Chunked Prefill VLM (#3188)

* add logic

* working

* add encoder cache free

* fixes

* fix idefics

* update pixel_values

* add improvements

* add improvements

* improve

* nit

* fix inputs_embeds

* nit

* optimizations

* add prometheus port

* rename vars

* rename vars

* nit

* disable chunking for qwen

* review comments

* remove port

* improve headdim

* remove kwargs and redundant args

* fix qwen2_5

* fix config image_token_id error

* fix test

* update paligemma

* fix paligemma text

* minor fix

* fix qwen test

* fix qwen test
This commit is contained in:
Mohit Sharma 2025-05-06 21:31:59 +05:30 committed by GitHub
parent 533eee50dc
commit 329f612e55
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 1111 additions and 512 deletions

View File

@ -128,9 +128,6 @@ try:
from text_generation_server.models.custom_modeling.flash_neox_modeling import (
FlashGPTNeoXForCausalLM,
)
from text_generation_server.models.pali_gemma import (
PaliGemmaBatch,
)
from text_generation_server.models.custom_modeling.flash_pali_gemma_modeling import (
PaliGemmaForConditionalGeneration,
)
@ -1196,6 +1193,7 @@ def get_model(
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
support_chunking=False,
)
elif FLASH_TRANSFORMERS_BACKEND:
from transformers import Gemma3ForConditionalGeneration as Gemma3Model
@ -1208,6 +1206,7 @@ def get_model(
speculator=speculator,
dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
support_chunking=False,
)
elif sharded:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma3"))
@ -1523,6 +1522,8 @@ def get_model(
kv_cache_dtype=kv_cache_dtype,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
# TODO: Fix bug in rust image_text_replacement implementation
support_chunking=False,
)
# TODO: Uncomment when transformers is refactored
# elif FLASH_TRANSFORMERS_BACKEND:
@ -1554,6 +1555,8 @@ def get_model(
lora_adapter_ids=lora_adapter_ids,
config_class=Qwen2_5_VLConfig,
processor_class=Qwen2_5_VLProcessor,
# TODO: Fix bug in rust image_text_replacement implementation
support_chunking=False,
)
# TODO: Uncomment when transformers is refactored
# elif FLASH_TRANSFORMERS_BACKEND:
@ -1583,6 +1586,7 @@ def get_model(
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
support_chunking=False,
)
# TODO: Uncomment when transformers is refactored and cross attn is added
# elif FLASH_TRANSFORMERS_BACKEND:
@ -1676,7 +1680,6 @@ def get_model(
default_dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
lora_adapter_ids=lora_adapter_ids,
batch_class=PaliGemmaBatch,
)
elif FLASH_TRANSFORMERS_BACKEND:
from transformers import PaliGemmaForConditionalGeneration as PaliGemmaModel
@ -1689,7 +1692,6 @@ def get_model(
speculator=speculator,
dtype=torch.bfloat16,
trust_remote_code=trust_remote_code,
batch_class=PaliGemmaBatch,
)
else:
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("PaliGemma"))

View File

@ -700,6 +700,7 @@ class Gemma3ForConditionalGeneration(nn.Module):
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
self.dtype = weights.dtype
def get_attention_mask(
self,
@ -762,9 +763,42 @@ class Gemma3ForConditionalGeneration(nn.Module):
else:
return torch.where(full_attention_mask, 0, min_dtype).to(device)
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
pixel_values = pixel_values.to(dtype=self.dtype)
image_outputs = self.vision_model(pixel_values)
vision_outputs = self.post_vision_model_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multimodal_projector(vision_outputs)
image_features = image_features.view(-1, image_features.shape[-1])
return image_features
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# Replace the image token embeddings with the vision features
image_token_mask = (input_ids == self.config.image_token_index).to(
input_ids.device
)
inputs_embeds[image_token_mask] = vision_embeds.view(
-1, vision_embeds.shape[-1]
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -777,35 +811,12 @@ class Gemma3ForConditionalGeneration(nn.Module):
pixel_values: torch.FloatTensor = None,
# Unused here
attention_mask: Optional[torch.BoolTensor] = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.text_model.embed_tokens(input_ids)
if cu_seqlen_prefill is not None:
max_s += 1
position_ids += 1
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
image_outputs = self.vision_model(pixel_values)
vision_outputs = self.post_vision_model_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multimodal_projector(vision_outputs)
image_token_mask = (input_ids == self.config.image_token_index).to(
input_ids.device
)
inputs_embeds[image_token_mask] = image_features.view(
-1, image_features.shape[-1]
)
attention_mask = self.get_attention_mask(
input_ids,
cu_seqlen_prefill,
inputs_embeds.dtype,
)
# Use flash attention for text-only input
# else:
# if cu_seqlen_prefill is not None:

View File

@ -116,11 +116,10 @@ class MistralAttention(torch.nn.Module):
)
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
if hasattr(config, "head_dim"):
if getattr(config, "head_dim", None) is not None:
self.head_size = config.head_dim
else:
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,

