Merge branch 'huggingface:main' into qwen3

This commit is contained in:
Yuan Wu 2025-05-22 11:56:29 +08:00 committed by GitHub
commit 3d20c79007
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
55 changed files with 1509 additions and 597 deletions

View File

@ -121,13 +121,6 @@ COPY server/Makefile-awq Makefile
# Build specific version of transformers
RUN . .venv/bin/activate && make build-awq
# Build Lorax Punica kernels
FROM kernel-builder AS lorax-punica-builder
WORKDIR /usr/src
COPY server/Makefile-lorax-punica Makefile
# Build specific version of transformers
RUN . .venv/bin/activate && TORCH_CUDA_ARCH_LIST="8.0;8.6+PTX" make build-lorax-punica
# Build Transformers CUDA kernels
FROM kernel-builder AS custom-kernels-builder
WORKDIR /usr/src
@ -210,8 +203,6 @@ COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-311
COPY --from=exllamav2-kernels-builder /usr/src/exllamav2/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from awq kernels builder
COPY --from=awq-kernels-builder /usr/src/llm-awq/awq/kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from lorax punica kernels builder
COPY --from=lorax-punica-builder /usr/src/lorax-punica/server/punica_kernels/build/lib.linux-x86_64-cpython-311 /usr/src/.venv/lib/python3.11/site-packages
# Copy build artifacts from mamba builder
COPY --from=mamba-builder /usr/src/mamba/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages
COPY --from=mamba-builder /usr/src/causal-conv1d/build/lib.linux-x86_64-cpython-311/ /usr/src/.venv/lib/python3.11/site-packages

View File

@ -1,5 +1,5 @@
# Those arguments are required to build the image
ARG HABANA_VERSION=1.20.0
ARG HABANA_VERSION=1.21.0
ARG PYTORCH_VERSION=2.6.0
# Rust builder
@ -60,6 +60,9 @@ FROM vault.habana.ai/gaudi-docker/${HABANA_VERSION}/ubuntu22.04/habanalabs/pytor
ENV ATTENTION=default
ENV PREFIX_CACHING=0
ENV PREFILL_CHUNKING=0
ENV PT_HPU_LAZY_MODE=1
ENV PT_HPU_WEIGHT_SHARING=0
ENV VLLM_EXPONENTIAL_BUCKETING=true
# Text Generation Inference base env
ENV HF_HOME=/data \
@ -95,7 +98,8 @@ RUN cd server && \
pip install "git+https://github.com/HabanaAI/DeepSpeed.git@${HABANA_VERSION}" && \
BUILD_CUDA_EXT=0 pip install git+https://github.com/AutoGPTQ/AutoGPTQ.git@097dd04e --no-build-isolation && \
pip install . --no-cache-dir
RUN pip install git+https://github.com/sywangyi/vllm-hpu-extension.git
RUN pip install git+https://github.com/HabanaAI/vllm-hpu-extension.git@a060794
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router

View File

@ -2,7 +2,7 @@ mkfile_path := $(abspath $(lastword $(MAKEFILE_LIST)))
mkfile_dir := $(dir $(mkfile_path))
root_dir := ${mkfile_dir}/../..
HABANA_VERSION := 1.20.0
HABANA_VERSION := 1.21.0
PYTORCH_VERSION := 2.6.0
.PHONY: image run-local-dev-container install-dependencies install-server install-router install-launcher local-dev-install

View File

@ -26,6 +26,11 @@ class Dtype(str, Enum):
bloat16 = "bfloat16"
class KVCacheDtype(str, Enum):
fp8_e4m3fn = "fp8_e4m3fn"
fp8_e5m2 = "fp8_e5m2"
@app.command()
def serve(
model_id: str,
@ -34,6 +39,7 @@ def serve(
quantize: Optional[Quantization] = None,
speculate: Optional[int] = None,
dtype: Optional[Dtype] = None,
kv_cache_dtype: Optional[KVCacheDtype] = None,
trust_remote_code: bool = False,
uds_path: Path = "/tmp/text-generation-server",
logger_level: str = "INFO",
@ -93,7 +99,8 @@ def serve(
# Downgrade enum into str for easier management later on
quantize = None if quantize is None else quantize.value
dtype = "bfloat16" if dtype is None else dtype.value
logger.info(f"quantize={quantize}")
kv_cache_dtype = None if kv_cache_dtype is None else kv_cache_dtype.value
logger.info(f"quantize={quantize} kv_cache_dtype={kv_cache_dtype}")
if dtype is not None and quantize not in {
None,
"bitsandbytes",
@ -175,6 +182,7 @@ def serve(
quantize,
speculate,
dtype,
kv_cache_dtype,
trust_remote_code,
uds_path,
max_input_tokens,

View File

@ -12,6 +12,7 @@ from text_generation_server.layers.speculative import SpeculativeHead
# Just to add the `load` methods.
from text_generation_server.layers.layernorm import load_layer_norm
from text_generation_server.layers.conv import load_conv2d
from text_generation_server.layers.fp8 import Fp8Linear
from text_generation_server.layers.lora import (
LoraLinear,
@ -27,6 +28,7 @@ __all__ = [
"TensorParallelEmbedding",
"SpeculativeHead",
"LoraLinear",
"Fp8Linear",
"TensorParallelMultiAdapterLinear",
"TensorParallelAdapterRowLinear",
"load_layer_norm",

View File

@ -10,18 +10,21 @@ from .hpu import (
SUPPORTS_WINDOWING,
attention,
paged_attention,
paged_attention_mla,
)
# KVCache needs `reshape_and_cache`, so ensure that it is defined already.
from .kv_cache import KVCache, get_kv_scales
from .kv_cache import KVCache, get_kv_scales, KVCompressCache
__all__ = [
"attention",
"get_kv_scales",
"paged_attention",
"paged_attention_mla",
"SUPPORTS_WINDOWING",
"KVCache",
"KVCompressCache",
"Seqlen",
"HPUPagedAttentionMetadata",
"trim_seqlen_metadata",

View File

@ -11,11 +11,61 @@ import os
SUPPORTS_WINDOWING = False
def fetch_from_cache(cache, blocks):
class FP8Matmul(torch.nn.Module):
def __init__(self, scale_other):
super().__init__()
self.scale_input = torch.tensor(1.0, dtype=torch.bfloat16, device="hpu")
self.scale_other = scale_other
def quant_input(self, x, scale):
return torch.ops.hpu.cast_to_fp8_v2(
x, scale, False, False, torch.float8_e4m3fn
)[0]
def matmul_fp8(
self, x, other, out_dtype, scale_input_inv=None, scale_other_inv=None
):
return torch.ops.hpu.fp8_gemm_v2(
A=x,
trans_A=False,
B=other,
trans_B=False,
D=None,
out_dtype=out_dtype,
A_scale_inv=scale_input_inv,
B_scale_inv=scale_other_inv,
bias=None,
accumulate=False,
)
def forward(self, input, other):
qinput = self.quant_input(input, self.scale_input)
qother = self.quant_input(other, self.scale_other)
output = self.matmul_fp8(
qinput,
qother,
out_dtype=torch.bfloat16,
scale_input_inv=1.0 / self.scale_input,
scale_other_inv=1.0 / self.scale_other,
)
return output
class FetchFromCache(torch.nn.Module):
def __init__(self, scale_inv):
super().__init__()
self.scale_inv = scale_inv
def forward(self, cache, blocks):
if os.environ.get("VLLM_CONTIGUOUS_PA", "true").lower() == "true":
return cache[: blocks.size(0)]
out = cache[: blocks.size(0)]
else:
return cache.index_select(0, blocks)
out = cache.index_select(0, blocks)
if out.dtype == torch.float8_e4m3fn:
out = torch.ops.hpu.cast_from_fp8(out, self.scale_inv, torch.bfloat16)
return out
def attention(
@ -67,6 +117,7 @@ def paged_attention(
hpu_attention_meta: HPUPagedAttentionMetadata,
):
batch_size, head_num, head_size = query.shape
fp8_kv = kv_cache.dtype == torch.float8_e4m3fn
output = ops.flat_pa(
query=query.view(batch_size, 1, head_num * head_size),
key_cache=kv_cache.key,
@ -76,19 +127,50 @@ def paged_attention(
block_bias=hpu_attention_meta.attn_bias,
block_groups=hpu_attention_meta.block_groups,
scale=softmax_scale,
matmul_qk_op=Matmul(),
matmul_av_op=Matmul(),
matmul_qk_op=FP8Matmul(kv_scales.key_scale) if fp8_kv else Matmul(),
matmul_av_op=FP8Matmul(kv_scales.value_scale) if fp8_kv else Matmul(),
batch2block_matmul_op=Matmul(),
block2batch_matmul_op=Matmul(),
keys_fetch_func=fetch_from_cache,
values_fetch_func=fetch_from_cache,
keys_fetch_func=FetchFromCache(1.0 / kv_scales.key_scale_cpu),
values_fetch_func=FetchFromCache(1.0 / kv_scales.value_scale_cpu),
)
# Reshape the output tensor.
return output.view(batch_size, head_num, head_size)
__all__ = [
"SUPPORTS_WINDOWING",
"attention",
"paged_attention",
]
def paged_attention_mla(
query: torch.Tensor,
kv_cache: KVCache,
kv_head_mapping: torch.Tensor,
softmax_scale: float,
seqlen: Seqlen,
*,
kv_scales: KVScales,
softcap: Optional[float] = None,
hpu_attention_meta: HPUPagedAttentionMetadata,
kv_lora_rank: int = 0,
):
batch_size, head_num, head_size = query.shape
fp8_kv = kv_cache.dtype == torch.float8_e4m3fn
output = ops.flat_pa_mla(
query=query,
key_cache=kv_cache.key,
value_cache=None,
block_list=hpu_attention_meta.block_list,
block_mapping=hpu_attention_meta.block_mapping,
block_bias=hpu_attention_meta.attn_bias,
block_groups=hpu_attention_meta.block_groups,
scale=softmax_scale,
matmul_qk_op=FP8Matmul(kv_scales.key_scale) if fp8_kv else Matmul(),
matmul_av_op=FP8Matmul(kv_scales.value_scale) if fp8_kv else Matmul(),
batch2block_matmul_op=Matmul(),
block2batch_matmul_op=Matmul(),
keys_fetch_func=FetchFromCache(1.0 / kv_scales.key_scale_cpu),
values_fetch_func=None,
kv_lora_rank=kv_lora_rank,
)
# Reshape the output tensor.
return output.view(batch_size, head_num, -1)
__all__ = ["SUPPORTS_WINDOWING", "attention", "paged_attention", "paged_attention_mla"]

View File

@ -50,6 +50,8 @@ class KVCache:
):
"""Construct the key-value cache for a layer."""
## TODO FP8 kv cache support
if dtype is torch.float8_e5m2:
raise ValueError("torch.float8_e5m2 is not supported in hpu. ")
self.kv_cache = (
torch.zeros(
@ -101,22 +103,92 @@ class KVCache:
key_cache,
value_cache,
slots,
kv_scales.key_scale_cpu,
kv_scales.value_scale_cpu,
kv_scales.key_scale,
kv_scales.value_scale,
)
class KVCompressCache(KVCache):
"""
Key-value cache for attention layers.
"""
kv_cache: torch.Tensor
def __init__(
self,
*,
num_blocks: int,
head_size: int,
dtype: torch.dtype,
device: torch.device,
):
"""Construct the key-value cache for a layer."""
## TODO FP8 kv cache support
if dtype is torch.float8_e5m2:
raise ValueError("torch.float8_e5m2 is not supported in hpu. ")
self.kv_cache = torch.zeros(
(num_blocks, BLOCK_SIZE, 1, head_size),
dtype=dtype,
device=device,
)
@property
def dtype(self):
"""Get the data type of the cache."""
return self.kv_cache.dtype
@property
def key(self):
"""Get the key cache."""
return self.kv_cache
@property
def value(self):
"""Get the value cache."""
return self.kv_cache
def store(
self,
*,
key: torch.Tensor,
value: torch.Tensor,
slots: torch.Tensor,
kv_scales: KVScales,
):
"""Store the key and value at the given slots."""
## TODO FP8 kv cache support
block_idx = slots // BLOCK_SIZE
block_offset = slots % BLOCK_SIZE
if self.kv_cache.dtype == torch.float8_e4m3fn:
key = torch.ops.hpu.cast_to_fp8_v2(
key, kv_scales.key_scale, False, False, torch.float8_e4m3fn
)[0]
cache_ops.insert_or_update_cache(key, self.kv_cache, block_idx, block_offset)
def paged_reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slots: torch.Tensor,
k_scale: float = 1.0,
v_scale: float = 1.0,
k_scale: torch.Tensor,
v_scale: torch.Tensor,
):
block_idx = slots // BLOCK_SIZE
block_offset = slots % BLOCK_SIZE
if key_cache.dtype == torch.float8_e4m3fn:
key = torch.ops.hpu.cast_to_fp8_v2(
key, k_scale, False, False, torch.float8_e4m3fn
)[0]
value = torch.ops.hpu.cast_to_fp8_v2(
value, v_scale, False, False, torch.float8_e4m3fn
)[0]
cache_ops.insert_or_update_cache(key, key_cache, block_idx, block_offset)
cache_ops.insert_or_update_cache(value, value_cache, block_idx, block_offset)

