diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py index 5273b15d..8526d515 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma2_modeling.py @@ -42,6 +42,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) +from text_generation_server.utils.weights import UnquantizedWeight class Gemma2Config(PretrainedConfig): @@ -144,16 +145,16 @@ def _load_gqa(config, prefix: str, weights): dim=0, ) - if config.quantize not in ["gptq", "awq", "marlin"]: - weight = weight.to(dtype=weights.dtype).to(device=weights.device) + if isinstance(weight, UnquantizedWeight): + weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.head_dim num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() - assert list(weight.shape) == [ + assert list(weight.weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, - ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" + ], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear(get_linear(weight, bias=None)) diff --git a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py index 829ad427..dfe6510c 100644 --- a/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py +++ b/server/text_generation_server/models/custom_modeling/flash_gemma_modeling.py @@ -42,6 +42,7 @@ from text_generation_server.layers.rotary import PositionRotaryEmbedding from text_generation_server.layers.layernorm import ( FastRMSNorm, ) +from text_generation_server.utils.weights import UnquantizedWeight class GemmaConfig(PretrainedConfig): @@ -144,16 +145,16 @@ def _load_gqa(config, prefix: str, weights): dim=0, ) - if config.quantize not in ["gptq", "awq", "marlin"]: - weight = weight.to(dtype=weights.dtype).to(device=weights.device) + if isinstance(weight, UnquantizedWeight): + weight.weight = weight.weight.to(dtype=weights.dtype).to(device=weights.device) head_size = config.head_dim num_heads = config.num_attention_heads // weights.process_group.size() num_key_value_heads = config.num_key_value_heads // weights.process_group.size() - assert list(weight.shape) == [ + assert list(weight.weight.shape) == [ (num_heads + 2 * num_key_value_heads) * head_size, config.hidden_size, - ], f"{list(weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" + ], f"{list(weight.weight.shape)} != {[(num_heads + 2 * config.num_key_value_heads) * head_size, config.hidden_size]}" return TensorParallelColumnLinear(get_linear(weight, bias=None))