This commit is contained in:
Mohit Sharma 2025-04-10 14:59:39 +00:00
parent 9a8d0462e1
commit 33a7ec57e2

View File

@ -3,20 +3,157 @@ from typing import List, Optional
import torch
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers import AutoTokenizer, AutoProcessor
import transformers.modeling_utils
from text_generation_server.models.flash_causal_lm import FlashCausalLM
from text_generation_server.models.vlm_causal_lm import VlmCausalLM, VlmCausalLMBatch
from text_generation_server.utils import initialize_torch_distributed
from text_generation_server.layers.attention import paged_attention, attention, Seqlen
from text_generation_server.layers.attention.kv_cache import KVScales, KVCache
from text_generation_server.models.globals import ATTENTION
from text_generation_server.models.globals import ATTENTION, BLOCK_SIZE
import torch.nn.functional as F
import numpy as np
tracer = trace.get_tracer(__name__)
# The base TP plan of these models has replicated q/k/v. This means that each process will see the full states,
# hence we should not divide the number of heads by the world size. This is a known waste of VRAM (the cache
# will be fully replicated on each process) and GPU communication (additional all-gather operations), however due
# to internal constraints it was not (yet?) possible to circumvent
REPLICATED_ATTENTION_MODELS = [
"olmo2",
"phi3",
]
def cdiv(a: int, b: int) -> int:
"""Ceiling division."""
return -(a // -b)
# Adapted from: https://github.com/vllm-project/vllm/blob/e1a2c699dda82199e88e433c144eae66f3b31878/vllm/v1/attention/backends/flash_attn.py
def make_local_attention_virtual_batches(
attn_chunk_size: int,
query_start_loc_np: np.ndarray,
seq_lens_np: np.ndarray,
block_table: torch.Tensor,
page_size: int = 0,
) -> tuple[np.ndarray, np.ndarray, np.ndarray, torch.Tensor]:
q_seqlens = query_start_loc_np[1:] - query_start_loc_np[:-1]
actual_batch_size = seq_lens_np.shape[0]
# Handle if we are starting in the middle of a local attention block,
# we assume q_seqlens > 0 (for all elements), for each batch idx we compute
# the number of tokens that are not in the first local attention block and
# then we can simply use a cdiv for the rest.
# For example if we have:
# attn_chunk_size = 4
# q_seqlens = [4, 10, 5]
# k_seqlens = [6, 17, 9]
# Then we would get:
# new_tokens_in_first_block = [2, 1, 4]
# local_blocks = [2, 4, 2]
q_tokens_in_first_block = np.minimum(
attn_chunk_size - ((seq_lens_np - q_seqlens) % attn_chunk_size), q_seqlens
).astype(np.int32)
tokens_in_last_block = attn_chunk_size + (seq_lens_np % -attn_chunk_size)
local_blocks = 1 + cdiv(q_seqlens - q_tokens_in_first_block, attn_chunk_size)
# Once we know the number of local blocks we can compute the request spans
# for each batch idx, we can figure out the number of "virtual" requests we
# have to make,
# For the above example we would get:
# seqlens_q_local = [2, 2, 1, 4, 4, 1, 4, 1]
#
# First Get batched arange. (E.g., [2, 4, 2] -> [0, 1, 0, 1, 2, 3, 0, 1])
# (TODO: max a utility to share this code with _prepare_inputs)
# arange step 1. [2, 4, 2] -> [2, 6, 8]
cu_num_blocks = np.cumsum(local_blocks)
virtual_batches = cu_num_blocks[-1]
# arange step 2. [2, 6, 8] -> [0, 0, 2, 2, 2, 2, 6, 6]
block_offsets = np.repeat(cu_num_blocks - local_blocks, local_blocks)
# arange step 3. [0, 1, 0, 1, 2, 3, 0, 1]
arange = np.arange(virtual_batches, dtype=np.int32) - block_offsets
# also compute reverse arange (i.e. [1, 0, 3, 2, 1, 0, 1, 0])
rarange = np.repeat(local_blocks, local_blocks) - arange - 1
# Then we can compute the seqlens_q_local, handling the fact that the
# first and last blocks could be partial
seqlens_q_local = np.repeat(q_seqlens - q_tokens_in_first_block, local_blocks)
# set the first block since this may be a partial block
seqlens_q_local[arange == 0] = q_tokens_in_first_block