View File

@ -12,11 +12,151 @@ from text_generation_server.utils.weights import (
from vllm_hpu_extension.ops import scaled_fp8_quant
from vllm_hpu_extension.scales import get_hpu_gaudi2_scale_factor, is_hpu_gaudi2
import habana_frameworks.torch.utils.experimental as htexp
w8a8_block_fp8_matmul = None
per_token_group_quant_fp8 = None
quant_dtype: torch.dtype = torch.float8_e4m3fn
FP8_MAX = torch.finfo(torch.float8_e4m3fn).max
if is_hpu_gaudi2():
FP8_MAX = torch.finfo(torch.float8_e4m3fnuz).max
def pad_weight(weight, block_size):
"""Pads a matrix to make its dimensions multiples of block_size."""
M, N = weight.shape[-2:]
block_size_m, block_size_n = block_size
pad_M = (block_size_m - M % block_size_m) % block_size_m
pad_N = (block_size_n - N % block_size_n) % block_size_n
if pad_M == 0 and pad_N == 0:
return weight, M, N # No padding needed
padded_weight = torch.nn.functional.pad(
weight, (0, pad_N, 0, pad_M), mode="constant", value=0
)
return padded_weight, M, N # Return original dimensions for unpadding
def unpad_weight(weight, original_M, original_N, keep_first_dim=False):
"""Removes padding from the matrix to restore its original shape."""
if (weight.shape[-2] == original_M) and (weight.shape[-1] == original_N):
return weight
if keep_first_dim:
return weight[:, :original_M, :original_N]
else:
return weight[:original_M, :original_N]
def pad_block_fp8_weight_naive(weight, weight_scale, block_size):
assert len(block_size) == 2
block_size_m, block_size_n = block_size
weight_scale_m, weight_scale_n = weight_scale.shape[-2:]
weight, orig_M, orig_N = pad_weight(weight, block_size)
M, N = weight.shape[-2:]
assert weight_scale_m == M // block_size_m
assert weight_scale_n == N // block_size_n
return weight, orig_M, orig_N
def dynamic_quant(data, single_scale=False):
if single_scale:
scale = ((torch.abs(data)).max() + 1e-8) / FP8_MAX
else:
scale = ((torch.abs(data)).max(dim=-1).values + 1e-8) / FP8_MAX
scale = scale.unsqueeze(-1)
data_fp8 = torch.ops.hpu.cast_to_fp8_v2(
data, 1.0 / scale, False, False, torch.float8_e4m3fn
)[0]
return data_fp8, scale.float()
def dequant_block_fp8_weight_naive(
weight,
weight_scale,
block_size,
dtype=torch.bfloat16,
original_M=None,
original_N=None,
do_unpad=False,
):
if weight_scale is None:
return weight
assert len(block_size) == 2
weight_shape_len = len(weight.shape)
block_size_m, block_size_n = block_size
# mul scale
if weight_shape_len == 2:
weight_scale_m, weight_scale_n = weight_scale.shape
weight_scale = weight_scale.view(weight_scale_m, 1, weight_scale_n, 1)
weight = weight.view(weight_scale_m, block_size_m, weight_scale_n, block_size_n)
if is_hpu_gaudi2():
fake_weight = weight.cpu().to(dtype).to(weight.device)
dequant_weight = fake_weight * weight_scale.to(dtype)
else:
dequant_weight = weight.to(dtype) * weight_scale.to(dtype)
dequant_weight = dequant_weight.view(
weight_scale_m * block_size_m, weight_scale_n * block_size_n
)
keep_first_dim = False
elif weight_shape_len == 3:
fd, weight_scale_m, weight_scale_n = weight_scale.shape
weight_scale = weight_scale.view(fd, weight_scale_m, 1, weight_scale_n, 1)
weight = weight.view(
fd, weight_scale_m, block_size_m, weight_scale_n, block_size_n
)
if is_hpu_gaudi2():
fake_weight = weight.cpu().to(dtype).to(weight.device)
dequant_weight = fake_weight * weight_scale.to(dtype)
else:
dequant_weight = weight.to(dtype) * weight_scale.to(dtype)
dequant_weight = dequant_weight.view(
fd, weight_scale_m * block_size_m, weight_scale_n * block_size_n
)
keep_first_dim = True
else:
raise ValueError("Only support original weight shape is either 2 or 3")
if do_unpad:
dequant_weight = unpad_weight(
dequant_weight, original_M, original_N, keep_first_dim=keep_first_dim
)
return dequant_weight
def apply_block_fp8_linear_hpu_dynamic(
input: torch.Tensor,
weight: torch.Tensor,
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# View input as 2D matrix for fp8 methods
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]
x_fp8, x_scale = dynamic_quant(input_2d)
output = torch.ops.hpu.fp8_gemm_v2(
x_fp8,
False,
weight,
True,
None,
torch.bfloat16,
x_scale,
weight_scale,
None,
False,
)
if bias is not None:
output = output + bias
return output.to(dtype=input.dtype).view(*output_shape)
def get_fp8_linear(force_w8a16: bool = False) -> Type[torch.nn.Module]:
@ -42,7 +182,7 @@ def per_tensor_dequantize(
) -> torch.Tensor:
device = tensor.device
dtype = torch.bfloat16
if htexp._get_device_type() == htexp.synDeviceType.synDeviceGaudi2:
if is_hpu_gaudi2():
# dequant on cpu to avoid nan on gaudi2
tensor = tensor.to("cpu")
@ -269,6 +409,66 @@ class HybridFP8UnquantLoader(WeightsLoader):
return UnquantizedWeight(w)
def get_multi_weights(self, weights: "Weights", prefixes: List[str], dim: int):
# FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
w = [weights.get_tensor(f"{p}.weight", to_device=False) for p in prefixes]
shapes = [x.shape for x in w]
# Concat then send to the device
w = torch.cat(w, dim=dim).to(weights.device)
# FP8 branch
if w.dtype == torch.float8_e4m3fn:
if self.weight_block_size is not None:
scale = [
weights.get_tensor(f"{p}.weight_scale_inv", to_device=False)
for p in prefixes
]
scale = torch.cat(scale, dim=dim)
scale = scale.to(weights.device)
return Fp8Weight(
weight=w,
weight_scale=scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
weight_block_size=self.weight_block_size,
)
scale = [
weights.get_tensor(f"{p}.weight_scale", to_dtype=False).reshape(-1)
for p in prefixes
]
scale = torch.cat(scale, dim=0).reshape(-1)
input_scale = [
weights.get_tensor(f"{p}.input_scale", to_dtype=False).reshape(-1)
for p in prefixes
if weights.has_tensor(f"{p}.input_scale")
]
assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
input_scale = (
torch.cat(input_scale, dim=0).reshape(-1).max()
if len(input_scale) != 0
else None
)
logical_widths = [x[0] for x in shapes]
w, scale = requantize_with_max_scale(
w, scale.to(weights.device), logical_widths, weights.dtype
)
return Fp8Weight(
weight=w,
weight_scale=scale,
input_scale=input_scale,
activation_scale_ub=self.activation_scale_ub,
dtype=weights.dtype,
)
if self.to_fp8:
return Fp8Weight(weight=w, dtype=weights.dtype)
return UnquantizedWeight(w)
def get_weights_row(self, weights: "Weights", prefix: str):
w = weights.get_sharded(f"{prefix}.weight", dim=1)
# FP8 branch
@ -389,6 +589,22 @@ class Fp8Linear(torch.nn.Module):
scale_upper_bound = kwargs.get("scale_upper_bound", None)
weight_block_size = kwargs.get("weight_block_size", None)
if weight_block_size is not None:
weight, orig_M, orig_N = pad_block_fp8_weight_naive(
weight, scale, weight_block_size
)
weight, scale = dynamic_quant(
dequant_block_fp8_weight_naive(
weight,
scale,
weight_block_size,
original_M=orig_M,
original_N=orig_N,
do_unpad=True,
)
)
scale = scale.squeeze(-1)
return cls(
qweight=weight,
scale=scale,
@ -409,25 +625,10 @@ class Fp8Linear(torch.nn.Module):
def forward(self, input: torch.Tensor) -> torch.Tensor:
if self.weight_block_size is not None:
# https://arxiv.org/pdf/2412.19437
# At a more granular level. As illustrated in Figure 7 (a), (1) for activations, we group and
# scale elements on a 1x128 tile basis (i.e., per token per 128 channels); and (2) for weights, we
# group and scale elements on a 128x128 block basis (i.e., per 128 input channels per 128 output
# channels).
qinput, scale = per_token_group_quant_fp8(input, self.weight_block_size[1])
output = w8a8_block_fp8_matmul(
qinput,
self.qweight,
scale,
self.scale,
self.weight_block_size,
output_dtype=input.dtype,
return apply_block_fp8_linear_hpu_dynamic(
input, self.qweight, self.scale, self.input_scale, self.bias
)
if self.bias is not None:
output = output + self.bias
return output.to(dtype=input.dtype)
qinput, scale = fp8_quantize(
input,
self.input_scale,

View File

@ -4,7 +4,12 @@ from typing import List, Optional, Union
import torch
from loguru import logger
from text_generation_server.utils.log import log_once
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
from text_generation_server.utils.weights import (
Weight,
Weights,
WeightsLoader,
DefaultWeightsLoader,
)
from .hpu import QuantLinear
@ -72,6 +77,7 @@ class GPTQWeightsLoader(WeightsLoader):
quant_method: str,
quantize: str,
sym: bool,
modules_to_not_convert: List[str],
):
self.bits = bits
self.desc_act = desc_act
@ -79,6 +85,12 @@ class GPTQWeightsLoader(WeightsLoader):
self.quant_method = quant_method
self.quantize = quantize
self.sym = sym
self.modules_to_not_convert = modules_to_not_convert
def is_layer_skipped_quantization(
self, prefix: str, modules_to_not_convert: List[str]
):
return any(module_name in prefix for module_name in modules_to_not_convert)
def get_weights(self, weights: Weights, prefix: str):
self._get_gptq_params(weights)
@ -91,6 +103,9 @@ class GPTQWeightsLoader(WeightsLoader):
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights(weights, prefix)
try:
qweight = weights.get_tensor(f"{prefix}.qweight")
except RuntimeError:
@ -145,6 +160,10 @@ class GPTQWeightsLoader(WeightsLoader):
prefix: str,
block_sizes: Union[int, List[int]],
):
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights_col_packed(
weights, prefix, block_sizes
)
try:
qweight = weights.get_packed_sharded(
f"{prefix}.qweight", dim=1, block_sizes=block_sizes
@ -196,6 +215,8 @@ class GPTQWeightsLoader(WeightsLoader):
)
def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
if self.is_layer_skipped_quantization(prefixes[0], self.modules_to_not_convert):
return DefaultWeightsLoader.get_multi_weights_col(weights, prefixes, dim)
try:
qweight = torch.cat(
[weights.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
@ -263,6 +284,9 @@ class GPTQWeightsLoader(WeightsLoader):
if self.bits != 4:
use_exllama = False
if self.is_layer_skipped_quantization(prefix, self.modules_to_not_convert):
return DefaultWeightsLoader.get_weights_row(weights, prefix)
if self.desc_act:
log_once(logger.warning, "Disabling exllama because desc_act=True")
use_exllama = False

View File

@ -53,15 +53,10 @@ class FastRMSNorm(nn.Module):
return cls(weight, eps)
def forward(self, hidden_states, residual=None):
from vllm_hpu_extension.kernels import rms_norm
orig_shape = hidden_states.shape
if residual is not None:
residual += hidden_states.view(residual.shape)
else:
hidden_states += residual
residual = hidden_states
# Note: HPUFusedRMSNorm requires 3D tensors as inputs
if len(orig_shape) == 2:
residual = residual.unsqueeze(0)
x = rms_norm().apply(residual, self.weight, self.variance_epsilon)
return x.view(orig_shape), residual.view(orig_shape)
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(self.weight.dtype), residual