View File

@ -62,10 +62,40 @@ class PaliGemmaForConditionalGeneration(nn.Module):
self.pad_token_id = (
config.pad_token_id if config.pad_token_id is not None else -1
)
self.dtype = weights.dtype
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
pixel_values = pixel_values.to(dtype=self.dtype)
image_outputs = self.vision_tower(pixel_values)
last_hidden_state = self.post_vision_tower_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multi_modal_projector(last_hidden_state)
image_features = image_features.view(-1, image_features.shape[-1])
return image_features
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
mask = input_ids == self.config.image_token_index
inputs_embeds[mask] = vision_embeds
return inputs_embeds
def forward(
self,
input_ids: torch.Tensor,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -75,33 +105,15 @@ class PaliGemmaForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor] = None,
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
# Unused here
pixel_attention_mask: Optional[torch.BoolTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
inputs_embeds = self.text_model.embed_tokens(input_ids)
# TODO This is odd but apparently pali gemma position ids start at 1.
if cu_seqlen_prefill is not None:
max_s += 1
position_ids += 1
if pixel_values is not None:
pixel_values = pixel_values.to(dtype=inputs_embeds.dtype)
image_outputs = self.vision_tower(pixel_values)
last_hidden_state = self.post_vision_tower_layernorm(
image_outputs.last_hidden_state
)
image_features = self.multi_modal_projector(last_hidden_state)
# mask where image or padding tokens
mask = input_ids == self.config.image_token_index
# insert image features into input embeddings
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -733,9 +733,93 @@ class Idefics2ForConditionalGeneration(nn.Module):
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
assert pixel_values is not None
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
return image_hidden_states.view(-1, image_hidden_states.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -745,82 +829,10 @@ class Idefics2ForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
# Unused here
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None:
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(
dtype=self.dtype
) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
attention_mask=patch_attention_mask.view(pixel_values.size(0), -1),
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_hidden_states
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -476,9 +476,92 @@ class Idefics3ForConditionalGeneration(nn.Module):
inputs_embeds[mask] = image_features.view(-1, image_features.shape[-1])
return inputs_embeds
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(dtype=self.dtype) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
return image_hidden_states.view(-1, image_hidden_states.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -488,83 +571,11 @@ class Idefics3ForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
pixel_attention_mask: Optional[torch.BoolTensor] = None,
# Unused here
image_sizes: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
image_indices=None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None:
batch_size, num_images, num_channels, height, width = pixel_values.shape
all_states = []
all_pixel_values = pixel_values
all_pixel_mask = pixel_attention_mask
for i in range(batch_size):
pixel_values = all_pixel_values.to(
dtype=self.dtype
) # fp16 compatibility
pixel_values = pixel_values[i : i + 1]
pixel_values = pixel_values.view(num_images, *pixel_values.shape[2:])
# Remove padding images - padding images are full 0.
nb_values_per_image = pixel_values.shape[1:].numel()
real_images_inds = (pixel_values == 0.0).sum(
dim=(-1, -2, -3)
) != nb_values_per_image
pixel_values = pixel_values[real_images_inds].contiguous()
# Handle the vision attention mask
if pixel_attention_mask is None:
pixel_attention_mask = torch.ones(
size=(
pixel_values.size(0),
pixel_values.size(2),
pixel_values.size(3),
),
dtype=torch.bool,
device=pixel_values.device,
)
else:
# Remove padding images from the mask/pP p
pixel_attention_mask = all_pixel_mask[i : i + 1]
pixel_attention_mask = pixel_attention_mask.view(
1 * num_images, *pixel_attention_mask.shape[2:]
)
pixel_attention_mask = pixel_attention_mask[
real_images_inds
].contiguous()
patch_size = self.config.vision_config.patch_size
patches_subgrid = pixel_attention_mask.unfold(
dimension=1, size=patch_size, step=patch_size
)
patches_subgrid = patches_subgrid.unfold(
dimension=2, size=patch_size, step=patch_size
)
patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
# Get sequence from the vision encoder
image_hidden_states = self.vision_model(
pixel_values=pixel_values,
patch_attention_mask=patch_attention_mask,
)
# Modality projection & resampling
image_hidden_states = self.connector(
image_hidden_states,
)
all_states.append(image_hidden_states)
image_hidden_states = torch.stack(all_states, dim=0)
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_hidden_states
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -163,9 +163,114 @@ class LlavaNextForConditionalGeneration(nn.Module):
)
return inputs_embeds
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
# num_special_image_tokens = (input_ids == self.config.image_token_index).sum()
# assert num_special_image_tokens == len(pixel_values), f"Received {num_special_image_tokens} for {len(pixel_values)} images, this is invalid"
# 1. Extract the input embeddings
# 2. Merge text and images
num_images, num_patches, channels, height, width = pixel_values.shape
pixel_values = pixel_values.view(
num_images * num_patches, channels, height, width
)
image_features = self.vision_tower(pixel_values)
# selected_image_feature = image_features.hidden_states[self.config.vision_feature_layer]
# Already done within the clip model
selected_image_feature = image_features.last_hidden_state
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise RuntimeError(
f"Strategy `{self.config.vision_feature_select_strategy}` is not supported/valid."
)
image_features = self.multi_modal_projector(selected_image_feature)
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [num_patches] * num_images
image_features = torch.split(image_features, split_sizes, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = (
self.config.vision_config.image_size // self.config.vision_config.patch_size
)
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
if height * width != base_image_feature.shape[0]:
raise ValueError(
"The number of patches is not consistent with the image size."
)
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(
*image_feature.shape[:-1], 1
),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
image_feature = torch.cat(
(image_feature, self.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
return image_features.view(-1, image_features.shape[-1])
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if vision_embeds is not None:
# When we generate, we don't want to replace the potential image_token_id that we generated by images
# that simply don't exist
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, vision_embeds
)
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -175,102 +280,10 @@ class LlavaNextForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor] = None,
pixel_values: torch.FloatTensor = None,
# Unused for this model
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.BoolTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
inputs_embeds = self.text_model.embed_tokens(input_ids)
if pixel_values is not None and len(pixel_values) > 0:
# num_special_image_tokens = (input_ids == self.config.image_token_index).sum()
# assert num_special_image_tokens == len(pixel_values), f"Received {num_special_image_tokens} for {len(pixel_values)} images, this is invalid"
# 1. Extract the input embeddings
# 2. Merge text and images
num_images, num_patches, channels, height, width = pixel_values.shape
pixel_values = pixel_values.view(
num_images * num_patches, channels, height, width
)
image_features = self.vision_tower(pixel_values)
# selected_image_feature = image_features.hidden_states[self.config.vision_feature_layer]
# Already done within the clip model
selected_image_feature = image_features.last_hidden_state
if self.config.vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif self.config.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise RuntimeError(
f"Strategy `{self.config.vision_feature_select_strategy}` is not supported/valid."
)
image_features = self.multi_modal_projector(selected_image_feature)
# split up image_features for each of the individual images
# hence we get a list of image_features, each of shape (5, num_patches, hidden_size)
# if we assume each image has 5 image features (base image + 4 patches)
split_sizes = [num_patches] * num_images
image_features = torch.split(image_features, split_sizes, dim=0)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
height = width = (
self.config.vision_config.image_size
// self.config.vision_config.patch_size
)
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
if height * width != base_image_feature.shape[0]:
raise ValueError(
"The number of patches is not consistent with the image size."
)
# Dimensions are intentionally swapped to be bug-compatible with
# upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat(
(
image_feature,
self.image_newline[:, None, None].expand(
*image_feature.shape[:-1], 1
),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
else:
image_feature = image_feature[0]
image_feature = torch.cat(
(image_feature, self.image_newline[None]), dim=0
)
new_image_features.append(image_feature)
image_features = torch.stack(new_image_features, dim=0)
inputs_embeds = self._merge_input_ids_with_image_features(
input_ids, inputs_embeds, image_features
)
hidden_states = self.text_model.model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -922,9 +922,32 @@ class Qwen2_5VLForConditionalGeneration(nn.Module):
)
return position_ids
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).squeeze(0)
return image_embeds
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.embed_tokens(input_ids)
# apply the visual model to the pixel values if they are provided
if vision_embeds is not None:
inputs_embeds[input_ids == self.image_token_id] = vision_embeds
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -934,26 +957,11 @@ class Qwen2_5VLForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor],
pixel_values: torch.FloatTensor = None,
image_grid_thw: Optional[torch.LongTensor] = None,
# Unused in this model
video_grid_thw: Optional[torch.LongTensor] = None,
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
adapter_data: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
image_indices=None,
):
inputs_embeds = self.embed_tokens(input_ids)
# apply the visual model to the pixel values if they are provided
if pixel_values is not None and len(pixel_values) > 0:
if pixel_values is not None:
image_embeds = self.visual(
pixel_values, grid_thw=image_grid_thw
).squeeze(0)
inputs_embeds[input_ids == self.image_token_id] = image_embeds
hidden_states = self.text_model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -500,9 +500,32 @@ class Qwen2VLForConditionalGeneration(nn.Module):
)
return position_ids
def forward(
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw).squeeze(0)
return image_embeds
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: torch.Tensor = None,
):
inputs_embeds = self.embed_tokens(input_ids)
# apply the visual model to the pixel values if they are provided
if vision_embeds is not None:
inputs_embeds[input_ids == self.image_token_id] = vision_embeds
return inputs_embeds
def forward(
self,
inputs_embeds: torch.Tensor,
position_ids: torch.Tensor,
cu_seqlen_prefill: Optional[torch.Tensor],
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
@ -512,25 +535,10 @@ class Qwen2VLForConditionalGeneration(nn.Module):
max_s: int,
prefill_cache_indices: Optional[torch.Tensor],
lm_head_indices: Optional[torch.Tensor],
pixel_values: torch.FloatTensor = None,
image_grid_thw: Optional[torch.LongTensor] = None,
video_grid_thw: Optional[torch.LongTensor] = None,
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
adapter_data: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
image_indices=None,
attention_mask=None,
):
inputs_embeds = self.embed_tokens(input_ids)
# apply the visual model to the pixel values if they are provided
if pixel_values is not None and len(pixel_values) > 0:
if pixel_values is not None:
image_embeds = self.visual(
pixel_values, grid_thw=image_grid_thw
).squeeze(0)
inputs_embeds[input_ids == self.image_token_id] = image_embeds
hidden_states = self.text_model(
inputs_embeds=inputs_embeds,
position_ids=position_ids,