# set the remaining blocks
seqlens_q_local[arange > 0] = np.minimum(
seqlens_q_local - attn_chunk_size * (arange - 1), attn_chunk_size
)[arange > 0]
# convert from q_seqlens to cu_seqlens_q
cu_seqlens_q_local = np.pad(np.cumsum(seqlens_q_local), (1, 0)).astype(np.int32)
# compute the seqlens_k_local,
# basically a full local attention block for all but the last block in each
# batch
# For our example this will be:
# seqlens_k_local = [4, 2, 4, 4, 4, 1, 4, 1]
seqlens_k_local = np.full(cu_num_blocks[-1], attn_chunk_size, dtype=np.int32)
seqlens_k_local[cu_num_blocks - 1] = tokens_in_last_block
if ATTENTION == "flashdecoding":
k_seqstarts_absolute = np.repeat(seq_lens_np, local_blocks) - (
rarange * attn_chunk_size + np.repeat(tokens_in_last_block, local_blocks)
)
# For the example the local attention blocks start at:
# _b0_ _____b1_____ _b2_
# k_seqstarts_absolute = [0, 4, 4, 8, 12, 16, 4, 8]
block_starts = k_seqstarts_absolute // page_size
assert attn_chunk_size % page_size == 0, (
f"attn_chunk_size {attn_chunk_size} is not "
f"divisible by page_size {page_size}"
)
pages_per_local_batch = attn_chunk_size // page_size
# Create a block_table for the local attention blocks
# For out example if we have a block-table like (assuming page_size=2):
# block_table = [
# [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], < batch 0
# [10, 11, 12, 13, 14, 15, 16, 17, 18, 19], < batch 1
# [20, 21, 22, 23, 24, 25, 26, 27, 28, 29], < batch 2
# ]
# Then for the local batches we would want a block-table like
# block_table_local = [
# [ 0, 1 ], < local-batch 0, (batch 0, starting from k[0])
# [ 2, 3 ], < local-batch 1, (batch 0, starting from k[4])
# [ 12, 13 ], < local-batch 2, (batch 1, starting from k[4])
# [ 14, 15 ], < local-batch 3, (batch 1, starting from k[8])
# [ 16, 17 ], < local-batch 4, (batch 1, starting from k[12])
# [ 18, 19 ], < local-batch 5, (batch 1, starting from k[16])
# [ 22, 23 ], < local-batch 6, (batch 2, starting from k[4])
# [ 24, 25 ], < local-batch 7, (batch 2, starting from k[8])
# ]
block_indices = np.broadcast_to(
np.arange(pages_per_local_batch, dtype=np.int32),
(virtual_batches, pages_per_local_batch),
) + np.expand_dims(block_starts, axis=1)
block_indices = block_indices.flatten().clip(max=block_table.shape[1] - 1)
batch_indices = np.repeat(
np.arange(actual_batch_size, dtype=np.int32),
local_blocks * pages_per_local_batch,
)
block_table_local = block_table[batch_indices, block_indices].view(
virtual_batches, -1
)
else:
block_table_local = block_table
return seqlens_q_local, cu_seqlens_q_local, seqlens_k_local, block_table_local
# # Qwen2VL
# transformers.models.qwen2_vl.modeling_qwen2_vl.QWEN2_VL_VISION_ATTENTION_CLASSES[
# "tgi"
# ] = transformers.models.qwen2_vl.modeling_qwen2_vl.QWEN2_VL_VISION_ATTENTION_CLASSES[
# "eager"
# ]
def tgi_flash_attention_forward(
module,
query_states: torch.Tensor,
@ -34,8 +171,14 @@ def tgi_flash_attention_forward(
softmax_scale: Optional[float] = None,
sliding_window: Optional[int] = None,
softcap: Optional[float] = None,
use_sdpa: Optional[bool] = False,
local_seqlen: Optional[Seqlen] = None,
local_block_tables: Optional[torch.Tensor] = None,
**kwargs, # This is needed to "absorb" other args passed by Transformers modeling
):
if hasattr(module, "use_rope") and module.use_rope:
seqlen = local_seqlen
block_tables = local_block_tables
kv_cache = kv_cache[module.layer_idx]
query_states = query_states.transpose(1, 2).squeeze(dim=0)
@ -50,6 +193,7 @@ def tgi_flash_attention_forward(
sliding_window = -1 if sliding_window is None else sliding_window
if cu_seqlen_prefill is not None:
if not use_sdpa:
attn_output = attention(
query=query_states,
key=key_states,
@ -62,6 +206,47 @@ def tgi_flash_attention_forward(
window_size_left=sliding_window,
softcap=softcap,
)
else:
lengths = cu_seqlen_prefill[1:] - cu_seqlen_prefill[:-1]
max_length = max(lengths)