View File

@ -2,6 +2,7 @@ from typing import Optional
import torch
import torch.nn as nn
import os
from text_generation_server.utils.weights import Weights
from text_generation_server.layers.fp8 import (
@ -9,12 +10,11 @@ from text_generation_server.layers.fp8 import (
fp8_quantize,
quant_dtype,
normalize_e4m3fn_to_native_float8,
dynamic_quant,
dequant_block_fp8_weight_naive,
)
try:
from .unquantized import fused_moe
except Exception:
fused_moe = None
from text_generation_server.layers.moe.fused_moe import select_experts
import habana_frameworks.torch as htorch
class FP8SparseMoELayer(nn.Module):
@ -47,6 +47,16 @@ class FP8SparseMoELayer(nn.Module):
self.weight_block_size = weights.weights_loader.weight_block_size
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.world_size = weights.process_group.size()
self.rank = weights.process_group.rank()
self.ep_rank = self.rank
self.use_ep = os.getenv("USE_EXPERT_PARALLEL", "true").lower() == "true"
if self.use_ep:
n_experts = (n_experts + self.world_size - 1) // self.world_size
self.ep_offset = self.ep_rank * n_experts
else:
self.ep_offset = 0
(
self.gate_up_proj,
@ -58,6 +68,8 @@ class FP8SparseMoELayer(nn.Module):
gate_proj_name=gate_proj_name,
up_proj_name=up_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
self.down_proj, self.down_proj_weight_scale, self.down_proj_input_scale = (
@ -66,29 +78,89 @@ class FP8SparseMoELayer(nn.Module):
n_experts=n_experts,
name=down_proj_name,
weights=weights,
use_ep=self.use_ep,
ep_offset=self.ep_offset,
)
)
if self.weight_block_size is not None:
self.gate_up_proj, self.gate_up_proj_weight_scale = dynamic_quant(
dequant_block_fp8_weight_naive(
self.gate_up_proj,
self.gate_up_proj_weight_scale,
self.weight_block_size,
)
)
self.down_proj, self.down_proj_weight_scale = dynamic_quant(
dequant_block_fp8_weight_naive(
self.down_proj, self.down_proj_weight_scale, self.weight_block_size
)
)
self.gate_up_proj_weight_scale, self.down_proj_weight_scale = (
self.gate_up_proj_weight_scale.squeeze(-1),
self.down_proj_weight_scale.squeeze(-1),
)
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
return fused_moe(
x,
w1=self.gate_up_proj,
w2=self.down_proj,
gating_output=gating_output,
topk=self.topk,
renormalize=self.renormalize,
inplace=True,
topk_weights, topk_ids = select_experts(
hidden_states=x,
router_logits=gating_output,
use_grouped_topk=self.n_expert_group is not None,
num_expert_group=self.n_expert_group,
top_k=self.topk,
renormalize=self.renormalize,
topk_group=self.topk_group,
num_expert_group=self.n_expert_group,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
use_fp8_w8a8=True,
w1_scale=self.gate_up_proj_weight_scale,
w2_scale=self.down_proj_weight_scale,
a1_scale=self.gate_up_proj_input_scale,
a2_scale=self.down_proj_input_scale,
)
total_num_experts = gating_output.size(-1)
x_fp8, x_scale = dynamic_quant(x, single_scale=True)
if self.use_ep:
moe_n_slice = 1
n_expert_slice = (
total_num_experts + self.world_size - 1
) // self.world_size
else:
moe_n_slice = 1
n_expert_slice = (total_num_experts + moe_n_slice - 1) // moe_n_slice
for i in range(moe_n_slice):
min_expert = i * n_expert_slice
max_expert = min((i + 1) * n_expert_slice, total_num_experts)
w13_list_slice = [
self.gate_up_proj[j, ...] for j in range(min_expert, max_expert)
]
w2_list_slice = [
self.down_proj[j, ...] for j in range(min_expert, max_expert)
]
w13_weight_scale = [
self.gate_up_proj_weight_scale[j, ...]
for j in range(min_expert, max_expert)
]
w2_weight_scale = [
self.down_proj_weight_scale[j, ...]
for j in range(min_expert, max_expert)
]
current_hidden_states = torch.ops.hpu.mixture_of_experts(
hidden_states=x_fp8,
expert_routing_table=topk_ids.to(torch.int64),
router_weights=topk_weights.to(x.dtype),
w12=w13_list_slice,
w3=w2_list_slice,
d_scale_hidden_states=x_scale,
d_scale_w12=w13_weight_scale,
d_scale_w3=w2_weight_scale,
permuted_weights=True,
activation="silu",
experts_min=min_expert + self.ep_offset,
experts_max=max_expert + self.ep_offset - 1,
)
htorch.core.mark_step()
if i == 0:
final_hidden_states = current_hidden_states
else:
final_hidden_states.add_(current_hidden_states)
return final_hidden_states
def _load_expert_weights(
@ -98,13 +170,14 @@ def _load_expert_weights(
n_experts: int,
name: str,
weights: Weights,
ep_offset: int = 0,
) -> torch.Tensor:
all_weight = None
all_weight_scales = None
max_input_scale = None
for i in range(n_experts):
weight = get_weight_fn(prefix, i, name, weights)
weight = get_weight_fn(prefix, i + ep_offset, name, weights)
assert isinstance(weight, Fp8Weight)
@ -147,14 +220,26 @@ def _load_expert_multi_weights_col(
gate_proj_name: str,
up_proj_name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
def get_weight_fn(prefix, i, name, weights):
def get_weight_fn_sharded(prefix, i, name, weights):
return weights.get_multi_weights_col(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
def get_weight_fn(prefix, i, name, weights):
return weights.get_multi_weights(
[f"{prefix}.{i}.{gate_proj_name}", f"{prefix}.{i}.{up_proj_name}"], 0
)
return _load_expert_weights(
get_weight_fn, prefix=prefix, n_experts=n_experts, name=None, weights=weights
get_weight_fn if use_ep else get_weight_fn_sharded,
prefix=prefix,
n_experts=n_experts,
name=None,
weights=weights,
ep_offset=ep_offset if use_ep else 0,
)
@ -164,10 +249,20 @@ def _load_expert_weights_row(
n_experts: int,
name: str,
weights: Weights,
use_ep: bool = False,
ep_offset: int = 0,
) -> torch.Tensor:
def get_weight_fn(prefix, i, name, weights):
def get_weight_fn_sharded(prefix, i, name, weights):
return weights.get_weights_row(f"{prefix}.{i}.{name}")
def get_weight_fn(prefix, i, name, weights):
return weights.get_weights(f"{prefix}.{i}.{name}")
return _load_expert_weights(
get_weight_fn, prefix=prefix, n_experts=n_experts, name=name, weights=weights
get_weight_fn if use_ep else get_weight_fn_sharded,
prefix=prefix,
n_experts=n_experts,
name=name,
weights=weights,
ep_offset=ep_offset if use_ep else 0,
)

View File

@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
from typing import Tuple, Optional
import torch
@ -25,12 +25,36 @@ def grouped_topk(
renormalize: bool,
num_expert_group: int = 0,
topk_group: int = 0,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch"
gating_output = gating_output.float()
if e_score_correction_bias is not None:
e_score_correction_bias = e_score_correction_bias.float()
if scoring_func == "softmax":
scores = torch.softmax(gating_output, dim=-1)
elif scoring_func == "sigmoid":
scores = gating_output.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
num_token = scores.shape[0]
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_scores = scores
scores = scores + e_score_correction_bias.unsqueeze(0)
group_scores = (
scores.view(num_token, num_expert_group, -1).topk(2, dim=-1)[0].sum(dim=-1)
)
else:
group_scores = (
scores.view(num_token, num_expert_group, -1).max(dim=-1).values
) # [n, n_group]
group_idx = torch.topk(group_scores, k=topk_group, dim=-1, sorted=False)[
1
] # [n, top_k_group]
@ -41,13 +65,19 @@ def grouped_topk(
.expand(num_token, num_expert_group, scores.shape[-1] // num_expert_group)
.reshape(num_token, -1)
) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), 0.0) # [n, e]
tmp_scores = scores.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
if e_score_correction_bias is not None:
topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_scores.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(tmp_scores, k=topk, dim=-1, sorted=False)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
return topk_weights.to(torch.float32), topk_ids.to(torch.int32)
def fused_topk(
@ -63,3 +93,39 @@ def fused_topk(
if renormalize:
topk_weights /= topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
):
# DeekSeekv2 uses grouped_top_k
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
topk_weights, topk_ids = grouped_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
num_expert_group=num_expert_group,
topk_group=topk_group,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
)
else:
topk_weights, topk_ids = fused_topk(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
)
return topk_weights, topk_ids

View File

@ -4,7 +4,9 @@ import torch
import torch.nn as nn
from text_generation_server.utils.weights import UnquantizedWeight, Weights
from vllm_hpu_extension.ops import DynamicFusedMOE
from vllm_hpu_extension.ops import VllmMixtureOfExpertsOp
import habana_frameworks.torch as htorch
import torch.nn.functional as F
class UnquantizedSparseMoELayer(nn.Module):
@ -53,13 +55,29 @@ class UnquantizedSparseMoELayer(nn.Module):
weights=weights,
)
self.hpu_fused_moe = DynamicFusedMOE(n_experts)
self.MoeOp = VllmMixtureOfExpertsOp(n_experts, 0, n_experts - 1)
for i in range(n_experts):
self.hpu_fused_moe.MoeOp.w13_list[i].set_weight(self.gate_up_proj[i])
self.hpu_fused_moe.MoeOp.w2_list[i].set_weight(self.down_proj[i])
self.MoeOp.w13_list[i].set_weight(self.gate_up_proj[i])
self.MoeOp.w2_list[i].set_weight(self.down_proj[i])
def forward(self, x: torch.Tensor, *, gating_output: torch.Tensor) -> torch.Tensor:
return self.hpu_fused_moe(x, gating_output, self.topk)
htorch.core.mark_step()
routing_weights = F.softmax(gating_output, dim=1, dtype=torch.float32)
routing_weights, selected_experts = torch.topk(
routing_weights, self.topk, dim=-1
)
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
routing_weights = routing_weights.to(x.dtype)
final_hidden_states = self.MoeOp(
hidden_states=x,
expert_routing_table=selected_experts,
router_weights=routing_weights,
permuted_weights=True,
activation="silu",
)
return final_hidden_states.view(-1, x.shape[1])
def _load_expert_multi_weights_col(

View File

@ -470,9 +470,6 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
mscale_all_dim: float,
):
inv_freq = _create_inv_freq(dim, base, device)
super().__init__(
inv_freq, scaling_factor, max_position_embeddings * self.scaling_factor
)
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
@ -487,6 +484,7 @@ class YarnPositionRotaryEmbedding(PositionRotaryEmbedding):
/ get_mscale(self.scaling_factor, mscale_all_dim)
* self.attn_factor
) # Get n-d magnitude scaling corrected for interpolation
super().__init__(inv_freq, scaling_factor, max_position_embeddings)
def _update_cos_sin_cache(self, dtype, device, seqlen):
# Reset the tables if the sequence length has changed,

View File

@ -352,6 +352,7 @@ def get_model(
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[torch.dtype],
kv_cache_dtype: Optional[str],
trust_remote_code: bool,
max_input_tokens: int,
) -> Model:
@ -477,6 +478,11 @@ def get_model(
model_type = config_dict["model_type"]
if kv_cache_dtype == "fp8_e4m3fn":
kv_cache_dtype = torch.float8_e4m3fn
elif kv_cache_dtype == "fp8_e5m2":
kv_cache_dtype = torch.float8_e5m2
else:
kv_cache_dtype = dtype
if FLASH_ATTENTION:
@ -955,6 +961,7 @@ def get_model_with_lora_adapters(
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[torch.dtype],
kv_cache_dtype: Optional[str],
trust_remote_code: bool,
max_input_tokens: int,
adapter_to_index: Dict[str, int],
@ -968,6 +975,7 @@ def get_model_with_lora_adapters(
quantize,
speculate,
dtype,
kv_cache_dtype,
trust_remote_code,
max_input_tokens,
)

