mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 11:24:53 +00:00
Enable llama4
Signed-off-by: yuanwu <yuan.wu@intel.com>
This commit is contained in:
parent
39cfe232fd
commit
3482d7ca82
@ -122,5 +122,5 @@ ENV OMPI_MCA_btl_vader_single_copy_mechanism NONE
|
||||
COPY backends/gaudi/tgi-entrypoint.sh /tgi-entrypoint.sh
|
||||
RUN chmod +x /tgi-entrypoint.sh
|
||||
|
||||
ENTRYPOINT ["/tgi-entrypoint.sh"]
|
||||
CMD ["--json-output"]
|
||||
#ENTRYPOINT ["/tgi-entrypoint.sh"]
|
||||
#CMD ["--json-output"]
|
||||
|
@ -8,7 +8,7 @@ PYTORCH_VERSION := 2.6.0
|
||||
.PHONY: image run-local-dev-container install-dependencies install-server install-router install-launcher local-dev-install
|
||||
|
||||
image:
|
||||
docker build -t tgi-gaudi -f ${root_dir}/Dockerfile_gaudi ${root_dir} --build-arg HABANA_VERSION=$(HABANA_VERSION) --build-arg PYTORCH_VERSION=$(PYTORCH_VERSION)
|
||||
docker build -t tgi-gaudi -f ${root_dir}/Dockerfile_gaudi ${root_dir} --build-arg HABANA_VERSION=$(HABANA_VERSION) --build-arg PYTORCH_VERSION=$(PYTORCH_VERSION) --build-arg http_proxy=${http_proxy} --build-arg https_proxy=${https_proxy} --build-arg no_proxy=${no_proxy}
|
||||
|
||||
run-local-dev-container:
|
||||
docker run -it \
|
||||
|
@ -57,7 +57,7 @@ def serve(
|
||||
), "MASTER_PORT must be set when sharded is True"
|
||||
|
||||
# Remove default handler
|
||||
logger.remove()
|
||||
#logger.remove()
|
||||
logger.add(
|
||||
sys.stdout,
|
||||
format="{message}",
|
||||
@ -193,7 +193,7 @@ def download_weights(
|
||||
merge_lora: bool = False,
|
||||
):
|
||||
# Remove default handler
|
||||
logger.remove()
|
||||
#logger.remove()
|
||||
logger.add(
|
||||
sys.stdout,
|
||||
format="{message}",
|
||||
|
@ -25,6 +25,7 @@ class FastLinear(torch.nn.Module):
|
||||
return cls(weight, bias)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
print(f"input.shape={input.shape}, self.weight={self.weight.shape}")
|
||||
return F.linear(input, self.weight, self.bias)
|
||||
|
||||
|
||||
|
@ -16,9 +16,9 @@ import enum
|
||||
|
||||
from text_generation_server.utils.speculate import get_speculate, set_speculate
|
||||
from text_generation_server.models.model import Model
|
||||
from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.bloom import BLOOM
|
||||
from text_generation_server.models.starcoder import StarCoder
|
||||
#from text_generation_server.models.causal_lm import CausalLM
|
||||
#from text_generation_server.models.bloom import BLOOM
|
||||
#from text_generation_server.models.starcoder import StarCoder
|
||||
from text_generation_server.models.custom_modeling.flash_phi_moe_modeling import (
|
||||
PhiMoEConfig,
|
||||
)
|
||||
@ -32,7 +32,7 @@ from text_generation_server.utils.adapter import (
|
||||
from text_generation_server.adapters.lora import LoraWeights
|
||||
|
||||
from text_generation_server.utils.log import log_master
|
||||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
||||
#from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
@ -47,7 +47,7 @@ FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
|
||||
FLASH_ATTENTION = False
|
||||
if ATTENTION == "paged":
|
||||
FLASH_ATTENTION = True
|
||||
|
||||
print(f"Flash Attention enabled models: {FLASH_ATTENTION}")
|
||||
try:
|
||||
from text_generation_server.models.flash_causal_lm import FlashCausalLM
|
||||
from text_generation_server.models.flash_vlm_causal_lm import FlashVlmCausalLM
|
||||
@ -63,6 +63,9 @@ try:
|
||||
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
|
||||
FlashLlamaForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_llama4_modeling import (
|
||||
Llama4ForConditionalGeneration,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_cohere_modeling import (
|
||||
FlashCohereForCausalLM,
|
||||
)
|
||||
@ -179,6 +182,11 @@ class ModelType(enum.Enum):
|
||||
"name": "Llama",
|
||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||
}
|
||||
LLAMA4 = {
|
||||
"type": "llama4",
|
||||
"name": "Llama4",
|
||||