attention_mask = attention_mask[:, :, :, :max_length]
enable_gqa = query_states.shape[1] != key_states.shape[1]
# Split tensors using vectorized split
query_list = torch.split(query_states, lengths.tolist(), dim=0)
key_list = torch.split(key_states, lengths.tolist(), dim=0)
value_list = torch.split(value_states, lengths.tolist(), dim=0)
padded_query = torch.nn.utils.rnn.pad_sequence(query_list, batch_first=True)
padded_key = torch.nn.utils.rnn.pad_sequence(key_list, batch_first=True)
padded_value = torch.nn.utils.rnn.pad_sequence(value_list, batch_first=True)
padded_query = padded_query.transpose(1, 2).contiguous()
padded_key = padded_key.transpose(1, 2).contiguous()
padded_value = padded_value.transpose(1, 2).contiguous()
# Compute attention
attn_output = F.scaled_dot_product_attention(
padded_query,
padded_key,
padded_value,
attn_mask=attention_mask,
scale=softmax_scale,
enable_gqa=enable_gqa,
)
attn_output = attn_output.transpose(
1, 2
) # [batch_size, seq_len, num_heads, head_dim]
max_seq_len = padded_query.size(2)
seq_range = torch.arange(max_seq_len, device=padded_query.device).unsqueeze(
0
)
lengths_tensor = torch.tensor(
lengths, device=padded_query.device
).unsqueeze(1)
mask = seq_range < lengths_tensor # [batch, max_seq_len]
attn_output = attn_output[mask] # [total_seq_len, num_heads, head_dim]
else:
attn_output = paged_attention(
query_states,
@ -83,20 +268,16 @@ def tgi_flash_attention_forward(
transformers.modeling_utils.ALL_ATTENTION_FUNCTIONS["tgi"] = tgi_flash_attention_forward
# The base TP plan of these models has replicated q/k/v. This means that each process will see the full states,
# hence we should not divide the number of heads by the world size. This is a known waste of VRAM (the cache
# will be fully replicated on each process) and GPU communication (additional all-gather operations), however due
# to internal constraints it was not (yet?) possible to circumvent
REPLICATED_ATTENTION_MODELS = [
"olmo2",
"phi3",
]
# TODO: implement
# tgi_cross_attention_forward
class TransformersFlashCausalLM(FlashCausalLM):
class TransformersFlashVlmCausalLM(VlmCausalLM):
def __init__(
self,
model_id: str,
model_class,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
@ -104,10 +285,15 @@ class TransformersFlashCausalLM(FlashCausalLM):
default_dtype=torch.float16,
trust_remote_code: bool = False,
tokenizer_class=AutoTokenizer,
processor_class=AutoProcessor,
processor_kwargs=None,
kv_cache_dtype: Optional[torch.dtype] = None,
batch_class=VlmCausalLMBatch,
):
self.batch_class = batch_class
self.quantize = quantize
self.process_group, rank, world_size = initialize_torch_distributed()
self.dtype = dtype
if speculator:
raise RuntimeError("Speculator decoding is not enabled for AutoModel")
@ -131,18 +317,40 @@ class TransformersFlashCausalLM(FlashCausalLM):
trust_remote_code=trust_remote_code,
)
model = AutoModelForCausalLM.from_pretrained(
if processor_kwargs is None:
processor_kwargs = {}
self.processor = processor_class.from_pretrained(
model_id,
revision=revision,
trust_remote_code=trust_remote_code,
**processor_kwargs,
)
attn_implementation = {
"text_config": "tgi",
"vision_config": "sdpa",
}
model = model_class.from_pretrained(
model_id,
revision=revision,
torch_dtype=dtype,
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
attn_implementation="tgi",
attn_implementation=attn_implementation,
device_map=device if world_size == 1 else None,
tp_plan="auto" if world_size > 1 else None,
)
torch.distributed.barrier(group=self.process_group)
self.config = model.config
config = model.config
# VLM models define the config we care about in their text_config
text_config = getattr(model.config, "text_config", None)
if text_config is not None:
config = text_config
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
@ -156,20 +364,18 @@ class TransformersFlashCausalLM(FlashCausalLM):