View File

@ -51,6 +51,8 @@ from habana_frameworks.torch.hpex.kernels import (
apply_rotary_pos_emb,
)
import habana_frameworks.torch as htorch
class CohereRotary(PositionRotaryEmbedding):
def forward(
@ -420,7 +422,9 @@ class FlashCohereModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -433,6 +437,8 @@ class FlashCohereModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -44,6 +44,7 @@ from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
from vllm_hpu_extension.ops import DynamicFusedMOE
import habana_frameworks.torch as htorch
class DbrxAttentionConfig(PretrainedConfig):
@ -682,8 +683,10 @@ class DbrxModel(torch.nn.Module):
# Get rotary cos and sin for this forward
# Avoid to index in each layer
cos, sin = self.layers[0].attn.self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -696,6 +699,8 @@ class DbrxModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -40,6 +40,7 @@ from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
from text_generation_server.utils.weights import Weights
import habana_frameworks.torch as htorch
class DeepseekV2Config(PretrainedConfig):
@ -575,6 +576,9 @@ class DeepseekV2Model(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -587,6 +591,8 @@ class DeepseekV2Model(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -28,11 +28,12 @@ from text_generation_server.layers import (
TensorParallelEmbedding,
TensorParallelRowLinear,
get_linear,
Fp8Linear,
)
from text_generation_server.layers.attention import (
Seqlen,
attention,
paged_attention,
paged_attention_mla,
HPUPagedAttentionMetadata,
)
from text_generation_server.layers.attention.kv_cache import KVCache, get_kv_scales
@ -40,6 +41,19 @@ from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding, get_mscale
from text_generation_server.utils.weights import Weights
import habana_frameworks.torch as htorch
def get_and_maybe_dequant_weights(layer: torch.nn.Module) -> torch.Tensor:
if isinstance(layer, Fp8Linear):
eye = torch.eye(
layer.qweight.shape[-1], dtype=torch.bfloat16, device=layer.qweight.device
)
dequant_weights = layer(eye)
del eye
# standardize to (output, input)
return dequant_weights.T
return layer.weight
class DeepseekV3Config(PretrainedConfig):
@ -249,6 +263,44 @@ class DeepseekV3Attention(torch.nn.Module):
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
).repeat_interleave(self.num_groups)
kv_b_proj_weight = get_and_maybe_dequant_weights(self.kv_b_proj.linear).T
kv_b_proj_weight = kv_b_proj_weight.view(
self.kv_lora_rank,
self.num_heads,
self.qk_nope_head_dim + self.value_head_size,
)
W_UK, W_UV = kv_b_proj_weight.split(
[self.qk_nope_head_dim, self.value_head_size], dim=-1
)
# Convert from (L, N, V) to (N, L, V)
self.W_UV = W_UV.transpose(0, 1)
# Convert from (L, N, P) to (N, P, L)
self.W_UK_T = W_UK.permute(1, 2, 0)
def _q_proj_and_k_up_proj(self, x):
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
q_nope, q_pe = (
q_proj(x)
.view(-1, self.num_heads, self.head_size)
.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
)
# Convert from (B, N, P) to (N, B, P)
q_nope = q_nope.transpose(0, 1)
# Multiply (N, B, P) x (N, P, L) -> (N, B, L)
ql_nope = torch.bmm(q_nope, self.W_UK_T)
# Convert from (N, B, L) to (B, N, L)
return ql_nope.transpose(0, 1), q_pe
def _v_up_proj_and_o_proj(self, x):
# Convert from (B, N, L) to (N, B, L)
x = x.view(-1, self.num_heads, self.kv_lora_rank).transpose(0, 1)
# Multiply (N, B, L) x (N, L, V) -> (N, B, V)
x = torch.bmm(x, self.W_UV)
# Convert from (N, B, V) to (B, N * V)
x = x.transpose(0, 1).reshape(-1, self.num_heads * self.value_head_size)
return self.o_proj(x)
def forward(
self,
hidden_states: torch.Tensor,
@ -261,14 +313,9 @@ class DeepseekV3Attention(torch.nn.Module):
hpu_attention_meta: Optional[HPUPagedAttentionMetadata],
):
if self.q_lora_rank is None:
query = self.q_proj(hidden_states)
hidden_states_or_q_c = hidden_states
else:
query = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))[0])
query = query.view(-1, self.num_heads, self.head_size)
_, query_pe = torch.split(
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
hidden_states_or_q_c = self.q_a_layernorm(self.q_a_proj(hidden_states))[0]
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
compressed_kv, key_pe = torch.split(
@ -276,13 +323,18 @@ class DeepseekV3Attention(torch.nn.Module):
)
key_pe = key_pe.view(-1, 1, self.qk_rope_head_dim)
kv = self.kv_b_proj(self.kv_a_layernorm(compressed_kv.contiguous())[0]).view(
-1, self.num_key_value_heads, self.qk_nope_head_dim + self.value_head_size
)
kv_c_normed = self.kv_a_layernorm(compressed_kv.contiguous())[0]
key_nope, value = torch.split(
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
# Prefill
if cu_seqlen_prefill is not None:
q_proj = self.q_proj if self.q_lora_rank is None else self.q_b_proj
query = q_proj(hidden_states_or_q_c)
query = query.view(-1, self.num_heads, self.head_size)
query_nope, query_pe = torch.split(
query, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
)
else:
query_nope, query_pe = self._q_proj_and_k_up_proj(hidden_states_or_q_c)
batch_size, heads, head_dim = query_pe.shape
query_pe = (
@ -297,7 +349,30 @@ class DeepseekV3Attention(torch.nn.Module):
.reshape(batch_size, heads, head_dim)
)
self.rotary_emb(query_pe, key_pe, cos, sin)
latent_vec_k = torch.concat(
(kv_c_normed, key_pe.view(-1, self.qk_rope_head_dim)), dim=-1
)
latent_vec_k = latent_vec_k.view(-1, self.qk_rope_head_dim + self.kv_lora_rank)
latent_vec_k = latent_vec_k.unflatten(0, (slots.size(0), -1))
kv_cache.store(
key=latent_vec_k,
value=None,
slots=slots,
kv_scales=self.kv_scales,
)
if cu_seqlen_prefill is not None:
kv = self.kv_b_proj(kv_c_normed).view(
-1,
self.num_key_value_heads,
self.qk_nope_head_dim + self.value_head_size,
)
key_nope, value = torch.split(
kv, [self.qk_nope_head_dim, self.value_head_size], dim=-1
)
query[..., self.qk_nope_head_dim :] = query_pe
key = torch.empty_like(query)
key[..., : self.qk_nope_head_dim] = key_nope
@ -315,15 +390,6 @@ class DeepseekV3Attention(torch.nn.Module):
value, (0, self.head_pad_size - self.value_head_size), value=0
)
kv_cache.store(
key=key,
value=value,
slots=slots,
kv_scales=self.kv_scales,
)
# Prefill
if cu_seqlen_prefill is not None:
# flash attention
attn_output = attention(
query=query,
@ -334,9 +400,15 @@ class DeepseekV3Attention(torch.nn.Module):
seqlen=seqlen,
softmax_scale=self.softmax_scale,
)
# Decode
attn_output = attn_output[..., : self.value_head_size]
return self.o_proj(
attn_output.reshape(-1, self.num_heads * self.value_head_size)
)
else:
attn_output = paged_attention(
# Decode
query = torch.cat([query_nope, query_pe], dim=-1)
attn_output = paged_attention_mla(
query,
kv_cache,
self.kv_head_mapping,
@ -344,14 +416,10 @@ class DeepseekV3Attention(torch.nn.Module):
seqlen,
kv_scales=self.kv_scales,
hpu_attention_meta=hpu_attention_meta,
kv_lora_rank=self.kv_lora_rank,
)
# Remove padding.
attn_output = attn_output[..., : self.value_head_size]
return self.o_proj(
attn_output.reshape(-1, self.num_heads * self.value_head_size)
)
attn_output = self._v_up_proj_and_o_proj(attn_output)
return attn_output
class DeepseekV3MLP(nn.Module):
@ -584,6 +652,9 @@ class DeepseekV3Model(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -596,6 +667,8 @@ class DeepseekV3Model(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -46,6 +46,7 @@ from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class Gemma2Config(PretrainedConfig):
@ -472,6 +473,10 @@ class FlashGemma2Model(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -485,6 +490,8 @@ class FlashGemma2Model(torch.nn.Module):
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -44,6 +44,7 @@ from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class GemmaConfig(PretrainedConfig):
@ -394,6 +395,9 @@ class FlashGemmaModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -406,6 +410,8 @@ class FlashGemmaModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -38,6 +38,7 @@ from text_generation_server.layers import (
get_linear,
)
from text_generation_server.layers.attention.kv_cache import get_kv_scales
import habana_frameworks.torch as htorch
def load_qkv(config, prefix: str, weights, head_size, num_heads):
@ -385,6 +386,10 @@ class FlashGPT2Model(torch.nn.Module):
hidden_states = inputs_embeds
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -395,6 +400,8 @@ class FlashGPT2Model(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states = self.norm(hidden_states)

View File

@ -48,6 +48,7 @@ from habana_frameworks.torch.hpex.kernels import (
RotaryPosEmbeddingMode,
apply_rotary_pos_emb,
)
import habana_frameworks.torch as htorch
def load_attention(config, prefix: str, weights):
@ -330,6 +331,9 @@ class FlashGPTJModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -342,6 +346,8 @@ class FlashGPTJModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)

View File

@ -26,7 +26,7 @@ import torch.distributed
from torch import nn
from transformers.activations import ACT2FN
import habana_frameworks.torch as htorch
from text_generation_server.layers.attention import (
KVCache,
get_kv_scales,
@ -554,6 +554,9 @@ class FlashLlamaModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -568,6 +571,8 @@ class FlashLlamaModel(torch.nn.Module):
cross_attention_states,
hpu_attention_meta=hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -45,6 +45,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
import habana_frameworks.torch as htorch
class MistralConfig(PretrainedConfig):
@ -401,6 +402,9 @@ class MistralModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -414,6 +418,8 @@ class MistralModel(torch.nn.Module):
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states

View File

@ -44,6 +44,7 @@ from text_generation_server.layers.layernorm import FastRMSNorm
from text_generation_server.layers.moe import DenseMoELayer, MoELayer, SparseMoELayer
from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class MixtralConfig(PretrainedConfig):
@ -452,6 +453,9 @@ class MixtralModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -464,6 +468,8 @@ class MixtralModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -47,6 +47,7 @@ from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class GPTNeoXConfig(TransformersGPTNeoXConfig):
@ -360,6 +361,9 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
cos, sin = self.layers[0].attention.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -372,6 +376,8 @@ class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.final_layer_norm(hidden_states, residual)

View File

@ -26,6 +26,7 @@ from text_generation_server.layers.layernorm import (
from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
import habana_frameworks.torch as htorch
class PhiConfig(PretrainedConfig):
@ -353,6 +354,9 @@ class FlashPhiModel(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -365,6 +369,8 @@ class FlashPhiModel(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -18,7 +18,6 @@
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)

View File

@ -22,6 +22,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding
from text_generation_server.layers.layernorm import (
FastRMSNorm,
)
import habana_frameworks.torch as htorch
def load_attention(config, prefix, weights):
@ -294,6 +295,9 @@ class Qwen2Model(torch.nn.Module):
)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states = layer(
hidden_states,
@ -306,6 +310,8 @@ class Qwen2Model(torch.nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states)

View File

@ -21,6 +21,7 @@ from text_generation_server.layers.attention import (
Seqlen,
HPUPagedAttentionMetadata,
)
import habana_frameworks.torch as htorch
def load_row(config, prefix: str, weights, bias: bool):
@ -634,6 +635,9 @@ class FlashRWModel(FlashRWPreTrainedModel):
cos, sin = self.h[0].self_attention.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.h):
hidden_states, residual = layer(
hidden_states,
@ -646,6 +650,8 @@ class FlashRWModel(FlashRWPreTrainedModel):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)

View File

@ -23,6 +23,7 @@ from text_generation_server.layers.gptq import GPTQWeightsLoader
from text_generation_server.layers.layernorm import (
FastLayerNorm,
)
import habana_frameworks.torch as htorch
def load_multi_mqa(
@ -442,6 +443,9 @@ class FlashSantacoderModel(nn.Module):
torch.distributed.all_reduce(hidden_states, group=self.process_group)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -452,6 +456,8 @@ class FlashSantacoderModel(nn.Module):
seqlen,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.ln_f(hidden_states, residual)

View File

@ -50,6 +50,7 @@ from text_generation_server.layers.rotary import (
PositionRotaryEmbedding,
)
from text_generation_server.utils.weights import UnquantizedWeight
import habana_frameworks.torch as htorch
class Starcoder2Config(PretrainedConfig):
@ -517,6 +518,9 @@ class Starcoder2Model(torch.nn.Module):
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(position_ids)
residual = None
lazy_mode = htorch.utils.internal.is_lazy()
if lazy_mode:
htorch.core.mark_step()
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,
@ -530,6 +534,8 @@ class Starcoder2Model(torch.nn.Module):
adapter_data,
hpu_attention_meta,
)
if lazy_mode:
htorch.core.mark_step()
hidden_states, _ = self.norm(hidden_states, residual)

