mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 19:34:53 +00:00
feat(server): support OPT models
This commit is contained in:
parent
299217c95c
commit
438883cb10
91
server/text_generation/models/__init__.py
Normal file
91
server/text_generation/models/__init__.py
Normal file
@ -0,0 +1,91 @@
|
||||
import torch
|
||||
|
||||
from transformers import AutoConfig
|
||||
from typing import Optional
|
||||
|
||||
from text_generation.models.model import Model
|
||||
from text_generation.models.causal_lm import CausalLM
|
||||
from text_generation.models.bloom import BLOOM, BLOOMSharded
|
||||
from text_generation.models.seq2seq_lm import Seq2SeqLM
|
||||
from text_generation.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation.models.santacoder import SantaCoder
|
||||
from text_generation.models.gpt_neox import GPTNeox, GPTNeoxSharded
|
||||
from text_generation.models.opt import OPT, OPTSharded
|
||||
from text_generation.models.t5 import T5Sharded
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
"BLOOM",
|
||||
"BLOOMSharded",
|
||||
"CausalLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"GPTNeox",
|
||||
"GPTNeoxSharded",
|
||||
"Seq2SeqLM",
|
||||
"Galactica",
|
||||
"GalacticaSharded",
|
||||
"SantaCoder",
|
||||
"GPTNeox",
|
||||
"GPTNeoxSharded",
|
||||
"OPT",
|
||||
"OPTSharded",
|
||||
"T5Sharded",
|
||||
"get_model",
|
||||
]
|
||||
|
||||
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
|
||||
# in PyTorch 1.12 and later.
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# Disable gradients
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
|
||||
def get_model(
|
||||
model_id: str, revision: Optional[str], sharded: bool, quantize: bool
|
||||
) -> Model:
|
||||
if model_id.startswith("facebook/galactica"):
|
||||
if sharded:
|
||||
return GalacticaSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Galactica(model_id, revision, quantize=quantize)
|
||||
|
||||
if "santacoder" in model_id:
|
||||
return SantaCoder(model_id, revision, quantize)
|
||||
|
||||
config = AutoConfig.from_pretrained(model_id, revision=revision)
|
||||
|
||||
if config.model_type == "bloom":
|
||||
if sharded:
|
||||
return BLOOMSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return BLOOM(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return GPTNeox(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "t5":
|
||||
if sharded:
|
||||
return T5Sharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "opt":
|
||||
if sharded:
|
||||
return OPTSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return OPT(model_id, revision, quantize=quantize)
|
||||
|
||||
if sharded:
|
||||
raise ValueError("sharded is not supported for AutoModel")
|
||||
try:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
except Exception:
|
||||
return Seq2SeqLM(model_id, revision, quantize=quantize)
|
@ -122,18 +122,11 @@ class BLOOMSharded(BLOOM):
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
|
@ -18,10 +18,10 @@ from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation_server.models import CausalLM
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.models.causal_lm import CausalLMBatch
|
||||
from text_generation_server.utils import (
|
||||
from text_generation.models import CausalLMBatch
|
||||
from text_generation.pb import generate_pb2
|
||||
from text_generation.models.opt import OPT, OPTSharded
|
||||
from text_generation.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
initialize_torch_distributed,
|
||||
@ -158,7 +158,7 @@ class GalacticaCausalLMBatch(CausalLMBatch):
|
||||
)
|
||||
|
||||
|
||||
class Galactica(CausalLM):
|
||||
class Galactica(OPT):
|
||||
@property
|
||||
def batch_type(self) -> Type[CausalLMBatch]:
|
||||
return GalacticaCausalLMBatch
|
||||
@ -184,7 +184,7 @@ class Galactica(CausalLM):
|
||||
return outputs.logits, outputs.past_key_values
|
||||
|
||||
|
||||
class GalacticaSharded(Galactica):
|
||||
class GalacticaSharded(OPTSharded):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
@ -253,18 +253,11 @@ class GalacticaSharded(Galactica):
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
|
233
server/text_generation_server/models/opt.py
Normal file
233
server/text_generation_server/models/opt.py
Normal file