View File

@ -1298,7 +1298,7 @@ class FlashCausalLM(Model):
if head_size is None:
# Some models use GQA and different sizes for o_proj
# and q_proj, that allows for that.
if hasattr(config, "head_dim"):
if getattr(config, "head_dim", None) is not None:
self.head_size = config.head_dim
else:
self.head_size = config.hidden_size // config.num_attention_heads
@ -1896,6 +1896,9 @@ class FlashCausalLM(Model):
if prefill:
batch.prepare_for_prefill()
if hasattr(self, "set_inputs_embeds") and callable(self.set_inputs_embeds):
self.set_inputs_embeds(batch)
prefill_logprobs = batch.prefill_next_token_indices is not None
# Update adapter indices for speculative tokens (if present)

View File

@ -29,10 +29,13 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
aspect_ratio_mask: Optional[torch.Tensor] = None
cross_attention_states: Optional[torch.Tensor] = None
def prepare_for_prefill(self):
super(VlmCausalLMBatch, self).prepare_for_prefill()
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super().concatenate(batches)
batch = super(VlmCausalLMBatch, cls).concatenate(batches)
batch.pixel_values = None
batch.pixel_attention_mask = None
@ -196,6 +199,13 @@ class MllamaCausalLMBatch(VlmCausalLMBatch):
class MllamaCausalLM(VlmCausalLM):
def set_inputs_embeds(self, batch):
# Set the input embeddings to None, as we are using the input_ids for the model
batch.inputs_embeds = None
def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
super(VlmCausalLM, self).cuda_graph_warmup(bs, max_s, max_bt)
def forward(
self,
batch: MllamaCausalLMBatch,