View File

@ -53,6 +53,7 @@ from text_generation_server.models.globals import (
)
from text_generation_server.layers.attention import (
KVCache,
KVCompressCache,
Seqlen,
HPUPagedAttentionMetadata,
trim_attn_metadata,
@ -68,11 +69,14 @@ from text_generation_server.utils.import_utils import (
synchronize,
get_free_memory,
)
from text_generation_server.utils.prefill_chunking import (
get_max_prefill_tokens,
)
import vllm_hpu_extension.environment as environment
import habana_frameworks.torch as htorch
import itertools
from vllm_hpu_extension.bucketing import HPUBucketingContext
from vllm_hpu_extension.bucketing.common import get_bucketing_context
from vllm_hpu_extension.profiler import HabanaMemoryProfiler, format_bytes
tracer = trace.get_tracer(__name__)
@ -153,7 +157,7 @@ def prepare_for_decode(
block_groups_device, num_classes=batch_size
)
mask = torch.arange(0, BLOCK_SIZE, device=device, dtype=torch.int32).unsqueeze(0)
mask = mask >= block_usage.unsqueeze(-1)
mask = mask >= block_usage_device.unsqueeze(-1)
attn_bias = torch.zeros_like(mask, dtype=dtype).masked_fill_(mask, -math.inf)
return trim_attn_metadata(
HPUPagedAttentionMetadata(
@ -425,7 +429,9 @@ class FlashCausalLMBatch(Batch):
all_input_ids_tensor[i, : len(input_ids)] = input_ids
# Create tensors on device
all_input_ids_tensor = torch.tensor(all_input_ids_tensor, dtype=torch.int64)
all_input_ids_tensor = torch.tensor(
all_input_ids_tensor, dtype=torch.int64, device=device
)
top_n_tokens_tensor = torch.tensor(top_n_tokens, dtype=torch.int64)
@ -1352,6 +1358,8 @@ class FlashCausalLM(Model):
):
self.quantize = quantize
self.process_group, rank, world_size = initialize_torch_distributed()
if world_size > 1:
self.process_group_cpu = torch.distributed.new_group(backend="gloo")
device = torch.device("hpu")
dtype = torch.bfloat16 if dtype is None else dtype
@ -1439,15 +1447,18 @@ class FlashCausalLM(Model):
self.kv_cache = []
self.kv_cache_dtype = dtype if kv_cache_dtype is None else kv_cache_dtype
self.bucketing_ctx = None
htorch.core.hpu_set_env()
if htorch.utils.internal.is_lazy():
htorch.hpu.wrap_in_hpu_graph(model, disable_tensor_cache=True)
environment.set_model_config(self.config)
self.use_contiguous_pa = (
os.environ.get("VLLM_CONTIGUOUS_PA", "true").lower() == "true"
)
self.limit_hpu_graphs = (
os.environ.get("LIMIT_HPU_GRAPHS", "false").lower() == "true"
self.limit_hpu_graph = (
os.environ.get("LIMIT_HPU_GRAPH", "false").lower() == "true"
)
self.skip_warmup = os.getenv("VLLM_SKIP_WARMUP", "false").lower() == "true"
self.max_seq_len_to_capture = 8192
super().__init__(
model_id=model_id,
model=model,
@ -1479,6 +1490,17 @@ class FlashCausalLM(Model):
):
self.kv_cache = []
empty_cache()
if self.config.model_type == "deepseek_v3":
self.kv_cache = [
KVCompressCache(
num_blocks=num_blocks,
head_size=self.config.kv_lora_rank + self.config.qk_rope_head_dim,
dtype=dtype,
device=device,
)
for _ in range(num_layers)
]
else:
self.kv_cache = [
KVCache(
num_blocks=num_blocks,
@ -1496,16 +1518,40 @@ class FlashCausalLM(Model):
max_input_tokens: Optional[int],
max_total_tokens: Optional[int],
):
if os.environ.get("MAX_BATCH_SIZE") is None:
raise RuntimeError(
"MAX_BATCH_SIZE is not set, it should be set in the launcher "
"using `--max-batch-size xxx`"
)
# The warmup batch is the biggest batch we could ever receive
self.kv_cache = []
empty_cache()
self.graphed_buckets = set()
# Inspired by the original implementation in [vllm](https://github.com/vllm-project/vllm)
# Calculate the number of blocks that can be allocated with the free memory
dtype_size = torch.tensor([], dtype=self.kv_cache_dtype).element_size()
if self.config.model_type == "deepseek_v3":
cache_block_size = BLOCK_SIZE * (
self.config.kv_lora_rank + self.config.qk_rope_head_dim
)
else:
cache_block_size = BLOCK_SIZE * self.num_kv_heads * self.head_size
total_cache_size = self.num_layers * cache_block_size * 2 * dtype_size
cache_block_size = cache_block_size * 2
total_cache_size = self.num_layers * cache_block_size * dtype_size
free_memory = get_free_memory(self.device, TGI_WIGGLE_ROOM)
self.mem_reserved = int(free_memory * (1 - MEMORY_FRACTION))
graph_reserved_mem = (
float(os.environ.get("TGI_GRAPH_RESERVED_MEM", "0.1"))
if htorch.utils.internal.is_lazy()
else 0
)
mem_used_from_graph = int(
(free_memory - self.mem_reserved) * graph_reserved_mem
)
log_master(
logger.info,
f"Free memory on device {self.device}: {format_bytes(free_memory)} used_for_graph: {format_bytes(mem_used_from_graph)} ratio {graph_reserved_mem} reserved_for_runtime: {format_bytes(self.mem_reserved)}",
)
try:
self.init_kv_cache(
batch.num_blocks,
@ -1520,15 +1566,6 @@ class FlashCausalLM(Model):
num_tokens = batch.to_pb().current_tokens
synchronize(self.device)
free_memory = get_free_memory(
self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM
)
real_free_memory = get_free_memory(self.device, MEMORY_FRACTION)
log_master(
logger.debug,
f"Free memory {free_memory / 1e9:.2f}GB , (real: {real_free_memory / 1e9:.2f}GB",
)
_, _batch, _ = self.generate_token([batch])
except Exception:
raise RuntimeError(
@ -1537,8 +1574,9 @@ class FlashCausalLM(Model):
)
synchronize(self.device)
free_memory = get_free_memory(self.device, MEMORY_FRACTION * TGI_WIGGLE_ROOM)
kv_memory = free_memory
free_memory = get_free_memory(self.device, TGI_WIGGLE_ROOM)
kv_memory = free_memory - self.mem_reserved - mem_used_from_graph
num_blocks = (
# Leave 5% for some wiggle room
int(kv_memory // total_cache_size)
@ -1555,7 +1593,6 @@ class FlashCausalLM(Model):
self.kv_cache = []
empty_cache()
self.init_kv_cache(
num_blocks,
self.num_layers,
@ -1564,56 +1601,177 @@ class FlashCausalLM(Model):
self.kv_cache_dtype,
self.device,
)
max_num_seqs = int(os.getenv("MAX_BATCH_SIZE", 128))
if os.getenv("VLLM_PROMPT_SEQ_BUCKET_MAX") is None:
os.environ["VLLM_PROMPT_SEQ_BUCKET_MAX"] = str(max_input_tokens)
if os.getenv("VLLM_DECODE_BLOCK_BUCKET_MAX") is None:
max_total_blocks = (
math.ceil(max_total_tokens / BLOCK_SIZE) * max_num_seqs + 1
self.max_batch_prefill_tokens = get_max_prefill_tokens()
max_num_seqs = int(os.getenv("MAX_BATCH_SIZE"))
HPUBucketingContext = get_bucketing_context()
# need to warmup one more step since block is allocated from 1
block_step = os.getenv("VLLM_DECODE_BLOCK_BUCKET_STEP", BLOCK_SIZE)
max_total_tokens_aligned = math.ceil(
max_total_tokens / BLOCK_SIZE
) * BLOCK_SIZE + math.ceil(block_step * BLOCK_SIZE / max_num_seqs)
model_max_length = self.tokenizer.model_max_length
max_position_embeddings = getattr(
self.config, "max_position_embeddings", model_max_length
)
os.environ["VLLM_DECODE_BLOCK_BUCKET_MAX"] = str(max_total_blocks)
self.bucketing_ctx = HPUBucketingContext(
max_num_seqs,
os.getenv("PREFILL_MAX_BS", 64), # self.max_num_prefill_seqs, #TODO
max_num_seqs, # self.max_num_prefill_seqs, #TODO
BLOCK_SIZE,
num_blocks * BLOCK_SIZE,
max_num_seqs * max_total_tokens_aligned,
False,
min(model_max_length, max_position_embeddings),
max_input_tokens,
max_total_tokens_aligned,
)
max_blocks = max(
BLOCK_SIZE, max_num_seqs * max_total_tokens_aligned // BLOCK_SIZE
)
self.bucketing_ctx.num_hpu_blocks = min(max_blocks, num_blocks)
synchronize(self.device)
if self.skip_warmup:
self.bucketing_ctx.generate_prompt_buckets()
self.bucketing_ctx.generate_decode_buckets(
self.bucketing_ctx.num_hpu_blocks
)
log_master(
logger.info, "skip warmup hpu graph, not recommmended, may cause OOM"
)
self.bucketing_ctx.num_hpu_blocks = num_blocks
if os.getenv("VLLM_SKIP_WARMUP", "false").lower() == "true":
logger.info("skip warmup hpu graph, not recommmended")
del _batch, batch
return int(num_blocks * BLOCK_SIZE), max_input_tokens, max_total_tokens
self.warmup_hpu_graph(batch)
del _batch, batch
return int(num_blocks * BLOCK_SIZE), max_input_tokens, max_total_tokens
def log_warmup(self, prefilling, i, max_i, batch_size, seq_len):
free_mem = format_bytes(HabanaMemoryProfiler.current_free_device_memory())
phase = "Prompt" if prefilling else "Decode"
dim = "seq_len" if prefilling else "num_blocks"
graphed_bucket = (batch_size, seq_len, prefilling)
bypass = graphed_bucket not in self.graphed_buckets
msg = (
f"[Warmup][{phase}][{i+1}/{max_i}] "
f"batch_size:{batch_size} "
f"{dim}:{seq_len} "
f"bypass:{bypass} "
f"free_mem:{free_mem}"
)
log_master(logger.info, msg)
def use_graphs(self, prefill, seq_len, batch_size):
if self.limit_hpu_graph and prefill:
return False
if self.skip_warmup:
return True
return (batch_size, seq_len, prefill) in self.graphed_buckets
def align_workers(self, value, op):
if self.world_size <= 1:
return value
value_t = torch.tensor(value, device="cpu")
torch.distributed.all_reduce(value_t, op=op, group=self.process_group_cpu)
return value_t.item()
def warmup_hpu_graph(self, batch):
prompt_graph_mem_ratio = float(os.environ.get("VLLM_GRAPH_PROMPT_RATIO", "0.3"))
free_mem = HabanaMemoryProfiler.current_free_device_memory()
graph_free_mem = free_mem - self.mem_reserved
graph_free_mem = self.align_workers(
graph_free_mem, torch.distributed.ReduceOp.MIN
)
prompt_available_memory = prompt_graph_mem_ratio * graph_free_mem
decode_available_memory = graph_free_mem - prompt_available_memory
msg = (
f"Using {format_bytes(graph_free_mem)}"
f"/{format_bytes(free_mem)} "
"of free device memory for HPUGraphs, "
f"{format_bytes(prompt_available_memory)} for prompt and "
f"{format_bytes(decode_available_memory)} for decode "
f"(VLLM_GRAPH_PROMPT_RATIO={prompt_graph_mem_ratio})"
)
log_master(logger.info, msg)
start_time = time.time()
warmup_shape_count = 0
warmup_times = 3
self.bucketing_ctx.generate_prompt_buckets()
for i, (batch_size, seq_len) in enumerate(
reversed(self.bucketing_ctx.prompt_buckets)
def ordering_function_min_tokens(b):
return (b[0] * b[1], b[1], b[0])
buckets = list(
sorted(self.bucketing_ctx.prompt_buckets, key=ordering_function_min_tokens)
)
total_batch_seq = 0.001
total_mem = 0
available_mem = prompt_available_memory
for i, (batch_size, seq_len) in enumerate(buckets):
if batch_size * seq_len > self.max_batch_prefill_tokens:
continue
# Graph memory usage is proportional to seq dimension in a batch
batch_seq = batch_size * seq_len
mem_estimate = batch_seq / total_batch_seq * total_mem
graphed_bucket = (batch_size, seq_len, True)
if not (
mem_estimate >= available_mem or batch_seq > self.max_seq_len_to_capture
):
log_master(logger.info, f"warmup prefill seq {seq_len} bs {batch_size}")
if graphed_bucket not in self.graphed_buckets:
self.graphed_buckets.add(graphed_bucket)
warmup_shape_count += 1
self.log_warmup(True, i, len(buckets), batch_size, seq_len)
with HabanaMemoryProfiler() as mem_prof:
for index in range(warmup_times):
self.warmup_prefill(seq_len, batch_size, batch)
synchronize(self.device)
used_mem = self.align_workers(
mem_prof.consumed_device_memory, torch.distributed.ReduceOp.MAX
)
if graphed_bucket in self.graphed_buckets:
available_mem -= used_mem
total_mem += used_mem
total_batch_seq += batch_seq
def ordering_function_max_bs(b):
return (-b[0], b[1])
self.bucketing_ctx.generate_decode_buckets(self.bucketing_ctx.num_hpu_blocks)
for i, (batch_size, block_num) in enumerate(
reversed(self.bucketing_ctx.decode_buckets)
):
buckets = list(
sorted(self.bucketing_ctx.decode_buckets, key=ordering_function_max_bs)
)
free_mem = HabanaMemoryProfiler.current_free_device_memory()
total_batch_seq = 0.001
total_mem = 0
available_mem = free_mem - self.mem_reserved
for i, (batch_size, block_num) in enumerate(buckets):
if batch_size > block_num:
continue
log_master(
logger.info, f"warmup decode bs {batch_size} block_num {block_num}"
)
# Graph memory usage is proportional to seq dimension in a batch
batch_seq = batch_size
mem_estimate = batch_seq / total_batch_seq * total_mem
graphed_bucket = (batch_size, block_num, False)
if not mem_estimate >= available_mem:
if graphed_bucket not in self.graphed_buckets:
self.graphed_buckets.add(graphed_bucket)
warmup_shape_count += 1
self.log_warmup(False, i, len(buckets), batch_size, block_num)
with HabanaMemoryProfiler() as mem_prof:
for index in range(warmup_times):
self.warmup_decode(batch_size, block_num, batch)
synchronize(self.device)
used_mem = self.align_workers(
mem_prof.consumed_device_memory, torch.distributed.ReduceOp.MAX
)
if graphed_bucket in self.graphed_buckets:
available_mem -= used_mem
total_mem += used_mem
total_batch_seq += batch_seq
log_master(
logger.info,
f"warmup hpu graph time {int(time.time() - start_time)}s warmup shape count {warmup_shape_count}",
)
def warmup_prefill(
self, prompt_len: int, batch_size: int, batch: FlashCausalLMBatch
@ -1644,7 +1802,9 @@ class FlashCausalLM(Model):
lm_head_indices = input_lengths - 1
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = self.limit_hpu_graphs
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
True, prompt_len, batch_size
)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
@ -1697,7 +1857,9 @@ class FlashCausalLM(Model):
slots_tensor = torch.tensor(slots, dtype=batch.slots.dtype)
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = False
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
False, hpu_attention_meta.block_list.shape[0], batch_size
)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
input_ids=_async_h2d_tensor_copy(input_ids),
@ -1793,8 +1955,14 @@ class FlashCausalLM(Model):
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = (
batch.prefilling if self.limit_hpu_graphs else False
batch_size = input_lengths.shape[0]
prompt_len = (
input_ids.shape[0] // batch_size
if batch.prefilling
else batch.hpu_attn_meta.block_list.shape[0]
)
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
batch.prefilling, prompt_len, batch_size
)
logits, speculative_logits = self.model.forward(
@ -1837,9 +2005,7 @@ class FlashCausalLM(Model):
accepted_ids,
speculative_ids,
) = batch.next_token_chooser(
_async_h2d_tensor_copy(
batch.all_input_ids_tensor[:, : batch.max_current_length]
),
batch.all_input_ids_tensor[:, : batch.max_current_length],
batch.next_token_logits,
speculate,
batch.speculative_ids,
@ -1853,7 +2019,6 @@ class FlashCausalLM(Model):
accepted_ids,
)
if batch.valid_indices is not None:
next_input_ids = next_input_ids.cpu()
next_token_logprobs = next_token_logprobs.cpu()
accepted_ids = accepted_ids.cpu()
batch.all_input_ids_tensor = batch.all_input_ids_tensor[
@ -1903,7 +2068,6 @@ class FlashCausalLM(Model):
accepted_ids = accepted_ids.cpu()
cu_accepted_ids = accepted_ids.new_zeros(accepted_ids.shape[0] + 1)
torch.cumsum(accepted_ids, dim=0, out=cu_accepted_ids[1:])
next_input_ids = next_input_ids.cpu()
if batch.speculative_logits is not None:
for i in range(len(batch)):
batch.all_input_ids_tensor[
@ -1915,7 +2079,7 @@ class FlashCausalLM(Model):
] = next_input_ids[cu_accepted_ids[i] : cu_accepted_ids[i + 1]]
else:
index = batch.cache_lengths_tensor + batch.input_lengths_tensor
index = index.to(batch.all_input_ids_tensor)
index = index.to(batch.all_input_ids_tensor.device)
batch_idx = torch.arange(
0,
batch.all_input_ids_tensor.shape[0],
@ -1925,6 +2089,7 @@ class FlashCausalLM(Model):
batch.all_input_ids_tensor.index_put_(
(batch_idx, index.long()), next_input_ids
)
next_input_ids = next_input_ids.cpu()
batch.input_ids = next_input_ids[cu_accepted_ids[1:] - 1]
batch.speculative_ids = speculative_ids
if batch.position_ids.dim() == 2:

