mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-19 07:42:06 +00:00
Making bloom loadable with safetensors
.
This commit is contained in:
parent
c837893370
commit
457c9038ff
@ -1,15 +1,17 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from contextlib import contextmanager
|
||||
from dataclasses import dataclass
|
||||
from pathlib import Path
|
||||
from typing import List, Tuple, Optional, Dict
|
||||
|
||||
from huggingface_hub import hf_hub_download, HfApi
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
from transformers.modeling_utils import no_init_weights
|
||||
|
||||
|
||||
from bloom_inference.pb import generate_pb2
|
||||
from bloom_inference.prepare_weights import prepare_weights, match_suffix
|
||||
from bloom_inference.utils import (
|
||||
StoppingCriteria,
|
||||
NextTokenChooser,
|
||||
@ -368,6 +370,149 @@ class BLOOM:
|
||||
return generated_texts, next_batch
|
||||
|
||||
|
||||
def dl_weights(rank, model_id):
|
||||
api = HfApi()
|
||||
info = api.model_info(model_id)
|
||||
filenames = set(
|
||||
s.rfilename for s in info.siblings if s.rfilename.endswith(".safetensors")
|
||||
)
|
||||
return [hf_hub_download(model_id, filename=filename) for filename in filenames]
|
||||
|
||||
|
||||
def set_tensor(model, full_name, tensor):
|
||||
splits = full_name.split(".")
|
||||
for split in splits[:-1]:
|
||||
model = getattr(model, split)
|
||||
tensor_name = splits[-1]
|
||||
|
||||
with torch.no_grad():
|
||||
model._parameters[tensor_name] = tensor
|
||||
|
||||
|
||||
def load(model, filenames, tp_rank, tp_world_size):
|
||||
parameters = dict(model.named_parameters())
|
||||
for filename in filenames:
|
||||
with safe_open(filename, framework="pt", device=f"cuda:{tp_rank}") as f:
|
||||
for name in f.keys():
|
||||
full_name = f"transformer.{name}"
|
||||
current_tensor = parameters[full_name]
|
||||
handled = False
|
||||
for suffix in [
|
||||
"self_attention.dense.weight",
|
||||
"mlp.dense_4h_to_h.weight",
|
||||
"self_attention.query_key_value.weight",
|
||||
"mlp.dense_h_to_4h.weight",
|
||||
"self_attention.query_key_value.bias",
|
||||
"mlp.dense_h_to_4h.bias",
|
||||
"word_embeddings.weight",
|
||||
]:
|
||||
if name.endswith(suffix):
|
||||
slice_ = f.get_slice(name)
|
||||
if suffix in {
|
||||
"mlp.dense_4h_to_h.weight",
|
||||
"self_attention.dense.weight",
|
||||
}:
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // tp_world_size
|
||||
start = tp_rank * block_size
|
||||
stop = (tp_rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // tp_world_size
|
||||
start = tp_rank * block_size
|
||||
stop = (tp_rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
|
||||
if name.endswith(".weight") and not name.endswith(
|
||||
"word_embeddings.weight"
|
||||
):
|
||||
tensor = tensor.transpose(1, 0)
|
||||
handled = True
|
||||
break
|
||||
if not handled:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if tp_rank != 0 and (
|
||||
name.endswith("self_attention.dense.bias")
|
||||
or name.endswith("mlp.dense_4h_to_h.bias")
|
||||
):
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
set_tensor(model, full_name, torch.zeros_like(tensor))
|
||||
else:
|
||||
set_tensor(model, full_name, tensor)
|
||||
if name == "word_embeddings.weight":
|
||||
set_tensor(model, "lm_head.weight", tensor)
|
||||
|
||||
if current_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def init_empty_weights(include_buffers: bool = False):
|
||||
"""
|
||||
imported from `accelerate` to not depend on it.