View File

@ -1,71 +0,0 @@
from io import BytesIO
from PIL import Image
import torch
import torch.distributed
from opentelemetry import trace
from typing import Iterable
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
image_text_replacement,
)
from text_generation_server.pb.generate_pb2 import Request
tracer = trace.get_tracer(__name__)
class PaliGemmaBatch(VlmCausalLMBatch):
@classmethod
def batch_tokenized_inputs(
cls, requests: Iterable[Request], tokenizer, processor, config
):
batch_inputs = []
image_inputs = []
max_truncation = 0
for r in requests:
full_text = ""
image_id = 0
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
full_text += "<bos>" + chunk.text + "\n"
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
# TODO do_convert_RGB should be on by default ?
image = image.convert("RGB")
image_input = processor.image_processor(image, return_tensors="pt")
full_text += image_text_replacement(
processor, image_input, config, image_id
)
image_inputs.append(image_input)
else:
raise RuntimeError(f"Invalid chunk type {chunk_type}")
batch_inputs.append(full_text)
max_truncation = max(max_truncation, r.truncate)
batch_tokenized_inputs = tokenizer(
batch_inputs,
truncation=True,
max_length=max_truncation,
add_special_tokens=False,
)["input_ids"]
if image_inputs:
image_input = image_inputs[0]
new_image_inputs = {
"pixel_values": torch.cat(
[img["pixel_values"] for img in image_inputs], dim=0
),
}
if "pixel_attention_mask" in image_input:
new_image_inputs["pixel_attention_mask"] = torch.cat(
[img["pixel_attention_mask"] for img in image_inputs], dim=0
)
if "image_sizes" in image_input:
new_image_inputs["image_sizes"] = torch.cat(
[img["image_sizes"] for img in image_inputs], dim=0
)
image_inputs = new_image_inputs
else:
image_inputs = None
return batch_tokenized_inputs, image_inputs

View File

@ -163,6 +163,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
processor_kwargs=None,
kv_cache_dtype: Optional[torch.dtype] = None,
batch_class=VlmCausalLMBatch,
support_chunking: bool = True,
):
self.batch_class = batch_class
self.quantize = quantize
@ -304,6 +305,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
device=device,
rank=rank,
world_size=world_size,
support_chunking=support_chunking,
)
# Monkey patch of `self.model.forward` to match `FlashCausalLM`. It avoids duplicating a lot of code
@ -338,6 +340,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
trust_remote_code: bool = False,
batch_class: Optional[type] = VlmCausalLMBatch,
processor_kwargs: Optional[dict] = None,
support_chunking: bool = True,
):
return cls(
model_id=model_id,
@ -349,6 +352,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
trust_remote_code=trust_remote_code,
batch_class=batch_class,
processor_kwargs=processor_kwargs,
support_chunking=support_chunking,
)
def _model_forward(
@ -368,6 +372,7 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
image_grid_thw: Optional[torch.LongTensor] = None,
pixel_attention_mask=None,
image_sizes: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
):
# A value of `None` (i.e. no logit slicing) translates to `0` in Transformers
logits_to_keep = lm_head_indices if lm_head_indices is not None else 0
@ -377,9 +382,12 @@ class TransformersFlashVlmCausalLM(VlmCausalLM):
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
)
inputs["input_ids"] = None
# This is equivalent to `self.model.forward`, see the monkey patch in __init__
logits = self.model.original_forward(
input_ids=inputs["input_ids"],
inputs_embeds=inputs_embeds.unsqueeze(0),
position_ids=inputs["position_ids"],
past_key_values=None, # we use self.kv_cache instead of transformers cache object
use_cache=False, # we use self.kv_cache instead of transformers cache object
@ -568,3 +576,48 @@ class TransformersLlama4VlmCausalLM(TransformersFlashVlmCausalLM):
inputs["cache_position"] = position_ids
inputs["attention_mask"] = torch.zeros((1, 1, 1, 1), device=input_ids.device)
return inputs
def get_vision_embeds(
self,
pixel_values: torch.FloatTensor,
pixel_attention_mask: Optional[torch.FloatTensor] = None,
image_sizes: Optional[torch.Tensor] = None,
image_grid_thw: Optional[torch.LongTensor] = None,
):
image_features = self.model.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=self.model.config.vision_config.vision_feature_layer,
vision_feature_select_strategy=self.model.config.vision_config.vision_feature_select_strategy,
image_sizes=image_sizes,
)
vision_flat = image_features.view(-1, image_features.size(-1))
projected_vision_flat = self.model.multi_modal_projector(vision_flat)
return projected_vision_flat
def get_inputs_embeds(self, input_ids, vision_embeds=None):
inputs_embeds = self.model.get_input_embeddings()(input_ids)
if vision_embeds is not None:
original_inputs_embeds_shape = inputs_embeds.shape
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(
-1
)
final_mask = special_image_mask.to(inputs_embeds.device)
inputs_embeds = inputs_embeds.view(-1, inputs_embeds.size(-1))
final_mask_1d = final_mask[..., 0].reshape(-1)
num_tokens_to_fill = final_mask_1d.sum()
if num_tokens_to_fill != vision_embeds.size(0):
raise ValueError(
f"Mismatch: final_mask wants {num_tokens_to_fill} embeddings, "
f"but multi_modal_projector returned {vision_embeds.size(0)}"
)
expanded_mask = final_mask_1d.unsqueeze(-1).expand(
-1, inputs_embeds.size(-1)
)
inputs_embeds = inputs_embeds.masked_scatter(expanded_mask, vision_embeds)
inputs_embeds = inputs_embeds.view(original_inputs_embeds_shape)
return inputs_embeds

