
||||
max_length=max_truncation,
|
||||
).to(device)
|
||||
input_ids = tokenized_inputs["input_ids"]
|
||||
# Allocate maximum attention_mask
|
||||
|
@ -15,15 +15,6 @@ class Model(ABC):
|
||||
self.all_special_ids = set(tokenizer.all_special_ids)
|
||||
self.device = device
|
||||
|
||||
# see `decode_token` method
|
||||
self.tokenizer.add_special_tokens(
|
||||
{"additional_special_tokens": ["<decode-token>"]}
|
||||
)
|
||||
self.special_decode_token_id = self.tokenizer.convert_tokens_to_ids(
|
||||
"<decode-token>"
|
||||
)
|
||||
self.special_decode_token_length = len("<decode-token>")
|
||||
|
||||
@property
|
||||
@abstractmethod
|
||||
def batch_type(self) -> Type[B]:
|
||||
@ -33,11 +24,12 @@ class Model(ABC):
|
||||
def generate_token(self, batch: B) -> Tuple[List[GeneratedText], Optional[B]]:
|
||||
raise NotImplementedError
|
||||
|
||||
def decode_token(self, token_id: int) -> str:
|
||||
def decode_token(self, previous_token_id: int, token_id: int) -> str:
|
||||
"""Hack to hopefully support generate_stream for the maximum number of tokenizers"""
|
||||
# append token to special decode token and decode both
|
||||
result = self.tokenizer.decode(
|
||||
[self.special_decode_token_id, token_id], skip_special_tokens=False
|
||||
# Decode previous token and previous token + token
|
||||
results = self.tokenizer.batch_decode(
|
||||
[[previous_token_id], [previous_token_id, token_id]],
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
# slice to remove special decode token
|
||||
return result[self.special_decode_token_length :]
|
||||
# slice to remove previous token
|
||||
return results[1][len(results[0]) :]
|
||||
|
@ -73,6 +73,7 @@ class Seq2SeqLMBatch(Batch):
|
||||
decoder_input_lengths = []
|
||||
|
||||
# Parse batch
|
||||
max_truncation = 0
|
||||
padding_right_offset = 0
|
||||
for r in pb.requests:
|
||||
inputs.append(r.inputs)
|
||||
@ -84,6 +85,7 @@ class Seq2SeqLMBatch(Batch):
|
||||
r.stopping_parameters, tokenizer
|
||||
)
|
||||
stopping_criterias.append(stopping_criteria)
|
||||
max_truncation = max(max_truncation, r.truncate)
|
||||
padding_right_offset = max(
|
||||
padding_right_offset, stopping_criteria.max_new_tokens
|
||||
)
|
||||
@ -94,6 +96,8 @@ class Seq2SeqLMBatch(Batch):
|
||||
return_tensors="pt",
|
||||
padding=True,
|
||||
return_token_type_ids=False,
|
||||
truncation=True,
|
||||
max_length=max_truncation,
|
||||
).to(device)
|
||||
|
||||
input_lengths = tokenized_inputs["attention_mask"].sum(1)
|
||||
@ -463,6 +467,7 @@ class Seq2SeqLM(Model):
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text = self.decode_token(
|
||||
decoder_input_ids[-2],
|
||||
next_token_id_squeezed,
|
||||
)
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user