View File

@ -23,9 +23,11 @@ from text_generation_server.layers.attention import (
_async_h2d_tensor_copy,
)
import habana_frameworks.torch as htorch
import time
from text_generation_server.utils.import_utils import (
synchronize,
)
from vllm_hpu_extension.profiler import HabanaMemoryProfiler, format_bytes
tracer = trace.get_tracer(__name__)
@ -486,20 +488,63 @@ class FlashVlmCausalLM(FlashCausalLM):
)
def warmup_hpu_graph(self, batch: FlashVlmCausalLMBatch):
free_mem = HabanaMemoryProfiler.current_free_device_memory()
graph_free_mem = free_mem - self.mem_reserved
graph_free_mem = self.align_workers(
graph_free_mem, torch.distributed.ReduceOp.MIN
)
decode_available_memory = graph_free_mem
msg = (
f"Using {format_bytes(graph_free_mem)}"
f"/{format_bytes(free_mem)} "
"of free device memory for HPUGraphs, "
f"{format_bytes(decode_available_memory)} for decode "
)
log_master(logger.info, msg)
start_time = time.time()
warmup_shape_count = 0
warmup_times = 3
# only warmup decode, for prefill, image pixal size may change, make the warmup useless
def ordering_function_max_bs(b):
return (-b[0], b[1])
self.bucketing_ctx.generate_decode_buckets(self.bucketing_ctx.num_hpu_blocks)
for i, (batch_size, block_num) in enumerate(
reversed(self.bucketing_ctx.decode_buckets)
):
buckets = list(
sorted(self.bucketing_ctx.decode_buckets, key=ordering_function_max_bs)
)
total_batch_seq = 0.001
total_mem = 0
available_mem = decode_available_memory
for i, (batch_size, block_num) in enumerate(buckets):
if batch_size > block_num:
continue
log_master(
logger.info, f"warmup decode bs {batch_size} block_num {block_num}"
)
# Graph memory usage is proportional to seq dimension in a batch
batch_seq = batch_size
mem_estimate = batch_seq / total_batch_seq * total_mem
graphed_bucket = (batch_size, block_num, False)
if not mem_estimate >= available_mem:
if graphed_bucket not in self.graphed_buckets:
self.graphed_buckets.add(graphed_bucket)
warmup_shape_count += 1
self.log_warmup(False, i, len(buckets), batch_size, block_num)
with HabanaMemoryProfiler() as mem_prof:
for index in range(warmup_times):
self.warmup_decode(batch_size, block_num, batch)
synchronize(self.device)
used_mem = self.align_workers(
mem_prof.consumed_device_memory, torch.distributed.ReduceOp.MAX
)
if graphed_bucket in self.graphed_buckets:
available_mem -= used_mem
total_mem += used_mem
total_batch_seq += batch_seq
log_master(
logger.info,
f"warmup hpu graph time {int(time.time() - start_time)}s warmup shape count {warmup_shape_count}",
)
def forward(
self,
@ -572,8 +617,15 @@ class FlashVlmCausalLM(FlashCausalLM):
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = batch.prefilling
batch_size = input_lengths.shape[0]
seqlen = (
input_ids.shape[0] // batch_size
if batch.prefilling
else batch.hpu_attn_meta.block_list.shape[0]
)
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
batch.prefilling, seqlen, batch_size
)
if batch.prefill_cache_indices is not None:
slots_pad = torch.zeros_like(input_ids)
slots_pad[batch.prefill_cache_indices] = slots

View File

@ -32,6 +32,9 @@ from text_generation_server.utils.import_utils import (
)
import torch.nn.functional as F
from text_generation_server.utils.log import log_master
import time
import os
from vllm_hpu_extension.profiler import HabanaMemoryProfiler, format_bytes
tracer = trace.get_tracer(__name__)
@ -267,6 +270,11 @@ class FlashMllamaCausalLM(FlashVlmCausalLM):
cross_attention_states, image_indices, input_lengths, 1, False
)
slots_tensor = torch.tensor(slots, dtype=batch.slots.dtype)
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
False, hpu_attention_meta.block_list.shape[0], batch_size
)
self.model.forward(
input_ids=_async_h2d_tensor_copy(input_ids),
position_ids=_async_h2d_tensor_copy(position_ids),
@ -280,6 +288,7 @@ class FlashMllamaCausalLM(FlashVlmCausalLM):
cross_attention_states=cross_attention_states,
indices=_async_h2d_tensor_copy(indices),
cross_attention_len=_async_h2d_tensor_copy(cross_attention_len),
**kwargs,
)
def warmup_prefill(
@ -325,7 +334,9 @@ class FlashMllamaCausalLM(FlashVlmCausalLM):
)
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = self.limit_hpu_graphs
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
True, prompt_len, batch_size
)
self.model.forward(
input_ids=_async_h2d_tensor_copy(input_ids),
position_ids=_async_h2d_tensor_copy(position_ids),
@ -343,26 +354,103 @@ class FlashMllamaCausalLM(FlashVlmCausalLM):
)
def warmup_hpu_graph(self, batch: FlashMllamaCausalLMBatch):
prompt_graph_mem_ratio = float(os.environ.get("VLLM_GRAPH_PROMPT_RATIO", "0.3"))
free_mem = HabanaMemoryProfiler.current_free_device_memory()
graph_free_mem = free_mem - self.mem_reserved
graph_free_mem = self.align_workers(
graph_free_mem, torch.distributed.ReduceOp.MIN
)
prompt_available_memory = prompt_graph_mem_ratio * graph_free_mem
decode_available_memory = graph_free_mem - prompt_available_memory
msg = (
f"Using {format_bytes(graph_free_mem)}"
f"/{format_bytes(free_mem)} "
"of free device memory for HPUGraphs, "
f"{format_bytes(prompt_available_memory)} for prompt and "
f"{format_bytes(decode_available_memory)} for decode "
f"(VLLM_GRAPH_PROMPT_RATIO={prompt_graph_mem_ratio})"
)
log_master(logger.info, msg)
start_time = time.time()
warmup_shape_count = 0
warmup_times = 3
self.bucketing_ctx.generate_prompt_buckets()
for i, (batch_size, seq_len) in enumerate(
reversed(self.bucketing_ctx.prompt_buckets)
def ordering_function_min_tokens(b):
return (b[0] * b[1], b[1], b[0])
buckets = list(
sorted(self.bucketing_ctx.prompt_buckets, key=ordering_function_min_tokens)
)
graph_free_mem
total_batch_seq = 0.001
total_mem = 0
available_mem = prompt_available_memory
for i, (batch_size, seq_len) in enumerate(buckets):
if batch_size * seq_len > self.max_batch_prefill_tokens:
continue
# Graph memory usage is proportional to seq dimension in a batch
batch_seq = batch_size * seq_len
mem_estimate = batch_seq / total_batch_seq * total_mem
graphed_bucket = (batch_size, seq_len, True)
if not (
mem_estimate >= available_mem or batch_seq > self.max_seq_len_to_capture
):
log_master(logger.info, f"warmup prefill seq {seq_len} bs {batch_size}")
if graphed_bucket not in self.graphed_buckets:
self.graphed_buckets.add(graphed_bucket)
warmup_shape_count += 1
self.log_warmup(True, i, len(buckets), batch_size, seq_len)
with HabanaMemoryProfiler() as mem_prof:
for index in range(warmup_times):
self.warmup_prefill(seq_len, batch_size, batch)
synchronize(self.device)
used_mem = self.align_workers(
mem_prof.consumed_device_memory, torch.distributed.ReduceOp.MAX
)
if graphed_bucket in self.graphed_buckets:
available_mem -= used_mem
total_mem += used_mem
total_batch_seq += batch_seq
def ordering_function_max_bs(b):
return (-b[0], b[1])
self.bucketing_ctx.generate_decode_buckets(self.bucketing_ctx.num_hpu_blocks)
for i, (batch_size, block_num) in enumerate(
reversed(self.bucketing_ctx.decode_buckets)
):
buckets = list(
sorted(self.bucketing_ctx.decode_buckets, key=ordering_function_max_bs)
)
free_mem = HabanaMemoryProfiler.current_free_device_memory()
total_batch_seq = 0.001
total_mem = 0
available_mem = free_mem - self.mem_reserved
for i, (batch_size, block_num) in enumerate(buckets):
if batch_size > block_num:
continue
log_master(
logger.info, f"warmup decode bs {batch_size} block_num {block_num}"
)
# Graph memory usage is proportional to seq dimension in a batch
batch_seq = batch_size
mem_estimate = batch_seq / total_batch_seq * total_mem
graphed_bucket = (batch_size, block_num, False)
if not mem_estimate >= available_mem:
if graphed_bucket not in self.graphed_buckets:
self.graphed_buckets.add(graphed_bucket)
warmup_shape_count += 1
self.log_warmup(False, i, len(buckets), batch_size, block_num)
with HabanaMemoryProfiler() as mem_prof:
for index in range(warmup_times):
self.warmup_decode(batch_size, block_num, batch)
synchronize(self.device)
used_mem = self.align_workers(
mem_prof.consumed_device_memory, torch.distributed.ReduceOp.MAX
)
if graphed_bucket in self.graphed_buckets:
available_mem -= used_mem
total_mem += used_mem
total_batch_seq += batch_seq
log_master(
logger.info,
f"warmup hpu graph time {int(time.time() - start_time)}s warmup shape count {warmup_shape_count}",
)
def forward(
self,
@ -438,9 +526,16 @@ class FlashMllamaCausalLM(FlashVlmCausalLM):
kwargs = {}
if htorch.utils.internal.is_lazy():
kwargs["bypass_hpu_graphs"] = (
batch.prefilling if self.limit_hpu_graphs else False
batch_size = input_lengths.shape[0]
seqlen = (
input_ids.shape[0] // batch_size
if batch.prefilling
else batch.hpu_attn_meta.block_list.shape[0]
)
kwargs["bypass_hpu_graphs"] = not self.use_graphs(
batch.prefilling, seqlen, batch_size
)
if batch.prefill_cache_indices is not None:
slots_pad = torch.zeros_like(input_ids)
slots_pad[batch.prefill_cache_indices] = slots

View File

@ -206,6 +206,7 @@ def serve(
quantize: Optional[str],
speculate: Optional[int],
dtype: Optional[str],
kv_cache_dtype: Optional[str],
trust_remote_code: bool,
uds_path: Path,
max_input_tokens: int,
@ -218,6 +219,7 @@ def serve(
quantize: Optional[str] = None,
speculate: Optional[int] = None,
dtype: Optional[str] = None,
kv_cache_dtype: Optional[str] = None,
trust_remote_code: bool = False,
):
if not is_driver_compatible():
@ -261,6 +263,7 @@ def serve(
quantize,
speculate,
data_type,
kv_cache_dtype,
trust_remote_code,
max_input_tokens,
adapter_to_index,
@ -308,6 +311,7 @@ def serve(
quantize,
speculate,
dtype,
kv_cache_dtype,
trust_remote_code,
)
)

View File

@ -31,6 +31,7 @@ def main(args):
trust_remote_code=args.trust_remote_code,
uds_path=args.uds_path,
max_input_tokens=args.max_input_tokens,
kv_cache_dtype="auto",
)

View File

@ -1,18 +1,9 @@
import torch
from loguru import logger
def get_hpu_free_memory(device, memory_fraction):
from habana_frameworks.torch.hpu import memory_stats
device_id = device.index
mem_stats = memory_stats(device_id)
logger.info(f"mem_stats: {mem_stats}")
total_free_memory = mem_stats["Limit"] - mem_stats["MaxInUse"]
free_memory = max(
0, int(total_free_memory - (1 - memory_fraction) * mem_stats["Limit"])
)
return free_memory
free_hpu_memory, _ = torch.hpu.mem_get_info()
return free_hpu_memory
def synchronize_hpu(device):

View File

@ -1,7 +1,7 @@
import json
import os
from dataclasses import dataclass
from typing import Optional
from typing import Optional, List
from huggingface_hub import hf_hub_download
from text_generation_server.utils.weights import (
@ -18,6 +18,8 @@ class _QuantizerConfig:
groupsize: int
quant_method: str
sym: bool
weight_block_size: Optional[List[int]]
modules_to_not_convert: List[str]
@dataclass
@ -25,7 +27,20 @@ class _FP8QuantizerConfig:
activation_scale_ub: float
# We should probably do this with Pytantic JSON deserialization,
def _get_config_json(model_id: str, revision: Optional[str], filename: str):
if os.path.exists(
os.path.join(
model_id,
)
):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(model_id, filename=filename, revision=revision)
with open(filename, "r") as f:
return json.load(f)
# We should probably do this with Pydantic JSON deserialization,
# but for now we'll stay close to the old _set_gptq_params.
def _get_quantizer_config(model_id, revision):
bits = 4
@ -34,21 +49,18 @@ def _get_quantizer_config(model_id, revision):
checkpoint_format = None
sym = False
desc_act = False
weight_block_size = None
modules_to_not_convert = []
filename = "config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(model_id, filename=filename, revision=revision)
with open(filename, "r") as f:
data = json.load(f)
data = _get_config_json(model_id, revision, filename)
# FP8 config
if data["quantization_config"]["quant_method"] == "fbgemm_fp8":
return _FP8QuantizerConfig(
activation_scale_ub=data["quantization_config"]["activation_scale_ub"]
)
weight_block_size = data["quantization_config"].get("weight_block_size", None)
if "zero_point" in data["quantization_config"]:
sym = not data["quantization_config"]["zero_point"]
@ -61,18 +73,16 @@ def _get_quantizer_config(model_id, revision):
# Order is important here, desc_act is missing on some real models
quant_method = data["quantization_config"]["quant_method"]
checkpoint_format = data["quantization_config"].get("checkpoint_format")
desc_act = data["quantization_config"]["desc_act"]
desc_act = data["quantization_config"].get("desc_act", False)
modules_to_not_convert = data["quantization_config"].get(
"modules_to_not_convert", []
)
if modules_to_not_convert is None:
modules_to_not_convert = []
except Exception:
filename = "quantize_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
data = _get_config_json(model_id, revision, filename)
bits = data["bits"]
groupsize = data["group_size"]
@ -88,14 +98,7 @@ def _get_quantizer_config(model_id, revision):
except Exception:
filename = "quant_config.json"
try:
if os.path.exists(os.path.join(model_id, filename)):
filename = os.path.join(model_id, filename)
else:
filename = hf_hub_download(
model_id, filename=filename, revision=revision
)
with open(filename, "r") as f:
data = json.load(f)
data = _get_config_json(model_id, revision, filename)
bits = data["w_bit"]
groupsize = data["q_group_size"]
desc_act = data["desc_act"]
@ -111,6 +114,8 @@ def _get_quantizer_config(model_id, revision):
checkpoint_format=checkpoint_format,
sym=sym,
desc_act=desc_act,
weight_block_size=weight_block_size,
modules_to_not_convert=modules_to_not_convert,
)
@ -134,6 +139,7 @@ def get_loader(
quant_method=quantizer_config.quant_method,
quantize=quantize,
sym=quantizer_config.sym,
modules_to_not_convert=quantizer_config.modules_to_not_convert,
)
elif quantize == "fp8" or quantize is None:
from text_generation_server.layers.fp8 import HybridFP8UnquantLoader
@ -141,9 +147,14 @@ def get_loader(
# Since the default for the quantize config is _QuantizerConfig,
# we need to add this check to not get an attribute error
activation_scale_ub = None
weight_block_size = quantizer_config.weight_block_size
if isinstance(quantizer_config, _FP8QuantizerConfig):
activation_scale_ub = quantizer_config.activation_scale_ub
return HybridFP8UnquantLoader(activation_scale_ub, to_fp8=quantize == "fp8")
return HybridFP8UnquantLoader(
activation_scale_ub,
to_fp8=quantize == "fp8",
weight_block_size=weight_block_size,
)
else:
raise ValueError(f"Unknown quantization method: {quantize}")