View File

@ -1,3 +1,4 @@
from dataclasses import dataclass
import torch
from PIL import Image
from io import BytesIO
@ -12,7 +13,7 @@ from text_generation_server.models.flash_causal_lm import (
FlashCausalLMBatch,
FlashCausalLM,
)
from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION
from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION, MEM_POOL
from loguru import logger
from text_generation_server.utils.log import log_master
from transformers import AutoProcessor
@ -109,17 +110,17 @@ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
return height // patch_size, width // patch_size
def image_text_replacement(processor, image_input, config, image_id: int) -> str:
def image_text_replacement(processor, image_input, config) -> str:
if config.model_type == "idefics2":
image_seq_len = 64
image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}"
if processor.image_processor.do_image_splitting:
image_str *= 5
return image_str
return image_str, IDEFICS2_FAKE_TOKEN
if config.model_type == "idefics3":
# TODO: implement this in a more general way
n_rows = image_input["rows"][0][image_id]
n_cols = image_input["cols"][0][image_id]
n_rows = image_input["rows"][0][0]
n_cols = image_input["cols"][0][0]
image_seq_len = int(
((config.vision_config.image_size // config.vision_config.patch_size) ** 2)
/ (config.scale_factor**2)
@ -132,41 +133,41 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
image_token=IDEFICS3_IMAGE_TOKEN,
global_img_token=IDEFICS3_GLOBAL_IMG_TOKEN,
)
return image_str
return image_str, IDEFICS3_FAKE_IMAGE_TOKEN
elif config.model_type == "llava_next":
height, width = image_input["image_sizes"][image_id]
height, width = image_input["image_sizes"][0]
num_features = get_number_of_features(height, width, config)
log_master(
logger.info,
f"Found {num_features} features in image of resolution {height}x{width}",
)
return "<image>" * num_features
return "<image>" * num_features, "<image>"
elif config.model_type == "paligemma":
return "<image>" * config.text_config.num_image_tokens
return "<image>" * config.text_config.num_image_tokens, "<image>"
elif config.model_type == "qwen2_vl":
grid_t, grid_h, grid_w = image_input["image_grid_thw"][image_id]
grid_t, grid_h, grid_w = image_input["image_grid_thw"][0]
num_pads = grid_t * grid_h * grid_w // 4
padding = "<|image_pad|>" * num_pads
return f"<|vision_start|>{padding}<|vision_end|>"
return f"<|vision_start|>{padding}<|vision_end|>", "<|vision_start|>"
elif config.model_type == "qwen2_5_vl":
grid_t, grid_h, grid_w = image_input["image_grid_thw"][image_id]
grid_t, grid_h, grid_w = image_input["image_grid_thw"][0]
num_pads = grid_t * grid_h * grid_w // 4
padding = "<|image_pad|>" * num_pads
return f"<|vision_start|>{padding}<|vision_end|>"
return f"<|vision_start|>{padding}<|vision_end|>", "<|vision_start|>"
elif config.model_type == "gemma3":
# TODO: get correct number of features via reviewing the Gemma3 architecture
# and calculating the number of image tokens
num_pads = 256
padding = "<image_soft_token>" * num_pads
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n"
return f"\n\n<start_of_image>{padding}<end_of_image>\n\n", "<start_of_image>"
elif config.model_type == "llama4":
patch_size = config.vision_config.patch_size
pixel_shuffle_ratio = config.vision_config.pixel_shuffle_ratio
downsample_ratio = int(round(1.0 / (pixel_shuffle_ratio**2)))
aspect_ratios = image_input["aspect_ratios"][image_id]
image_height, image_width = image_input["pixel_values"][image_id].shape[-2:]
aspect_ratios = image_input["aspect_ratios"][0]
image_height, image_width = image_input["pixel_values"][0].shape[-2:]
num_patches_per_chunk = int(
(image_height // patch_size)
@ -177,7 +178,7 @@ def image_text_replacement(processor, image_input, config, image_id: int) -> str
aspect_ratios, num_patches_per_chunk
)
return tokens_for_this_image
return tokens_for_this_image, "<|image_start|>"
else:
raise RuntimeError(f"Unknown config {config.model_type} for multimodal")
@ -190,6 +191,27 @@ def image_text_replacement_fixup(config, text: str) -> str:
return text
def preprocess_text(config, text: str) -> str:
if config.model_type == "paligemma":
return "<bos>" + text + "\n"
return text
def preprocess_image(config, img):
model_type = config.model_type
if model_type in {"qwen2_vl", "qwen2_5_vl"} and img.width <= 20:
img = img.resize((img.width * 2, img.height * 2))
if model_type == "paligemma":
img = img.convert("RGB")
if model_type not in {"llava_next", "gemma3", "llama4"}:
# TODO: check if this is needed
img = [img]
return img
def get_unpadded_features(
original_height: int,
original_width: int,
@ -244,105 +266,263 @@ def get_number_of_features(height: int, width: int, config) -> int:
return unpadded_features + newline_features + base_features
def scatter_image_embeds(
embeds: torch.Tensor, is_embed: Optional[torch.Tensor]
) -> torch.Tensor:
if is_embed is None:
return embeds
placeholders = embeds.new_full(
(is_embed.shape[0], embeds.shape[-1]),
fill_value=torch.nan,
)
placeholders[is_embed] = embeds
return placeholders
def gather_image_embeds(
embeds: torch.Tensor, is_embed: Optional[torch.Tensor]
) -> Optional[torch.Tensor]:
if is_embed is None:
return embeds
sel = embeds[is_embed]
return sel if sel.numel() else None
@dataclass
class ImagePositions:
offset: int
length: int
id: int
num_placeholder_tokens: int
is_embed: Optional[torch.Tensor] = None
class VlmCausalLMBatch(FlashCausalLMBatch):
image_inputs: Optional[List[List[Dict[str, torch.Tensor]]]]
image_positions: Optional[List[List[ImagePositions]]]
encoder_cache: Optional[List[Dict[int, torch.Tensor]]]
pixel_values: Optional[List[torch.Tensor]]
pixel_attention_mask: Optional[List[torch.Tensor]]
image_sizes: Optional[List[Tuple[int, int]]]
image_grid_thw: Optional[torch.Tensor]
cache_entries_to_free: List[Tuple[int, int]]
has_image_inputs: bool = False
inputs_embeds: Optional[torch.Tensor] = None
@classmethod
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches):