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
self.num_layers = model.config.num_hidden_layers
self.num_heads = model.config.num_attention_heads
self.num_kv_heads = model.config.num_key_value_heads
self.num_layers = config.num_hidden_layers
self.num_heads = config.num_attention_heads
self.num_kv_heads = config.num_key_value_heads
# Some models use GQA and different sizes for o_proj
# and q_proj, that allows for that.
if hasattr(model.config, "head_dim"):
self.head_size = model.config.head_dim
if hasattr(config, "head_dim"):
self.head_size = config.head_dim
else:
self.head_size = (
model.config.hidden_size // model.config.num_attention_heads
)
self.head_size = config.hidden_size // config.num_attention_heads
# Skip it for models in the exception list
if model.config.model_type not in REPLICATED_ATTENTION_MODELS:
if config.model_type not in REPLICATED_ATTENTION_MODELS:
self.num_heads = self.num_heads // self.process_group.size()
self.num_kv_heads = (
self.num_kv_heads // self.process_group.size()
@ -227,26 +433,47 @@ class TransformersFlashCausalLM(FlashCausalLM):
# We first copy the original model.forward because we still need it in the monkey patch
self.model.original_forward = self.model.forward
self.model.forward = self._model_forward
self.model.get_position_ids = self.get_position_ids
torch.distributed.barrier(group=self.process_group)
def get_position_ids(self, input_ids, image_grid_thw, position_ids):
return position_ids
def pre_process_inputs(self, **kwargs):
input_ids = kwargs["input_ids"]
position_ids = kwargs["position_ids"]
return {
"input_ids": input_ids.unsqueeze(0),
"position_ids": position_ids.unsqueeze(0),
}
def post_process_outputs(self, logits, lm_head_indices):
return logits.squeeze(dim=0)
@classmethod
def fallback(
cls,
model_id: str,
model_class,
revision: Optional[str] = None,
quantize: Optional[str] = None,
speculator: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
batch_class: Optional[type] = VlmCausalLMBatch,
processor_kwargs: Optional[dict] = None,
):
return cls(
model_id=model_id,
model_class=model_class,
revision=revision,
quantize=quantize,
speculator=speculator,
dtype=dtype,
trust_remote_code=trust_remote_code,
batch_class=batch_class,
processor_kwargs=processor_kwargs,
)
def _model_forward(
@ -262,14 +489,33 @@ class TransformersFlashCausalLM(FlashCausalLM):
lm_head_indices: Optional[torch.Tensor],
prefill_cache_indices=None, # not used, but passed to match original signature
adapter_data=None, # not supported, but passed to match original signature
pixel_values: torch.FloatTensor = None,
image_grid_thw: Optional[torch.LongTensor] = None,
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
):
# A value of `None` (i.e. no logit slicing) translates to `0` in Transformers
logits_to_keep = lm_head_indices if lm_head_indices is not None else 0
inputs = self.pre_process_inputs(
input_ids=input_ids,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
seqlen=seqlen,
block_tables=block_tables,
)
if cu_seqlen_prefill is not None:
from loguru import logger
logger.info(
f"input_ids: {input_ids.shape}, position_ids:{inputs.get('local_seqlen', None)}"
)
# This is equivalent to `self.model.forward`, see the monkey patch in __init__
logits = self.model.original_forward(
input_ids=input_ids.unsqueeze(0), # expand dim to fit Transformers
position_ids=position_ids.unsqueeze(0), # expand dim to fit Transformers
input_ids=inputs["input_ids"],
position_ids=inputs["position_ids"],
past_key_values=None, # we use self.kv_cache instead of transformers cache object
use_cache=False, # we use self.kv_cache instead of transformers cache object
logits_to_keep=logits_to_keep,
@ -282,6 +528,227 @@ class TransformersFlashCausalLM(FlashCausalLM):
max_s=max_s,
kv_head_mapping=self.kv_head_mapping,
kv_scales=self.kv_scales,
