Add grammar support (#140)

Co-authored-by: Karol Damaszke <kdamaszke@habana.ai>
This commit is contained in:
Karol Damaszke 2024-05-20 11:16:34 +02:00 committed by GitHub
parent 16f9ff8965
commit 32acdd55b4
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 285 additions and 12 deletions

View File

@ -17,4 +17,4 @@ def default_pb_parameters():
@pytest.fixture
def default_pb_stop_parameters():
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)
return generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10)

View File

@ -0,0 +1,245 @@
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company.
import json
import pytest
import torch
from copy import copy
from text_generation_server.pb import generate_pb2
from text_generation_server.models import get_model
from text_generation_server.models.causal_lm import (
CausalLMBatch,
PAD_SEQUENCE_TO_MULTIPLE_OF,
)
PAD_TOKEN=0
@pytest.fixture
def default_pb_grammar_parameters():
grammar_schema = {
"properties": {
"activity": {
"type": "string"
},
"animals": {
"items": {
"type":"string"
},
"type": "array"
}
},
"required": ["activity", "animals"]
}
return generate_pb2.NextTokenChooserParameters(
temperature=1.0,
repetition_penalty=1.3,
top_k=0,
top_p=1.0,
typical_p=1.0,
do_sample=False,
grammar_type=generate_pb2.GrammarType.GRAMMAR_TYPE_JSON,
grammar=json.dumps(grammar_schema).encode('utf-8'),
)
@pytest.fixture(scope="session")
def default_grammar_response():
return [
29912, 376, 29874, 312, 2068, 1115, 29871, 13, 29908, 29890,
638, 292, 613, 259, 376, 273, 3039, 29879, 1115,518, 1678,
376, 26169, 3284, 4117, 3284, 336, 617, 6150, 3108, 500, 2
]
@pytest.fixture(scope="session")
def default_causal_lm():
return get_model("meta-llama/Llama-2-7b-hf", None, None, None, None)
@pytest.fixture(scope="session")
def default_tokenizer(default_causal_lm):
default_causal_lm.tokenizer.pad_token_id = PAD_TOKEN
return default_causal_lm.tokenizer
@pytest.fixture
def default_pb_request(default_pb_parameters):
return generate_pb2.Request(
id=0,
inputs="Test",
prefill_logprobs=True,
truncate=PAD_SEQUENCE_TO_MULTIPLE_OF,
parameters=default_pb_parameters,
stopping_parameters=generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=10),
)
@pytest.fixture
def default_pb_grammar_request(default_pb_grammar_parameters):
return generate_pb2.Request(
id=1,
inputs=f"Please use the following JSON schema to generate the output: I saw a puppy a cat and a raccoon during my bike ride in the park",
prefill_logprobs=True,
truncate=PAD_SEQUENCE_TO_MULTIPLE_OF,
parameters=default_pb_grammar_parameters,
stopping_parameters=generate_pb2.StoppingCriteriaParameters(stop_sequences=[], max_new_tokens=50),
)
@pytest.fixture
def default_pb_batch(default_pb_request):
return generate_pb2.Batch(id=0, requests=[default_pb_request], size=1)
@pytest.fixture
def default_pb_grammar_batch(default_pb_grammar_request):
return generate_pb2.Batch(id=1, requests=[default_pb_grammar_request], size=1)
@pytest.fixture
def default_causal_lm_batch(default_pb_batch, default_tokenizer):
return CausalLMBatch.from_pb(
default_pb_batch, default_tokenizer, torch.float32, torch.device("hpu")
)
@pytest.fixture
def default_causal_lm_grammar_batch(default_pb_grammar_batch, default_tokenizer):
return CausalLMBatch.from_pb(
default_pb_grammar_batch, default_tokenizer, torch.float32, torch.device("hpu")
)
@pytest.fixture
def default_two_causal_lm_grammar_batches(default_pb_grammar_request, default_tokenizer):
req_0 = default_pb_grammar_request
req_0.id = 0
req_1 = copy(default_pb_grammar_request)
req_1.id = 1