batch = super(VlmCausalLMBatch, cls).concatenate(batches)
batch.image_inputs = []
batch.image_positions = []
batch.encoder_cache = []
for b in batches:
if b.image_inputs is not None:
batch.image_inputs.extend(b.image_inputs)
else:
batch.image_inputs.append(None)
if b.image_positions is not None:
batch.image_positions.extend(b.image_positions)
else:
batch.image_positions.append(None)
if b.encoder_cache is not None:
batch.encoder_cache.extend(b.encoder_cache)
else:
batch.encoder_cache.append(None)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
batch.inputs_embeds = None
# To be filled in prepare_for_prefill
batch.has_image_inputs = False
batch.cache_entries_to_free = []
return batch
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]):
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
image_inputs = []
image_positions = []
encoder_cache = []
for request_id in request_ids:
idx = self.requests_idx_mapping[request_id]
image_inputs.append(self.image_inputs[idx])
image_positions.append(self.image_positions[idx])
encoder_cache.append(self.encoder_cache[idx])
batch = super().filter(request_ids)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
batch.inputs_embeds = None
batch.image_inputs = image_inputs
batch.image_positions = image_positions
batch.encoder_cache = encoder_cache
# To be filled in prepare_for_prefill
batch.has_image_inputs = False
batch.cache_entries_to_free = []
return batch
@classmethod
def batch_tokenized_inputs(
cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config
):
# Process images first. We need all of them so that the processor
# can make the image splits the same size. And we need the final
# sizes to insert correct number of image tokens.
images = []
kwargs = {}
if (
hasattr(processor, "image_processor_class")
and processor.image_processor_class == "Idefics3ImageProcessor"
):
kwargs["return_row_col_info"] = True
max_length = 0
vocab = tokenizer.get_vocab()
if not hasattr(config, "image_token_index"):
config.image_token_index = config.image_token_id
batch_tokenized_inputs: List[List[int]] = []
batch_image_inputs: List[Optional[List[dict]]] = []
batch_image_positions: List[Optional[List[ImagePositions]]] = []
for r in requests:
text_parts = []
image_inputs = []
image_texts = []
image_id = 0
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
pass
text = preprocess_text(config, chunk.text)
text_parts.append(text)
elif chunk_type == "image":
image = Image.open(BytesIO(chunk.image.data))
# qwen2_vl expects images to be greater than 20 pixels, this is for warmup since the
# default warmup image is 20x20
if config.model_type in {"qwen2_vl", "qwen2_5_vl"}:
if image.width <= 20:
w = image.width * 2
h = image.height * 2
image = image.resize((w, h))
img = Image.open(BytesIO(chunk.image.data))
img = preprocess_image(config, img)
if config.model_type == "llava_next":
images.append(image)
elif config.model_type == "gemma3":
images.append(image)
elif config.model_type == "llama4":
images.append(image)
else:
images.append([image])
image_input = processor.image_processor(
[img], return_tensors="pt", **kwargs
)
image_inputs.append(image_input)
img_text, img_start_token_str = image_text_replacement(
processor, image_input, config
)
text_parts.append(img_text)
image_texts.append([image_id, img_start_token_str, img_text])
image_id += 1
else:
raise RuntimeError(f"Invalid chunk type {chunk_type}")
if images:
kwargs = {}
if (
hasattr(processor, "image_processor_class")
and processor.image_processor_class == "Idefics3ImageProcessor"
):
kwargs["return_row_col_info"] = True
image_inputs = processor.image_processor(
images, return_tensors="pt", **kwargs
)
else:
image_inputs = None
batch_tokenized_inputs = []
max_length = 0
image_id = 0
for r in requests:
full_text = ""
for chunk in r.input_chunks.chunks:
chunk_type = chunk.WhichOneof("chunk")
if chunk_type == "text":
full_text += chunk.text
elif chunk_type == "image":
full_text += image_text_replacement(
processor, image_inputs, config, image_id
)
image_id += 1
# from pdb import set_trace; set_trace()
full_text = image_text_replacement_fixup(config, full_text)
full_text = image_text_replacement_fixup(config, "".join(text_parts))
input_ids = tokenizer(
full_text,
truncation=True,
max_length=r.truncate,
add_special_tokens=r.add_special_tokens,
add_special_tokens=(
r.add_special_tokens if config.model_type != "paligemma" else False
),
)["input_ids"]
max_length = max(max_length, len(input_ids))
batch_tokenized_inputs.append(input_ids)
return batch_tokenized_inputs, image_inputs
if len(image_inputs) > 0:
img_start_token = vocab[image_texts[0][1]]
image_positions = cls.get_image_positions(
input_ids, image_texts, img_start_token, config, tokenizer
)
else:
image_inputs = None
image_positions = None
batch_tokenized_inputs.append(input_ids)
batch_image_inputs.append(image_inputs)
batch_image_positions.append(image_positions)
return batch_tokenized_inputs, batch_image_inputs, batch_image_positions
@classmethod
def get_image_positions(
cls,
input_ids: List[int],
image_texts: List[Tuple[int, str, str]],
img_start_token: int,
config,
tokenizer: PreTrainedTokenizerBase,
) -> List[ImagePositions]:
image_positions = []
num_images = len(image_texts)
input_ids_t = torch.as_tensor(input_ids)
img_start_token_pos = torch.where(input_ids_t.eq(img_start_token))[0]
num_tokens = input_ids_t.numel()
last_pos = 0
for i in range(num_images):
image_id, img_start_token_str, img_text = image_texts[i]
img_text = image_text_replacement_fixup(config, img_text)
if config.model_type == "gemma3":
img_text = img_text.replace("\n\n", "")
tokens = tokenizer(img_text, add_special_tokens=False, return_tensors="pt")[
"input_ids"
][0]
length = tokens.numel()
assert (
length <= num_tokens
), f"{length} > {num_tokens} Image is truncated, try increasing --max-batch-prefill-tokens"
pos = torch.searchsorted(img_start_token_pos, last_pos, right=False)
index = img_start_token_pos[pos]
assert torch.equal(
input_ids_t[index : index + length], tokens