).logits.squeeze(dim=0)
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
image_sizes=image_sizes,
image_grid_thw=image_grid_thw,
attention_mask=inputs.get("attention_mask", None),
use_sdpa=inputs.get("use_sdpa", False),
cache_position=inputs.get("cache_position", None),
local_seqlen=inputs.get("local_seqlen", None),
local_block_tables=inputs.get("local_block_tables", None),
).logits
logits = self.post_process_outputs(logits, lm_head_indices)
return logits, None
class TransformersQwen2VlmCausalLM(TransformersFlashVlmCausalLM):
def get_position_ids(self, input_ids: torch.Tensor, image_grid_thw: torch.Tensor):
if image_grid_thw is None:
return (
torch.arange(input_ids.shape[0], device=input_ids.device)
.unsqueeze(1)
.repeat(1, 3)
)
spatial_merge_size = self.config.vision_config.spatial_merge_size
vision_start_token_id = self.config.vision_start_token_id
vision_end_token_id = self.config.vision_end_token_id
device = input_ids.device
dtype = input_ids.dtype
input_ids_len = input_ids.shape[0]
vision_starts = torch.where(input_ids == vision_start_token_id)[0]
vision_ends = torch.where(input_ids == vision_end_token_id)[0]
vision_segments = torch.stack((vision_starts, vision_ends), dim=1)
prev_vision_end = torch.cat(
[torch.zeros(1, device=vision_ends.device, dtype=dtype), vision_ends[:-1]]
)
text_lengths_between_vision = vision_segments[:, 0] - prev_vision_end + 1
vision_widths_max = torch.cat(
[
torch.zeros(1, device=image_grid_thw.device, dtype=dtype),
image_grid_thw[:-1, 2] // spatial_merge_size,
]
)
vision_segment_lengths = vision_widths_max + text_lengths_between_vision
vision_segment_lengths = vision_segment_lengths.cumsum(dim=0)
text_segment_lengths = vision_segment_lengths - text_lengths_between_vision
# create position ids for each vision segment based on the image grid
llm_pos_ids_list = []
for i, _ in enumerate(vision_segments):
t, h, w = (
image_grid_thw[i][0],
image_grid_thw[i][1] // spatial_merge_size,
image_grid_thw[i][2] // spatial_merge_size,
)
t_indices = torch.arange(t, device=device).repeat_interleave(h * w)
h_indices = torch.arange(h, device=device).repeat_interleave(w).repeat(t)
w_indices = torch.arange(w, device=device).repeat(t * h)
image_position_ids = torch.stack([t_indices, h_indices, w_indices], dim=0)
# offset by the position of the last vision segment
im = image_position_ids + vision_segment_lengths[i]
llm_pos_ids_list.append(im)
# create position ids for each text segment
text_ranges = [
torch.arange(seq_len, device=device).view(1, -1).expand(3, -1)
+ text_segment_lengths[i]
for i, seq_len in enumerate(text_lengths_between_vision)
]
full_llm_pos_ids_list = [
item for sublist in zip(text_ranges, llm_pos_ids_list) for item in sublist
]
# import ipdb
# ipdb.set_trace()
max_s = full_llm_pos_ids_list[-1].max() + 1
final_text_len = input_ids_len - vision_ends[-1]
if final_text_len > 0:
m = torch.arange(final_text_len, device=device).view(1, -1).expand(3, -1)
full_llm_pos_ids_list.append(m + max_s)
position_ids = (
torch.cat(full_llm_pos_ids_list, dim=1).reshape(3, -1).transpose(0, 1)
)
return position_ids
def post_process_outputs(self, logits, lm_head_indices):
return logits.squeeze(dim=0)[lm_head_indices].unsqueeze(0)
def pre_process_inputs(self, **kwargs):
input_ids = kwargs["input_ids"]
position_ids = kwargs["position_ids"]
input_ids = input_ids.unsqueeze(0)
position_ids = position_ids.transpose(0, 1).unsqueeze(1)
return {"input_ids": input_ids, "position_ids": position_ids}
class TransformersGemma3VlmCausalLM(TransformersFlashVlmCausalLM):
def get_attention_mask(self, input_ids, cu_seqlen_prefill):
device = input_ids.device
dtype = self.dtype
min_dtype = torch.finfo(dtype).min
lengths = (cu_seqlen_prefill[1:] - cu_seqlen_prefill[:-1]).tolist()
batch_size = len(lengths)
sequence_length = max(lengths)