|
||||
"""
|
||||
old_register_parameter = torch.nn.Module.register_parameter
|
||||
if include_buffers:
|
||||
old_register_buffer = torch.nn.Module.register_buffer
|
||||
|
||||
def register_empty_parameter(module, name, param):
|
||||
old_register_parameter(module, name, param)
|
||||
if param is not None:
|
||||
param_cls = type(module._parameters[name])
|
||||
kwargs = module._parameters[name].__dict__
|
||||
module._parameters[name] = param_cls(
|
||||
module._parameters[name].to(torch.device("meta")), **kwargs
|
||||
)
|
||||
|
||||
def register_empty_buffer(module, name, buffer):
|
||||
old_register_buffer(module, name, buffer)
|
||||
if buffer is not None:
|
||||
module._buffers[name] = module._buffers[name].to(torch.device("meta"))
|
||||
|
||||
# Patch tensor creation
|
||||
if include_buffers:
|
||||
tensor_constructors_to_patch = {
|
||||
torch_function_name: getattr(torch, torch_function_name)
|
||||
for torch_function_name in ["empty", "zeros", "ones", "full"]
|
||||
}
|
||||
else:
|
||||
tensor_constructors_to_patch = {}
|
||||
|
||||
def patch_tensor_constructor(fn):
|
||||
def wrapper(*args, **kwargs):
|
||||
kwargs["device"] = torch.device("meta")
|
||||
return fn(*args, **kwargs)
|
||||
|
||||
return wrapper
|
||||
|
||||
try:
|
||||
torch.nn.Module.register_parameter = register_empty_parameter
|
||||
if include_buffers:
|
||||
torch.nn.Module.register_buffer = register_empty_buffer
|
||||
for torch_function_name in tensor_constructors_to_patch.keys():
|
||||
setattr(
|
||||
torch,
|
||||
torch_function_name,
|
||||
patch_tensor_constructor(getattr(torch, torch_function_name)),
|
||||
)
|
||||
yield
|
||||
finally:
|
||||
torch.nn.Module.register_parameter = old_register_parameter
|
||||
if include_buffers:
|
||||
torch.nn.Module.register_buffer = old_register_buffer
|
||||
for (
|
||||
torch_function_name,
|
||||
old_torch_function,
|
||||
) in tensor_constructors_to_patch.items():
|
||||
setattr(torch, torch_function_name, old_torch_function)
|
||||
|
||||
|
||||
class BLOOMSharded(BLOOM):
|
||||
def __init__(self, model_name: str, shard_directory: Path):
|
||||
super(BLOOM, self).__init__()
|
||||
@ -382,25 +527,7 @@ class BLOOMSharded(BLOOM):
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
||||
|
||||
# shard state_dict
|
||||
if self.master:
|
||||
# TODO @thomasw21 do some caching
|
||||
shard_state_dict_paths = prepare_weights(
|
||||
model_name,
|
||||
shard_directory / "cache",
|
||||
shard_directory,
|
||||
tp_world_size=self.world_size,
|
||||
)
|
||||
shard_state_dict_paths = [
|
||||
str(path.absolute()) for path in shard_state_dict_paths
|
||||
]
|
||||
else:
|
||||
shard_state_dict_paths = [None] * self.world_size
|
||||
|
||||
torch.distributed.broadcast_object_list(
|
||||
shard_state_dict_paths, src=0, group=self.process_group
|
||||
)
|
||||
shard_state_dict_path = shard_state_dict_paths[self.rank]
|
||||
filenames = dl_weights(self.rank, model_name)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_name, slow_but_exact=False, tp_parallel=True
|
||||
@ -415,33 +542,13 @@ class BLOOMSharded(BLOOM):
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
with set_default_dtype(dtype):
|
||||
with no_init_weights():
|
||||
with init_empty_weights():
|
||||
# we can probably set the device to `meta` here?
|
||||
model = AutoModelForCausalLM.from_config(config).to(dtype)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
# print_rank_0(f"Initialized model")
|
||||
state_dict = torch.load(shard_state_dict_path)
|
||||
# TODO @thomasw21: HACK in order to transpose all weight prior
|
||||
for key in state_dict.keys():
|
||||
do_transpose = False
|
||||
if not match_suffix(key, "weight"):
|
||||
continue
|
||||
|
||||
for potential_suffix in [
|
||||
"self_attention.query_key_value.weight",
|
||||
"self_attention.dense.weight",
|
||||
"dense_h_to_4h.weight",
|
||||
"dense_4h_to_h.weight",
|
||||
]:
|
||||
if match_suffix(key, potential_suffix):
|
||||
do_transpose = True
|
||||
|
||||
if do_transpose:
|
||||
state_dict[key] = state_dict[key].transpose(1, 0).contiguous()
|
||||
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
model.tie_weights()
|
||||
load(model, filenames, self.rank, self.process_group.size())
|
||||
self.model = model.to(self.device).eval()
|
||||
self.num_heads = config.n_head // self.process_group.size()
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
|
Loading…
Reference in New Issue
Block a user