), "Image tokens not found in input_ids"
is_embed = tokens == config.image_token_index
num_placeholder_tokens = int(is_embed.sum())
if num_placeholder_tokens == length:
is_embed = None
pos = ImagePositions(
offset=index,
length=length,
id=image_id,
num_placeholder_tokens=num_placeholder_tokens,
is_embed=is_embed,
)
image_positions.append(pos)
last_pos = index + length
if (
config.model_type == "idefics2"
and i + 1 != num_images
and input_ids[last_pos] == config.image_token_index
):
fake_token = last_pos - 1
fake_token_index = torch.searchsorted(
img_start_token_pos, fake_token, right=False
)
img_start_token_pos[fake_token_index] = last_pos
image_texts[i + 1][2] = image_texts[i + 1][2][
len(img_start_token_str) :
]
return image_positions
@classmethod
def from_pb_processor(
@ -354,33 +534,164 @@ class VlmCausalLMBatch(FlashCausalLMBatch):
dtype: torch.dtype,
device: torch.device,
) -> "VlmCausalLMBatch":
batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
pb.requests, tokenizer, processor, config
batch_tokenized_inputs, image_inputs, image_positions = (
cls.batch_tokenized_inputs(pb.requests, tokenizer, processor, config)
)
batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
if image_inputs is not None:
batch.pixel_values = image_inputs["pixel_values"].to(device=device)
if "pixel_attention_mask" in image_inputs:
batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
device=device
)
else:
batch.pixel_attention_mask = None
if "image_sizes" in image_inputs:
batch.image_sizes = image_inputs["image_sizes"].to(device=device)
else:
batch.image_sizes = None
if "image_grid_thw" in image_inputs:
batch.image_grid_thw = image_inputs["image_grid_thw"].to(device=device)
else:
batch.image_grid_thw = None
else:
batch.image_inputs = image_inputs
batch.image_positions = image_positions
batch.encoder_cache = [{} for _ in range(len(pb.requests))]
if len(image_inputs):
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
batch.image_grid_thw = None
return batch
def prepare_for_prefill(self):
super().prepare_for_prefill()
self.has_image_inputs = False
self.cache_entries_to_free = []
self.pixel_values = []
assert (
len(self.cache_lengths)
== len(self.input_lengths)
== len(self.prefilling_mask)
), "Mismatch in lengths of cache_lengths, input_lengths, and prefilling_mask"
for i, (
cache_length,
input_length,
request_prefilling,
) in enumerate(
zip(
self.cache_lengths,
self.input_lengths,
self.prefilling_mask,
)
):
if not request_prefilling or self.image_positions[i] is None:
continue
for image_position in self.image_positions[i]:
if image_position is None:
continue
start_pos = image_position.offset
length = image_position.length
if start_pos >= cache_length + input_length:
# No encoder input required at this step
break
if start_pos + length <= cache_length:
# The encode input is already processed
continue
self.has_image_inputs = True
if image_position.id not in self.encoder_cache[i]:
image_inputs = self.image_inputs[i][image_position.id]
self.pixel_values.append((i, image_position.id, image_inputs))
# Remove the image from the image_inputs
self.image_inputs[i][image_position.id] = None
if not self.has_image_inputs:
self.pixel_values = None
self.pixel_attention_mask = None
self.image_sizes = None
self.image_grid_thw = None
else:
image_grid_thw_list = [
x[2]["image_grid_thw"]
for x in self.pixel_values
if "image_grid_thw" in x[2]
]
if image_grid_thw_list:
self.image_grid_thw = torch.cat(image_grid_thw_list, dim=0).to(
self.input_ids.device
)
else:
self.image_grid_thw = None
def update_encoder_cache(self, encoder_outputs, request_id, img_pos):
self.encoder_cache[request_id][img_pos.id] = scatter_image_embeds(
encoder_outputs, img_pos.is_embed
)
def gather_vision_embeds(self):
device = self.input_ids.device
chunks = []
for (
i,
cache_length,
input_length,
request_prefilling,
) in zip(
range(len(self.requests)),
self.cache_lengths,
self.input_lengths,
self.prefilling_mask,
):
if not request_prefilling or self.image_positions[i] is None:
continue
for image_position in self.image_positions[i]:
if image_position is None:
continue
start_pos = image_position.offset
length = image_position.length
if start_pos >= cache_length + input_length:
# No encoder input required at this step
break
if start_pos + length <= cache_length:
# The encode input is already processed
continue
start_idx = max(cache_length - start_pos, 0)
end_idx = min(cache_length - start_pos + input_length, length)
assert (
image_position.id in self.encoder_cache[i]
), f"image_id {image_position.id} not in encoder_cache {self.encoder_cache[i]}"
encoder_output = self.encoder_cache[i][image_position.id]
is_embed = image_position.is_embed
if is_embed is not None:
is_embed = is_embed[start_idx:end_idx]
from loguru import logger
logger.info(
f"image_id {image_position.id} start_idx {start_idx} end_idx {end_idx}, length {length}"
)
embeds = gather_image_embeds(
encoder_output[start_idx:end_idx],
is_embed=is_embed,
)
if embeds is not None:
chunks.append(embeds)
if end_idx == length:
self.cache_entries_to_free.append((i, image_position.id))
self.image_positions[i][image_position.id] = None
if len(chunks) == 0:
return None
return torch.cat(chunks, dim=0).to(device)
def free_encoder_cache(self):
for i, image_id in self.cache_entries_to_free:
self.encoder_cache[i].pop(image_id, None)
self.cache_entries_to_free = []
# release any freed GPU memory immediately?
class VlmCausalLM(FlashCausalLM):
def __init__(
@ -392,6 +703,7 @@ class VlmCausalLM(FlashCausalLM):
batch_class=VlmCausalLMBatch,
revision,
trust_remote_code: bool,
support_chunking: bool = True,
**kwargs,
):
if PREFIX_CACHING:
@ -409,8 +721,7 @@ class VlmCausalLM(FlashCausalLM):
model_id=model_id,
revision=revision,
trust_remote_code=trust_remote_code,
# FIXME: VLM do not work with context chunking yet
support_chunking=False,
support_chunking=support_chunking,
**kwargs,
)
@ -418,6 +729,227 @@ class VlmCausalLM(FlashCausalLM):
def batch_type(self) -> Type[VlmCausalLMBatch]:
return self.batch_class