batch_0 = generate_pb2.Batch(id=0, requests=[req_0], size=1)
batch_1 = generate_pb2.Batch(id=1, requests=[req_1], size=1)
return [
CausalLMBatch.from_pb(
b, default_tokenizer, torch.float32, torch.device("hpu")
) for b in [batch_0, batch_1]
]
def test_single_grammar_batch(
default_causal_lm, default_causal_lm_grammar_batch, default_grammar_response
):
counter = 0
batch = default_causal_lm_grammar_batch
# prefill request
generations, next_batch, _ = default_causal_lm.generate_token([batch])
# generate untill done
while next_batch is not None:
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1
print(generations[0].generated_text.text)
def test_multi_grammar_batches(
default_causal_lm, default_two_causal_lm_grammar_batches, default_grammar_response
):
counter_0, counter_1 = 0, 0
batch_0, batch_1 = default_two_causal_lm_grammar_batches
# prefill first request
generations, next_batch, _ = default_causal_lm.generate_token([batch_0])
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter_0]
counter_0 += 1
# prefill second request
generations, next_batch_1, _ = default_causal_lm.generate_token([batch_1])
# concatenate and generate
generations, next_batch, _ = default_causal_lm.generate_token([next_batch, next_batch_1])
assert len(generations) == 2
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter_0]
assert generations[1].tokens.token_ids[0] == default_grammar_response[counter_1]
counter_0 += 1
counter_1 += 1
# generate untill first request is done
while generations[0].generated_text is None:
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 2
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter_0]
assert generations[1].tokens.token_ids[0] == default_grammar_response[counter_1]
counter_0 += 1
counter_1 += 1
# filter finished request
response = generations[0].generated_text.text
next_batch = next_batch.filter([next_batch.requests[1].data.id])
# generate last tokens for second request
while next_batch is not None:
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter_1]
counter_1 += 1
assert response == generations[0].generated_text.text
def test_grammar_and_causal_batch(
default_causal_lm, default_causal_lm_grammar_batch, default_causal_lm_batch, default_grammar_response
):
counter = 0
generations, next_batch, _ = default_causal_lm.generate_token([default_causal_lm_grammar_batch])
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1
# prefill second request
generations, next_batch_1, _ = default_causal_lm.generate_token([default_causal_lm_batch])
# concatenate and generate
generations, next_batch, _ = default_causal_lm.generate_token([next_batch, next_batch_1])
assert len(generations) == 2
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1
# generate untill second request is done
for _ in range(
next_batch.requests[1].stopping_criteria.max_new_tokens - 1
):
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 2
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1
# filter finished request
assert len(generations) == 2
assert (
generations[1].request_id == next_batch.requests[1].data.id
)
assert (
generations[1].generated_text.generated_tokens == next_batch.requests[1].stopping_criteria.max_new_tokens
)
assert generations[1].generated_text.text == "ing the effect of a new method for the detection"
next_batch = next_batch.filter([next_batch.requests[0].data.id])
# generate untill done
while next_batch is not None:
generations, next_batch, _ = default_causal_lm.generate_token([next_batch])
assert len(generations) == 1
assert generations[0].tokens.token_ids[0] == default_grammar_response[counter]
counter += 1