View File

@ -62,6 +62,14 @@ class WeightsLoader(ABC):
"""
...
@abstractmethod
def get_multi_weights(self, weights: "Weights", prefixes: List[str], dim: int):
"""
Get the weights at the given prefixes, column-split them for tensor
parallelim, and then concatenate the weights along the given dimension.
"""
...
@abstractmethod
def get_weights_row(self, weights: "Weights", prefix: str):
"""
@ -130,6 +138,10 @@ class DefaultWeightsLoader(WeightsLoader):
weights.get_sharded(f"{prefix}.weight", dim=1),
)
def get_multi_weights(self, weights: "Weights", prefixes: List[str], dim: int):
w = [weights.get_tensor(f"{p}.weight") for p in prefixes]
return self.weight_class(torch.cat(w, dim=dim))
class Weights:
def __init__(
@ -393,6 +405,9 @@ class Weights:
def get_weights_row(self, prefix: str):
return self.weights_loader.get_weights_row(self, prefix)
def get_multi_weights(self, prefixes: List[str], dim: int):
return self.weights_loader.get_multi_weights(self, prefixes, dim)
@contextmanager
def use_loader(self, weights_loader: WeightsLoader):
"""

View File

@ -8,6 +8,7 @@ use std::cmp::max;
use std::collections::VecDeque;
use text_generation_router::infer::InferError;
use text_generation_router::infer::InferStreamResponse;
use text_generation_router::usage_stats::Env;
use text_generation_router::validation::{
Chunk, ChunksToString, ValidGenerateRequest, ValidGrammar, ValidParameters,
ValidStoppingParameters,
@ -185,6 +186,9 @@ struct State {
/// Paged Attention Block Allocation
block_allocator: Option<BlockAllocator>,
/// indicate if it's hpu device, the hpu device needs padding to generate first token.
is_hpu_device: bool,
}
impl State {
@ -214,6 +218,7 @@ impl State {
speculate,
support_chunking,
block_allocator,
is_hpu_device: Env::new().is_hpu_device(),
}
}
@ -368,6 +373,21 @@ impl State {
}
}
if self.is_hpu_device {
//HPU needs to pad for the prefill
max_input_length = max_input_length.max(entry.request.input_length);
let actual_prefill_tokens_for_hpu =
(batch.len() + 1) as u32 * max_input_length;
if actual_prefill_tokens_for_hpu > prefill_token_budget {
// Entry is over budget
// Add it back to the front
tracing::debug!("Over budget: prefill_tokens={actual_prefill_tokens_for_hpu} > {prefill_token_budget}");
self.entries.push_front((id, entry));
break 'entry_loop;
}
}
prefill_tokens += postfix_len;
Some(block_allocation)

View File

@ -718,16 +718,16 @@
},
"nixpkgs_6": {
"locked": {
"lastModified": 1737453259,
"narHash": "sha256-5LaFI9SQwCZmJDasMoYMdzNouWXNk3BvjKcO19tq1Rs=",
"lastModified": 1746711195,
"narHash": "sha256-bSpM2ySq12PBOVN7jZdzXsc99iRoYOyolh5wz43+CjQ=",
"owner": "danieldk",
"repo": "nixpkgs",
"rev": "e0372dbcfd19ddd783b7c3b3868f19322f83318e",
"rev": "6b7a66b06ccb09ac95872ac6ddf952e0660672ab",
"type": "github"
},
"original": {
"owner": "danieldk",
"ref": "outlines-v0.1.4-tgi",
"ref": "kernel-builder-cuda-12.9.0",
"repo": "nixpkgs",
"type": "github"
}
@ -978,16 +978,16 @@
"nixpkgs": "nixpkgs_6"
},
"locked": {
"lastModified": 1746795305,
"narHash": "sha256-4fpUT4j4w0NDKF22KvG7iGmwQTBPM5SrPEqt+N3fqF0=",
"lastModified": 1747733488,
"narHash": "sha256-LYov4H9zvqXXlFKdytcVcDioH416c+LWfyw/HWta0qw=",
"owner": "huggingface",
"repo": "text-generation-inference-nix",
"rev": "359cd25f31f0f2ad2cadfbf4e180780a7a06e3c5",
"rev": "61c730990efa58e64c652bf15253aae47dd0f7dd",
"type": "github"
},
"original": {
"owner": "huggingface",
"ref": "torch-2.7",
"ref": "merge-with-kernel-builder",
"repo": "text-generation-inference-nix",
"type": "github"
}

View File

@ -5,7 +5,7 @@
inputs.nixpkgs.follows = "tgi-nix/nixpkgs";
};
nix-filter.url = "github:numtide/nix-filter";
tgi-nix.url = "github:huggingface/text-generation-inference-nix/torch-2.7";
tgi-nix.url = "github:huggingface/text-generation-inference-nix/merge-with-kernel-builder";
nixpkgs.follows = "tgi-nix/nixpkgs";
flake-utils.url = "github:numtide/flake-utils";
rust-overlay = {

View File

@ -1263,7 +1263,23 @@ fn num_cuda_devices() -> Option<usize> {
let devices = match env::var("CUDA_VISIBLE_DEVICES") {
Ok(devices) => devices,
Err(_) => match env::var("NVIDIA_VISIBLE_DEVICES") {
Ok(devices) => devices,
Ok(devices) => {
if devices.trim() == "all" {
// Count the number of all GPUs via nvidia-smi
let output = Command::new("nvidia-smi")
.args(["--query-gpu=uuid", "--format=csv,noheader"])
.output()
.ok()?;
String::from_utf8_lossy(&output.stdout)
.lines()
.filter(|line| !line.trim().is_empty())
.count()
.to_string()
} else {
devices
}
}
Err(_) => env::var("ZE_AFFINITY_MASK").ok()?,
},
};

View File

@ -1,6 +1,7 @@
{
buildPythonPackage,
poetry-core,
aiohttp,
huggingface-hub,
pydantic,
}:
@ -15,6 +16,7 @@ buildPythonPackage {
build-system = [ poetry-core ];
dependencies = [
aiohttp
huggingface-hub
pydantic
];

View File

@ -31,7 +31,7 @@
peft,
pillow,
prometheus-client,
punica-kernels,
punica-sgmv,
py-cpuinfo,
pydantic,
quantization,
@ -107,7 +107,7 @@ buildPythonPackage {
peft
pillow
prometheus-client
punica-kernels
punica-sgmv
py-cpuinfo
pydantic
quantization

View File

@ -3,7 +3,6 @@ include Makefile-flash-att-v2
include Makefile-vllm
include Makefile-awq
include Makefile-selective-scan
include Makefile-lorax-punica
include Makefile-exllamav2
include Makefile-flashinfer

View File

@ -1,12 +0,0 @@
lorax_punica_commit := c71861a653412267dc27ec86013dd945ce3474bc
build-lorax-punica:
if [ ! -d 'lorax-punica' ]; then \
git clone --no-checkout https://github.com/predibase/lorax.git lorax-punica; \
fi
cd lorax-punica && git sparse-checkout set server/punica_kernels && git checkout $(lorax_punica_commit)
cd lorax-punica && git submodule update --init --recursive
cd lorax-punica/server/punica_kernels && python setup.py build
install-lorax-punica: build-lorax-punica
cd lorax-punica/server/punica_kernels && python setup.py install

View File

@ -163,6 +163,64 @@
}
}
},
{
"repo_id": "kernels-community/punica-sgmv",
"sha": "9ae1b469cb39c33df9ddd61657c6359acc423714",
"variants": {
"torch26-cxx11-cu118-x86_64-linux": {
"hash": "sha256-766062cd845bdebbe4e4391fda6f2663bebc2c110cbc2642d09c8c09ccf3f1d4",
"hash_type": "git_lfs_concat"
},
"torch26-cxx11-cu124-x86_64-linux": {
"hash": "sha256-c9cd76df7c84851aa566deb1c0d04ebddc1b1908a29df218344f2b3d53c4e683",
"hash_type": "git_lfs_concat"
},
"torch26-cxx11-cu126-aarch64-linux": {
"hash": "sha256-ae444bf53be3d469d4c9c58faef7d61a92e873e6104afe5aed2b2a1397333e99",
"hash_type": "git_lfs_concat"
},
"torch26-cxx11-cu126-x86_64-linux": {
"hash": "sha256-0706cc5ccf9cedae0bb6a938acdf2d5599a7b8f8b1fe46118b6ad61c0f3432af",
"hash_type": "git_lfs_concat"
},
"torch26-cxx98-cu118-x86_64-linux": {
"hash": "sha256-42cf390c6ae48b18041e201d4c67b4bf820b9f9cafe49a12c505f7920bae56ae",
"hash_type": "git_lfs_concat"
},
"torch26-cxx98-cu124-x86_64-linux": {
"hash": "sha256-75c97c23bfe32f65830341420d093a07df051828f385cbc5357b073c635f442f",
"hash_type": "git_lfs_concat"
},
"torch26-cxx98-cu126-aarch64-linux": {
"hash": "sha256-2ff5590ff6c298220c6e06142c971b08a686b98abb8d7dd1e6eb4539fa115cba",
"hash_type": "git_lfs_concat"
},
"torch26-cxx98-cu126-x86_64-linux": {
"hash": "sha256-70bcf04490865df6518c9d6a4c7eb2fee76b14642651f04a061c20ffa6fdb283",
"hash_type": "git_lfs_concat"
},
"torch27-cxx11-cu118-x86_64-linux": {
"hash": "sha256-727b8f5b22e4e91b956516235f26c39013a87ac6e196a0ce5f1897c2d959e69d",
"hash_type": "git_lfs_concat"
},
"torch27-cxx11-cu126-aarch64-linux": {
"hash": "sha256-bfddd19db7c9268a83e3cc5e281b007de80ab0fe611b3856ffd1691b400eca46",
"hash_type": "git_lfs_concat"
},
"torch27-cxx11-cu126-x86_64-linux": {
"hash": "sha256-940c68f5d4d8a2391b1eb3c7c5a56623428862f428aa5c6c1f7e62588c0e36fb",
"hash_type": "git_lfs_concat"
},
"torch27-cxx11-cu128-aarch64-linux": {
"hash": "sha256-781259a371b67bfbf744431c88a6ee847ab48459e73cb57264590de2728d6b3a",
"hash_type": "git_lfs_concat"
},
"torch27-cxx11-cu128-x86_64-linux": {
"hash": "sha256-8977a33d7884bebb9fb5e3d7daf157119206f0f18a22edb2b96ec593d5c81ae1",
"hash_type": "git_lfs_concat"
}
}
},
{
"repo_id": "kernels-community/quantization",
"sha": "6470f9b005797e00279eb9103463dfe0f8b7da00",

View File

@ -58,6 +58,7 @@ build-backend = "setuptools.build_meta"
[tool.kernels.dependencies]
"kernels-community/paged-attention" = ">=0.0.2"
"kernels-community/moe" = ">=0.1.1"
"kernels-community/punica-sgmv" = ">=0.0.1"
"kernels-community/quantization" = ">=0.0.3"
"kernels-community/quantization-eetq" = ">=0.0.1"
"kernels-community/rotary" = ">=0.0.1"