@ -0,0 +1,233 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from typing import List, Optional, Tuple
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from safetensors import safe_open
|
||||
from transformers import (
|
||||
AutoTokenizer,
|
||||
AutoModelForCausalLM,
|
||||
AutoConfig,
|
||||
)
|
||||
from transformers.models.opt.parallel_layers import (
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
TensorParallelRowLinear,
|
||||
)
|
||||
|
||||
from text_generation.models import CausalLM
|
||||
from text_generation.utils import (
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
download_weights,
|
||||
)
|
||||
|
||||
HAS_BITS_AND_BYTES = True
|
||||
try:
|
||||
import bitsandbytes as bnb
|
||||
from bitsandbytes.nn import Int8Params
|
||||
except Exception as e:
|
||||
HAS_BITS_AND_BYTES = False
|
||||
|
||||
|
||||
class OPT(CausalLM):
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
|
||||
"""Overwrite forward to ignore position_ids"""
|
||||
|
||||
# Model Forward
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
return outputs.logits, outputs.past_key_values
|
||||
|
||||
|
||||
class OPTSharded(OPT):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
dtype = torch.float32
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
tokenizer.pad_token_id = config.pad_token_id
|
||||
|
||||
# Only download weights for small models
|
||||
if self.master:
|
||||
download_weights(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
if not filenames:
|
||||
raise ValueError("No safetensors weights found")
|
||||
|
||||
with init_empty_weights():
|
||||
model = AutoModelForCausalLM.from_config(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(CausalLM, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
if name == "lm_head.weight":
|
||||
continue
|
||||
|
||||
full_name = f"model.{name}"
|
||||
|
||||
module_name, param_name = full_name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
current_tensor = parameters[full_name]
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, TensorParallelColumnLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, TensorParallelRowLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
|
||||
if current_tensor.shape != tensor.shape:
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if quantize:
|
||||
if not HAS_BITS_AND_BYTES:
|
||||
raise ImportError(
|
||||
"bitsandbytes is not available on your machine either because it is not installed "
|
||||
"or you don't have a GPU.\n"
|
||||
"You can install it with `pip install bitsandbytes`."
|
||||
)
|
||||
|
||||
if (
|
||||
type(module)
|
||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
||||
and param_name == "weight"
|
||||
):
|
||||
tensor = Int8Params(
|
||||
tensor,
|
||||
has_fp16_weights=False,
|
||||
requires_grad=False,
|
||||
).to(device)
|
||||
state = bnb.MatmulLtState()
|
||||
state.threshold = 6.0
|
||||
state.has_fp16_weights = False
|
||||
state.memory_efficient_backward = False
|
||||
state.use_pool = True
|
||||
state.CB = tensor.CB
|
||||
state.SCB = tensor.SCB
|
||||
tensor.CB = None
|
||||
tensor.SCB = None
|
||||
|
||||
def replace_linear(state):
|
||||
def linear(input, weight, bias):
|
||||
out = bnb.matmul(
|
||||
input,
|
||||
weight,
|
||||
state=state,
|
||||
threshold=state.threshold,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if state.CB is not None:
|
||||
# we converted 8-bit row major to turing/ampere format
|
||||
# in the first inference pass
|
||||
# we no longer need the row-major weight
|
||||
del state.CB
|
||||
weight.data = state.CxB
|
||||
|
||||
return out
|
||||
|
||||
return linear
|
||||
|
||||
module.linear = replace_linear(state)
|
||||
|
||||
else:
|
||||
tensor = tensor.to(device)
|
||||
|
||||
module._parameters[param_name] = tensor
|
||||
if full_name == "model.decoder.embed_tokens.weight":
|
||||
model.lm_head._parameters["weight"] = tensor
|
||||
|
||||
def forward(
|
||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||
):
|
||||
outputs = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
use_cache=True,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
|
||||
logits = torch.cat(logits, dim=2)
|
||||
|
||||
return logits, outputs.past_key_values
|
Loading…
Reference in New Issue
Block a user