View File

@ -358,7 +358,7 @@ class CausalLMBatch(Batch):
moves_needed = [total_requests - len(b) if b.batch_size == new_bs else total_requests for b in batches]
dst_batch_idx = min(enumerate(moves_needed), key=lambda idx_val: idx_val[1])[0]
reshape = (batches[dst_batch_idx].batch_size != new_bs)
reshape = (batches[dst_batch_idx].batch_size < new_bs)
# TODO: Add support for changing max seq len, i.e. due to output length bucketing
# FIXME: max_seq_len for non optimized code
@ -397,16 +397,23 @@ class CausalLMBatch(Batch):
top_n_tokens_tensor = torch.tensor(top_n_tokens, device=device, dtype=torch.int64)
parameters = [r.data.parameters for r in flat_requests]
if len(flat_requests) < new_bs:
for i in range(new_bs-len(flat_requests)) :
# append the dummy parameters for dummy request
parameters.append(parameters[0])
# append the dummy parameters for dummy requests
batch_size = batches[dst_batch_idx].batch_size
parameters.extend(
[generate_pb2.NextTokenChooserParameters()] * (batch_size - len(flat_requests))
)
fsm_grammar_states = [0] * batch_size
for batch in batches:
for i, req in enumerate(batch.requests):
fsm_grammar_states[req.idx] = batch.next_token_chooser.fsm_grammar_states[i]
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
parameters,
batches[dst_batch_idx].next_token_chooser.dtype,
batches[dst_batch_idx].next_token_chooser.device,
batches[dst_batch_idx].next_token_chooser.tokenizer,
fsm_grammar_states,
quantization_enabled=hq_env.is_quantization_enabled,
)
@ -454,12 +461,13 @@ class CausalLMBatch(Batch):
# this means that we cannot shift inputs to the left after a long input sequence
# was filtered out
new_bs = round_up(len(requests), PREFILL_BATCH_BUCKET_SIZE)
dummy_inputs = ["?"] * (new_bs - len(requests))
missing_inputs = new_bs - len(requests)
dummy_inputs = ["?"] * missing_inputs
parameters = [r.parameters for r in pb.requests]
if len(pb.requests) < new_bs:
for i in range(new_bs-len(pb.requests)) :
#append the dummy parameters for dummy request
parameters.append(parameters[0])
# append the dummy parameters for dummy request
parameters.extend(
[generate_pb2.NextTokenChooserParameters()] * missing_inputs
)
next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
pb=parameters,
@ -889,6 +897,7 @@ class CausalLM(Model):
'top_n_tokens': batch.top_n_tokens[req_idx],
'top_token_ids': batch_top_token_ids[req_idx],
'top_token_logprobs': batch_top_token_logprobs[req_idx],
'grammar_state': batch.next_token_chooser.fsm_grammar_states[req.idx],
})
htorch.core.mark_step()
@ -986,6 +995,7 @@ class CausalLM(Model):
top_n_tokens = req_data['top_n_tokens']
top_token_ids = req_data['top_token_ids']
top_token_logprobs = req_data['top_token_logprobs']
grammar_state = req_data['grammar_state']
# Append next token to all tokens
all_input_ids[input_length] = next_token_id
@ -1087,6 +1097,12 @@ class CausalLM(Model):
generations.append(generation)
batch.next_token_chooser = (
batch.next_token_chooser.advance_grammar_single_with_past_state(
req.idx, next_token_id, grammar_state
)
)
req.all_input_ids = all_input_ids
req.input_length = new_input_length
req.prefix_offset = prefix_offset

View File

@ -542,7 +542,7 @@ class HeterogeneousGrammarLogitProcessor(LogitsProcessor):
mask = torch.full_like(logits, -math.inf)
for i in range(logits.shape[0]):
fsm = self.fsms[i]
if fsm_grammar_states[i] == -1 or fsm is None:
if fsm is None:
continue
allowed_tokens = fsm.allowed_token_ids(fsm_grammar_states[i])
mask[i, allowed_tokens] = 0

View File

@ -418,6 +418,18 @@ class HeterogeneousNextTokenChooser:
)
return self
def advance_grammar_single_with_past_state(
self, grammar_state_index: int, next_id: torch.Tensor, past_state: int
):
if self.grammar_processor is not None:
next_id = next_id.item()
self.fsm_grammar_states[grammar_state_index] = (
self.grammar_processor.advance_at_index(
next_id, past_state, grammar_state_index,
)
)
return self
def filter(self, indices):
if self.watermark_processor is not None:
self.watermark_processor = self.watermark_processor.filter(indices)