"url": "https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f",
|
||||
}
|
||||
PHI3 = {
|
||||
"type": "phi3",
|
||||
"name": "Phi 3",
|
||||
@ -451,7 +459,9 @@ def get_model(
|
||||
|
||||
kv_cache_dtype = dtype
|
||||
|
||||
print(f"Model type: {model_type}")
|
||||
if FLASH_ATTENTION:
|
||||
print(f"Flash Attention enabled models: {model_type}")
|
||||
if model_type == DEEPSEEK_V2:
|
||||
head_size = max(
|
||||
config_dict.get("qk_nope_dim", 128)
|
||||
@ -589,6 +599,19 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
elif model_type == LLAMA4:
|
||||
print(f"Llama4 model detected: {model_id}")
|
||||
return FlashVlmCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=Llama4ForConditionalGeneration,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
default_dtype=torch.bfloat16,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
elif model_type == BAICHUAN:
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
@ -823,6 +846,7 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
from text_generation_server.models.causal_lm import CausalLM
|
||||
from text_generation_server.models.vlm_causal_lm import VlmCausalLM
|
||||
from text_generation_server.models.custom_modeling.mllama import (
|
||||
MllamaForConditionalGeneration,
|
||||
@ -831,12 +855,15 @@ def get_model(
|
||||
LlavaNextForConditionalGeneration,
|
||||
)
|
||||
|
||||
from optimum.habana.transformers.modeling_utils import adapt_transformers_to_gaudi
|
||||
adapt_transformers_to_gaudi()
|
||||
if SDP_ON_BF16 == 1:
|
||||
torch._C._set_math_sdp_allow_fp16_bf16_reduction(True)
|
||||
if model_type == "gpt_bigcode":
|
||||
from text_generation_server.models.starcoder import StarCoder
|
||||
return StarCoder(model_id=model_id, revision=revision, dtype=dtype)
|
||||
if model_type == "bloom":
|
||||
from text_generation_server.models.bloom import BLOOM
|
||||
return BLOOM(
|
||||
model_id=model_id,
|
||||
revision=revision,
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -34,6 +34,33 @@ IDEFICS3_FAKE_IMAGE_TOKEN = "<fake_token_around_image>"
|
||||
IDEFICS3_GLOBAL_IMG_TOKEN = "<global-img>"
|
||||
|
||||
|
||||
def prompt_split_image_llama4(aspect_ratio, num_patches_per_chunk):
|
||||
"""
|
||||
Create a structured string representation of image tokens
|
||||
|
||||
Args:
|
||||
num_patches: Number of patches in the image
|
||||
|
||||
Returns:
|
||||
String with appropriate image tokens
|
||||
"""
|
||||
img_string = "<|image_start|>"
|
||||
ratio_h, ratio_w = aspect_ratio
|
||||
if ratio_h * ratio_w > 1:
|
||||
for yy in range(ratio_h):
|
||||
for xx in range(ratio_w):
|
||||
img_string += "<|patch|>" * num_patches_per_chunk
|
||||
if xx < ratio_w - 1:
|
||||
img_string += "<|tile_x_separator|>"
|
||||
|
||||
img_string += "<|tile_y_separator|>"
|
||||
img_string += "<|image|>"
|
||||
img_string += "<|patch|>" * num_patches_per_chunk
|
||||
img_string += "<|image_end|>"
|
||||
|
||||
return img_string
|
||||
|
||||
|
||||
# copied from: https://github.com/huggingface/transformers/blob/02ed609285c2448b3b54c31e362f2c389fa952ab/src/transformers/models/idefics3/processing_idefics3.py#L44-L60
|
||||
def _prompt_split_image(
|
||||
*,
|
||||
@ -139,6 +166,23 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
|
||||
num_pads = 256
|
||||
padding = "<image_soft_token>" * num_pads
|
||||
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
|
||||
elif config.model_type == "llama4":
|
||||
patch_size = config.vision_config.patch_size
|
||||
pixel_shuffle_ratio = config.vision_config.pixel_shuffle_ratio
|
||||
downsample_ratio = int(round(1.0 / (pixel_shuffle_ratio**2)))
|
||||
aspect_ratios = image_input["aspect_ratios"][image_id]
|
||||
image_height, image_width = image_input["pixel_values"][image_id].shape[-2:]
|
||||
|
||||
num_patches_per_chunk = int(
|
||||
(image_height // patch_size)
|
||||
* (image_width // patch_size)
|
||||
// downsample_ratio
|
||||
)
|
||||
tokens_for_this_image = prompt_split_image_llama4(
|
||||
