mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 20:04:52 +00:00
Update docs/source/conceptual/quantization.md
Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
This commit is contained in:
parent
12d9a67752
commit
47db26298a
@ -45,7 +45,7 @@ bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models.
|
||||
In TGI, you can use 8-bit quantization by adding `--quantize bitsandbytes` like below 👇
|
||||
|
||||
```bash
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize --bitsandbytes-nf4
|
||||
docker run --gpus all --shm-size 1g -p 8080:80 -v $volume:/data ghcr.io/huggingface/text-generation-inference:latest --model-id $model --quantize --bitsandbytes
|
||||
```
|
||||
|
||||
4-bit Float (FP4) and 4-bit NormalFloat (NF4) are two data types introduced to use with QLoRA technique, a parameter-efficient fine-tuning technique. These data types can also be used to make a pre-trained model smaller. TGI essentially uses these data types to quantize an already trained model before the inference.
|
||||
|
Loading…
Reference in New Issue
Block a user