View File

@ -13,21 +13,20 @@ from torch.distributed import ProcessGroup
from text_generation_server.utils.log import log_master
from text_generation_server.adapters.config import AdapterConfig, ModuleMap
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.kernels import load_kernel
from text_generation_server.adapters.weights import (
AdapterBatchMetadata,
AdapterWeights,
BatchAdapterWeights,
)
from text_generation_server.utils.sgmv import (
BGMV_MAX_RANK,
MAX_RANK_CUSTOM,
get_tmp_tensors,
orient_for_rank,
pad_rank,
use_cutlass_shrink,
has_sgmv,
)
if SYSTEM == "cuda":
punica_sgmv = load_kernel(
module="punica_sgmv", repo_id="kernels-community/punica-sgmv"
)
else:
punica_sgmv = None
def get_start_stop_idxs_for_rank(offset, size, rank, world_size):
@ -129,11 +128,13 @@ class LoraWeights(AdapterWeights):
self.lora_a_r = weights_a[0].size(1) if len(weights_a) > 0 else 1
self.lora_b_r = weights_b[0].size(0) if len(weights_a) > 0 else 1
self._use_cutlass_shrink = use_cutlass_shrink(self.lora_a_r)
self._use_cutlass_shrink = punica_sgmv.use_cutlass_shrink(self.lora_a_r)
self._is_transposed = False
# [num_layers, hidden_size, r]
weights_a = [orient_for_rank(w, w.size(1)).contiguous() for w in weights_a]
weights_a = [
punica_sgmv.orient_for_rank(w, w.size(1)).contiguous() for w in weights_a
]
self._weights_a = torch.stack(weights_a)
# [num_layers, r, hidden_size]
@ -244,8 +245,12 @@ class LoraWeights(AdapterWeights):
lora_b_list[layer_id] = lora_b.transpose(0, 1) * scale
# pad lora ranks to be compatible with sgmv
lora_a_list = [pad_rank(w, dim=1, world_size=world_size) for w in lora_a_list]
lora_b_list = [pad_rank(w, dim=0, world_size=world_size) for w in lora_b_list]
lora_a_list = [
punica_sgmv.pad_rank(w, dim=1, world_size=world_size) for w in lora_a_list
]
lora_b_list = [
punica_sgmv.pad_rank(w, dim=0, world_size=world_size) for w in lora_b_list
]
if lora_a_list:
# update rank if it was padded
@ -293,7 +298,7 @@ class BatchLoraWeights(BatchAdapterWeights):
def can_vectorize(self, pg: ProcessGroup) -> bool:
return all(
rank_data.rank // pg.size() <= MAX_RANK_CUSTOM
rank_data.rank // pg.size() <= punica_sgmv.MAX_RANK_CUSTOM
for rank_data in self.rank_data.values()
)
@ -337,8 +342,8 @@ class BatchLoraWeights(BatchAdapterWeights):
)
use_sgmv = False
if prefill or max_rank > BGMV_MAX_RANK:
if has_sgmv():
if prefill or max_rank > punica_sgmv.BGMV_MAX_RANK:
if punica_sgmv is not None:
use_sgmv = True
lora_a_ptr = torch.tensor(
[
@ -425,7 +430,7 @@ class BatchLoraWeights(BatchAdapterWeights):
if use_sgmv:
lora_a_ptr_indices = lora_a_ptr[indices]
tmp_shrink, tmp_expand = get_tmp_tensors(
tmp_shrink, tmp_expand = punica_sgmv.get_tmp_tensors(
lora_a_ptr_indices.size(0), rank, device
)
segment_starts = meta.adapter_segments[indices]

View File

@ -5,14 +5,16 @@ import torch.distributed
from torch import nn
from torch.distributed import ProcessGroup
from text_generation_server.utils.sgmv import (
add_lora_a_bgmv,
add_lora_b_bgmv,
has_sgmv,
lora_a_sgmv_cutlass,
lora_b_sgmv_cutlass,
orient_for_rank,
)
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.kernels import load_kernel
if SYSTEM == "cuda":
punica_sgmv = load_kernel(
module="punica_sgmv", repo_id="kernels-community/punica-sgmv"
)
else:
punica_sgmv = None
if TYPE_CHECKING:
from text_generation_server.adapters import AdapterBatchData
@ -41,7 +43,11 @@ class LoraLinear(nn.Module):
return result
data: Optional["BatchLoraWeights"] = adapter_data.data.get(layer_type)
if has_sgmv() and data is not None and data.can_vectorize(self.process_group):
if (
punica_sgmv is not None
and data is not None
and data.can_vectorize(self.process_group)
):
# In tensor-parallel configurations, each GPU processes a specific segment of the output.
# The 'result' tensor represents the full output, which can vary in size based on
# the layer type (e.g., attention vs. feed-forward layers). We define the current
@ -68,7 +74,7 @@ class LoraLinear(nn.Module):
if data.use_sgmv:
# Use SGMV for prefill
v = lora_a_sgmv_cutlass(
v = punica_sgmv.lora_a_sgmv_cutlass(
input,
rank_segments.tmp_shrink,
lora_a_ptr,
@ -81,7 +87,7 @@ class LoraLinear(nn.Module):
if self.process_group.size() > 1:
v = self.collect_lora_a(v)
lora_b_sgmv_cutlass(
punica_sgmv.lora_b_sgmv_cutlass(
proj,
v,
rank_segments.tmp_expand,
@ -96,7 +102,7 @@ class LoraLinear(nn.Module):
(input.size(0), r), dtype=input.dtype, device=input.device
)
# TODO: error with [-1, 0], but not [0, -1]
add_lora_a_bgmv(
punica_sgmv.add_lora_a_bgmv(
v,
input,
lora_a_ptr,
@ -107,7 +113,7 @@ class LoraLinear(nn.Module):
if self.process_group.size() > 1:
v = self.collect_lora_a(v)
add_lora_b_bgmv(
punica_sgmv.add_lora_b_bgmv(
proj,
v,
lora_b_ptr,
@ -142,7 +148,7 @@ class LoraLinear(nn.Module):
lora_a = data.lora_a[adapter_index][self.layer_id, :, :]
lora_b = data.lora_b[adapter_index][self.layer_id, :, :]
lora_a = orient_for_rank(lora_a, lora_b.size(0))
lora_a = punica_sgmv.orient_for_rank(lora_a, lora_b.size(0))
a_out = input @ lora_a
if self.process_group.size() > 1:

View File

@ -1,252 +0,0 @@
# Origin: https://github.com/predibase/lorax
# Path: lorax/server/lorax_server/utils/sgmv.py
# License: Apache License Version 2.0, January 2004
import os
import warnings
from functools import lru_cache
from typing import List, Tuple
import torch
import torch.nn.functional as F
try:
import punica_kernels as _kernels
HAS_SGMV = not bool(os.environ.get("DISABLE_SGMV", ""))
except ImportError:
warnings.warn("Could not import SGMV kernel from Punica, falling back to loop.")
_kernels = None
HAS_SGMV = False
MIN_SGMV_RANK = 8
MIN_RANK_CUSTOM = 16
MAX_RANK_CUSTOM = 128
SGMV_BLOCK_SIZE = 16
BGMV_MAX_RANK = 64
def has_sgmv() -> bool:
return HAS_SGMV
def pad_rank(t: torch.Tensor, dim: int, world_size: int) -> torch.Tensor:
"""Pad a tensor to the minimum rank for SGMV and the nearest multiple of the SGMV block size."""
if not has_sgmv():
return t
# tensor parallelism will result in effective rank being divided by world_size,
# so we need to scale the min rank to offset that effect
min_rank = MIN_SGMV_RANK * world_size
# if we're at or below the min rank, pad up to the min rank
# otherwise, pad to the nearest multiple of the block size
current_rank = t.size(dim)
target_rank = (
min_rank
if current_rank <= min_rank
else (current_rank + SGMV_BLOCK_SIZE - 1) // SGMV_BLOCK_SIZE * SGMV_BLOCK_SIZE
)
if current_rank == target_rank:
return t
pad_size = target_rank - current_rank
# see complicatd pad syntax here: https://pytorch.org/docs/stable/generated/torch.nn.functional.pad.html
pad = [0, 0] * t.dim()
pad[(t.dim() - dim - 1) * 2 + 1] = pad_size
pad = tuple(pad)
return F.pad(t, pad, mode="constant", value=0.0)
def use_cutlass_shrink(lora_rank: int) -> bool:
return lora_rank < MIN_RANK_CUSTOM
def orient_for_rank(t: torch.Tensor, rank: int) -> torch.Tensor:
if MIN_RANK_CUSTOM <= rank <= MAX_RANK_CUSTOM:
return t.transpose(0, 1)
return t
# Source: https://github.com/punica-ai/punica/blob/master/src/punica/ops/__init__.py
def add_lora_sgmv_cutlass(
y: torch.Tensor,
x: torch.Tensor,
wa_ptr: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.Tensor,
s_end: torch.Tensor,
layer_idx: int,
lora_rank: int,
):
"""
Semantics:
y[s[i]:s[i+1]] += x[s[i]:s[i+1]] @ deref(wa_ptr[i]).T @ deref(wb_ptr[i])
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
x: Shape: `[B, H1]`. Input vectors.
wa_ptr: Shape: `[S]`. DType: torch.int64. Pointer to the weight matrices.\
Weight matrix shape: `[num_layers, R, H1]`.
wb_ptr: Shape: `[S]`. DType: torch.int64. Pointer to the weight matrices.\
Weight matrix shape: `[num_layers, R, H2]`.
s_start: Shape: `[S]`, DType: torch.int32. Indptr of the weight matrices start indices.
s_end: Shape: `[S]`, DType: torch.int32. Indptr of the weight matrices end indices.
layer_idx: Layer index of the weight matrices.
"""
if lora_rank < MIN_RANK_CUSTOM or lora_rank > MAX_RANK_CUSTOM:
# Custom SGMV shrink only supports rank 16, 32, 64, 128
_add_lora_sgmv_cutlass_legacy(
y, x, wa_ptr, wb_ptr, s_start, s_end, layer_idx, lora_rank
)
return
tmp1 = torch.empty((8 * 1024 * 1024,), dtype=torch.uint8, device=x.device)
tmp2_size = _kernels.sgmv_cutlass_tmp_size(wa_ptr.size(0))
tmp2 = torch.empty((tmp2_size,), dtype=torch.uint8, device=x.device)
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
_kernels.sgmv_shrink(v, x, wa_ptr, s_start, s_end, tmp1, layer_idx)
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp2, layer_idx)
def _add_lora_sgmv_cutlass_legacy(
y: torch.Tensor,
x: torch.Tensor,
wa_ptr: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
lora_rank: int,
):
tmp_size = _kernels.sgmv_cutlass_tmp_size(wa_ptr.size(0))
tmp = torch.empty((tmp_size,), dtype=torch.uint8, device=x.device)
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
_kernels.sgmv_cutlass(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp, layer_idx)
@lru_cache(maxsize=1)
def get_tmp_tensor(device: torch.device) -> torch.Tensor:
return torch.empty((8 * 1024 * 1024,), dtype=torch.uint8, device=device)
@lru_cache(maxsize=32)
def get_tmp_tensor_for_size(size: int, device: torch.device) -> torch.Tensor:
tmp_size = _kernels.sgmv_cutlass_tmp_size(size)
return torch.empty((tmp_size,), dtype=torch.uint8, device=device)
def get_tmp_tensor_for_size_no_kernels(size: int, device: torch.device) -> torch.Tensor:
return torch.empty((size,), dtype=torch.uint8, device=device)
def get_tmp_expand_size(size: int) -> int:
return _kernels.sgmv_cutlass_tmp_size(size)
def get_tmp_tensors(
nsegments: int, lora_rank: int, device: torch.device
) -> Tuple[torch.Tensor, torch.Tensor]:
use_cutlass = use_cutlass_shrink(lora_rank) and has_sgmv()
has_sgmv_available = has_sgmv()
if use_cutlass:
tmp = get_tmp_tensor_for_size(nsegments, device)
return tmp, tmp
elif has_sgmv_available:
return get_tmp_tensor(device), get_tmp_tensor_for_size(nsegments, device)
else:
tmp = get_tmp_tensor_for_size(nsegments, device)
return tmp, tmp
def lora_a_sgmv_cutlass(
x: torch.Tensor,
tmp: torch.Tensor,
wa_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
lora_rank: int,
) -> torch.Tensor:
v = torch.zeros((x.size(0), lora_rank), dtype=x.dtype, device=x.device)
if MIN_RANK_CUSTOM <= lora_rank <= MAX_RANK_CUSTOM:
_kernels.sgmv_shrink(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
else:
_kernels.sgmv_cutlass(v, x, wa_ptr, s_start, s_end, tmp, layer_idx)
return v
def lora_b_sgmv_cutlass(
y: torch.Tensor,
v: torch.Tensor,
tmp: torch.Tensor,
wb_ptr: torch.Tensor,
s_start: torch.IntTensor,
s_end: torch.IntTensor,
layer_idx: int,
):
_kernels.sgmv_cutlass(y, v, wb_ptr, s_start, s_end, tmp, layer_idx)
"""
Semantics:
y[i] += (
x[i].unsqueeze(0)
@ wa_T_all[indices[i], layer_idx, :, :].transpose(-1, -2)
@ wb_T_all[indices[i], layer_idx, :, :].transpose(-1, -2)
* scale
).squeeze(0)
Args:
y: Shape: `[B, H2]`. Output vectors. Will be changed in-place.
v: Shape: `[B, R]`. Temporary vector.
x: Shape: `[B, H1]`. Input vectors.
wa_T_all: Shape: `[None, L, R, H1]`. All of the transposed LoRA A matrices.
wb_T_all: Shape: `[None, L, H2, R]`. All of the transposed LoRA B matrices.
indicies: Shape: `[B]`. Indices of the LoRA weights.
layer_idx: Layer index of LoRA weights.
scale: Scaling factor.
"""
def add_lora_a_bgmv(
v: torch.Tensor,
x: torch.Tensor,
wa_T_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
):
_kernels.dispatch_bgmv(v, x, wa_T_all, indicies, layer_idx, 1.0)
def add_lora_b_bgmv(
y: torch.Tensor,
v: torch.Tensor,
wb_T_all: torch.Tensor,
indicies: torch.LongTensor,
layer_idx: int,
):
_kernels.dispatch_bgmv(y, v, wb_T_all, indicies, layer_idx, 1.0)
def segmented_matmul(
y: torch.Tensor,
x: torch.Tensor,
w: List[torch.Tensor],
b: List[torch.Tensor],
s_start: torch.IntTensor,
s_end: torch.IntTensor,
):
for i in range(len(w)):
if s_end[i] - s_start[i] <= 0:
continue
xi = x[s_start[i] : s_end[i]]
wi = w[i]
bi = b[i]
y[s_start[i] : s_end[i]] = F.linear(xi, wi, bi)