target_length = sequence_length
# Create the padding mask from the computed lengths.
# pad_mask: [batch, sequence_length] where True indicates valid tokens.
seq_range = torch.arange(sequence_length, device=device).unsqueeze(0)
lengths_tensor = torch.tensor(lengths, device=device).unsqueeze(1)
pad_mask = seq_range < lengths_tensor # shape: [batch, sequence_length]
# Build the base causal mask (for non-image tokens):
causal_mask = torch.tril(
torch.ones(
(sequence_length, sequence_length), dtype=torch.bool, device=device
)
)
base_mask = pad_mask.unsqueeze(2) & pad_mask.unsqueeze(
1
) # [batch, sequence_length, sequence_length]
base_mask = base_mask & causal_mask.unsqueeze(0) # apply causal constraint
image_token_mask = (input_ids == self.config.image_token_index).to(
input_ids.device
)
image_token_mask = torch.nn.utils.rnn.pad_sequence(
torch.split(image_token_mask, lengths), batch_first=True, padding_value=0
)
bidirectional_mask = image_token_mask.unsqueeze(2) & image_token_mask.unsqueeze(
1
)
# Combine the causal base mask and the bidirectional mask.
combined_mask = torch.logical_or(
base_mask.unsqueeze(1), bidirectional_mask.unsqueeze(1)
).to(device)
# combined_mask now has shape [batch, 1, sequence_length, sequence_length]
full_attention_mask = torch.zeros(
(batch_size, 1, sequence_length, target_length),
device=device,
dtype=torch.bool,
)
full_attention_mask[:, :, :, :sequence_length] = combined_mask
final_attention_mask = torch.where(full_attention_mask, 0, min_dtype).to(device)
return final_attention_mask
def pre_process_inputs(self, **kwargs):
input_ids = kwargs["input_ids"]
position_ids = kwargs["position_ids"]
cu_seqlen_prefill = kwargs["cu_seqlen_prefill"]
inputs = {
"input_ids": input_ids.unsqueeze(0),
"position_ids": position_ids.unsqueeze(0),
}
if cu_seqlen_prefill is not None:
attention_mask = self.get_attention_mask(
input_ids.squeeze(0), cu_seqlen_prefill
)
inputs["attention_mask"] = attention_mask
inputs["use_sdpa"] = True
return inputs
class TransformersLlama4VlmCausalLM(TransformersFlashVlmCausalLM):
def pre_process_inputs(self, **kwargs):
input_ids = kwargs["input_ids"]
position_ids = kwargs["position_ids"]
seqlen = kwargs["seqlen"]
block_tables = kwargs["block_tables"]
inputs = super().pre_process_inputs(**kwargs)
inputs["cache_position"] = position_ids
inputs["attention_mask"] = torch.zeros((1, 1, 1, 1), device=input_ids.device)
# from loguru import logger
# logger.info(f"input_ids: {input_ids.shape}, position_ids: {position_ids.shape}")
cu_seqlen_k = seqlen.cu_seqlen_k
cu_seqlen_q = seqlen.cu_seqlen_q
seq_lens_np = cu_seqlen_k[1:] - cu_seqlen_k[:-1]
(
seqlens_q_local_np,
virt_q_cu_seqlens_np,
virt_k_seqlens_np,
virt_block_table,
) = make_local_attention_virtual_batches(
self.model.config.text_config.attention_chunk_size,
cu_seqlen_q.cpu().numpy(),
seq_lens_np.cpu().numpy(),
block_tables,
BLOCK_SIZE,
)
local_seqlen = Seqlen(
input_lengths=torch.from_numpy(virt_k_seqlens_np).to(
input_ids.device, non_blocking=True
),
cache_lengths=torch.zeros(virt_k_seqlens_np.shape).to(
input_ids.device, non_blocking=True
),
cu_seqlen_q=torch.from_numpy(virt_q_cu_seqlens_np).to(
input_ids.device, non_blocking=True
),
max_q=int(seqlens_q_local_np.max()),
max_k=int(virt_k_seqlens_np.max()),
)
inputs["local_seqlen"] = local_seqlen
inputs["local_block_tables"] = virt_block_table
return inputs