aspect_ratios, num_patches_per_chunk
|
||||
)
|
||||
|
||||
return tokens_for_this_image
|
||||
else:
|
||||
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
|
||||
|
||||
@ -257,6 +301,8 @@ class FlashVlmCausalLMBatch(FlashCausalLMBatch):
|
||||
images.append(image)
|
||||
elif config.model_type == "gemma3":
|
||||
images.append(image)
|
||||
elif config.model_type == "llama4":
|
||||
images.append(image)
|
||||
else:
|
||||
images.append([image])
|
||||
else:
|
||||
|
@ -24,25 +24,25 @@ from text_generation_server.utils.adapter import AdapterInfo
|
||||
from text_generation_server.utils.tokens import make_tokenizer_optional
|
||||
from text_generation_server.utils.prefill_chunking import set_max_prefill_tokens
|
||||
|
||||
try:
|
||||
from text_generation_server.models.pali_gemma import PaliGemmaBatch
|
||||
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
|
||||
from text_generation_server.models.vlm_causal_lm import (
|
||||
VlmCausalLMBatch,
|
||||
)
|
||||
from text_generation_server.models.flash_vlm_causal_lm import (
|
||||
FlashVlmCausalLMBatch,
|
||||
)
|
||||
#try:
|
||||
from text_generation_server.models.pali_gemma import PaliGemmaBatch
|
||||
from text_generation_server.models.mllama_causal_lm import FlashMllamaCausalLMBatch
|
||||
# from text_generation_server.models.vlm_causal_lm import (
|
||||
# VlmCausalLMBatch,
|
||||
# )
|
||||
from text_generation_server.models.flash_vlm_causal_lm import (
|
||||
FlashVlmCausalLMBatch,
|
||||
)
|
||||
|
||||
VLM_BATCH_TYPES = {
|
||||
PaliGemmaBatch,
|
||||
VlmCausalLMBatch,
|
||||
FlashVlmCausalLMBatch,
|
||||
FlashMllamaCausalLMBatch,
|
||||
}
|
||||
except (ImportError, NotImplementedError):
|
||||
VLM_BATCH_TYPES = {
|
||||
PaliGemmaBatch,
|
||||
FlashVlmCausalLMBatch,
|
||||
FlashMllamaCausalLMBatch,
|
||||
}
|
||||
#except (ImportError, NotImplementedError):
|
||||
# These imports can fail on CPU/Non flash.
|
||||
VLM_BATCH_TYPES = set()
|
||||
# print(f"importError: {ImportError}")
|
||||
# VLM_BATCH_TYPES = set()
|
||||
from text_generation_server.utils.version import (
|
||||
is_driver_compatible,
|
||||
MIN_TGI_GAUDI_SYNAPSE_VERSION,
|
||||
@ -110,6 +110,7 @@ class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
|
||||
async def Warmup(self, request, context):
|
||||
if ATTENTION == "paged":
|
||||
set_max_prefill_tokens(request.max_prefill_tokens)
|
||||
print(f"VLM_BATCH_TYPES: {VLM_BATCH_TYPES}")
|
||||
if (
|
||||
self.model.batch_type in VLM_BATCH_TYPES
|
||||
): # Hack, i would rather use kwargs in the `from_pb` call
|
||||
|
@ -1,5 +1,6 @@
|
||||
import torch
|
||||
from loguru import logger
|
||||
from text_generation_server.utils.log import log_master
|
||||
|
||||
|
||||
def get_hpu_free_memory(device, memory_fraction):
|
||||
@ -7,7 +8,7 @@ def get_hpu_free_memory(device, memory_fraction):
|
||||
|
||||
device_id = device.index
|
||||
mem_stats = memory_stats(device_id)
|
||||
logger.info(f"mem_stats: {mem_stats}")
|
||||
log_master(logger.debug, f"mem_stats: {mem_stats}")
|
||||
total_free_memory = mem_stats["Limit"] - mem_stats["MaxInUse"]
|
||||
free_memory = max(
|
||||
0, int(total_free_memory - (1 - memory_fraction) * mem_stats["Limit"])
|
||||
|
@ -1,5 +1,17 @@
|
||||
from optimum.habana.utils import get_driver_version
|
||||
from packaging.version import Version
|
||||
from packaging import version
|
||||
import subprocess
|
||||
def get_driver_version():
|
||||
"""
|
||||
Returns the driver version.
|
||||
"""
|
||||
# Enable console printing for `hl-smi` check
|
||||
output = subprocess.run(
|
||||
"hl-smi", shell=True, text=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env={"ENABLE_CONSOLE": "true"}
|
||||
)
|
||||
if output.returncode == 0 and output.stdout:
|
||||
return version.parse(output.stdout.split("\n")[2].replace(" ", "").split(":")[1][:-1].split("-")[0])
|
||||
return None
|
||||
|
||||
MIN_TGI_GAUDI_SYNAPSE_VERSION = Version("1.19.0")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user