def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
max_bs = max(self.cuda_graphs.keys()) if self.cuda_graphs else None
input_lengths = [max_s] * bs
cache_lengths = [0] * bs
config = getattr(self.model.config, "text_config", self.model.config)
if max_bs is None:
inputs_embeds = torch.zeros(
(bs, config.hidden_size),
device=self.device,
dtype=self.dtype,
)
position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
config = getattr(self.model, "config", None)
rope_scaling = getattr(config, "rope_scaling", None) if config else None
if ( # mrope have position_ids per section, if so repeat n times
isinstance(rope_scaling, dict) and rope_scaling["rope_type"] == "mrope"
):
n_sections = len(self.model.config.rope_scaling["mrope_section"])
position_ids = position_ids.unsqueeze(1).repeat(1, n_sections)
slots = torch.arange(bs, dtype=torch.int64, device=self.device)
input_lengths_tensor = (
torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
)
cache_lengths_tensor = torch.zeros(
bs, dtype=torch.int32, device=self.device
)
block_tables = torch.arange(
max_bt, dtype=torch.int32, device=self.device
).repeat(bs)
block_tables = block_tables.reshape((bs, max_bt))
if ATTENTION == "flashinfer":
block_tables = block_tables_to_ragged(
block_tables=block_tables,
input_lengths=input_lengths,
cache_lengths=cache_lengths,
input_lengths_tensor=input_lengths_tensor,
cache_lengths_tensor=cache_lengths_tensor,
max_current_length=max_s,
)
else:
if bs > max_bs:
raise RuntimeError(
"Cuda graphs should be generated in decreasing order size to reduce VRAM usage"
)
inputs_embeds = self.cuda_graphs[max_bs]["inputs_embeds"][:bs]
position_ids = self.cuda_graphs[max_bs]["position_ids"][:bs]
if ATTENTION == "flashinfer":
block_tables = self.cuda_graphs[max_bs]["block_tables"][: bs * max_bt]
else:
block_tables = self.cuda_graphs[max_bs]["block_tables"][:bs]
slots = self.cuda_graphs[max_bs]["slots"][:bs]
input_lengths_tensor = self.cuda_graphs[max_bs]["input_lengths"][:bs]
cache_lengths_tensor = self.cuda_graphs[max_bs]["cache_lengths"][:bs]
if ATTENTION == "flashinfer":
from text_generation_server.layers.attention.flashinfer import (
create_decode_state_cuda_graphs,
)
block_tables_ptr = torch.zeros(
bs + 1, dtype=torch.int32, device=self.device
)
last_page_len = torch.ones(bs, dtype=torch.int32, device=self.device)
state = create_decode_state_cuda_graphs(
device=inputs_embeds.device,
block_tables=block_tables,
block_tables_ptr=block_tables_ptr,
last_page_len=last_page_len,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
)
else:
state = None
graph = torch.cuda.CUDAGraph()
self.cuda_graphs[bs] = {
"inputs_embeds": inputs_embeds,
"position_ids": position_ids,
"kv_cache": self.kv_cache,
"block_tables": block_tables,
"slots": slots,
"input_lengths": input_lengths_tensor,
"cache_lengths": cache_lengths_tensor,
"state": state,
"graph": graph,
}
torch.cuda.synchronize()
# Run once outside to warmup
with self._forward_context(
block_tables=block_tables,
cu_seqlen_prefill=None,
input_lengths_tensor=input_lengths_tensor,
state=state,
cache_lengths_tensor=cache_lengths_tensor,
):
seqlen = Seqlen(
input_lengths=input_lengths_tensor,
cache_lengths=cache_lengths_tensor,
cu_seqlen_q=None,
max_q=1,
max_k=max_s,
)
self.model.forward(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=self.kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
prefill_cache_indices=None,
lm_head_indices=None,
)
del seqlen
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
seqlen = Seqlen(
input_lengths=input_lengths_tensor,
cache_lengths=cache_lengths_tensor,
cu_seqlen_q=None,
max_q=1,
max_k=max_s,
)
logits, speculative_logits = self.model.forward(
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=None,
kv_cache=self.kv_cache,
block_tables=block_tables,
slots=slots,
seqlen=seqlen,
max_s=max_s,
prefill_cache_indices=None,
lm_head_indices=None,
)
self.cuda_graphs[bs]["logits"] = logits
self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
torch.cuda.synchronize()
def get_vision_embeds(
self,
pixel_values: torch.Tensor,
pixel_attention_mask: torch.Tensor,
image_sizes: torch.Tensor,
image_grid_thw: torch.Tensor,
):
embeds = self.model.get_vision_embeds(
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
image_sizes=image_sizes,
image_grid_thw=image_grid_thw,
)
return embeds
def get_inputs_embeds(
self,
input_ids: torch.Tensor,
vision_embeds: Optional[torch.Tensor] = None,
):
return self.model.get_inputs_embeds(
input_ids=input_ids,
vision_embeds=vision_embeds,
)
def encode_images(self, batch):
if batch.pixel_values is not None:
device = batch.input_ids.device
for request_id, image_id, image_input in batch.pixel_values:
pixel_values = image_input["pixel_values"].to(device)
if "pixel_attention_mask" in image_input:
pixel_attention_mask = image_input["pixel_attention_mask"].to(
device
)
else:
pixel_attention_mask = None
if "image_sizes" in image_input:
image_sizes = image_input["image_sizes"].to(device)
else:
image_sizes = None
if "image_grid_thw" in image_input:
image_grid_thw = image_input["image_grid_thw"].to(device)
else:
image_grid_thw = None
encoder_outputs = self.get_vision_embeds(
pixel_values=pixel_values,
pixel_attention_mask=pixel_attention_mask,
image_sizes=image_sizes,
image_grid_thw=image_grid_thw,
)
batch.update_encoder_cache(
encoder_outputs,
request_id,
batch.image_positions[request_id][image_id],
)
batch.pixel_values = None
batch.pixel_attention_mask = None
batch.image_sizes = None
def set_inputs_embeds(self, batch):
if batch.has_image_inputs:
self.encode_images(batch)
vision_embeds = batch.gather_vision_embeds()
batch.has_image_inputs = False
else:
vision_embeds = None
inputs_embeds = self.get_inputs_embeds(
batch.input_ids, vision_embeds=vision_embeds
)
batch.inputs_embeds = inputs_embeds
def forward(
self,
batch: VlmCausalLMBatch,
@ -468,6 +1000,7 @@ class VlmCausalLM(FlashCausalLM):
position_ids = new_position_ids
else:
input_ids = batch.input_ids
inputs_embeds = batch.inputs_embeds
position_ids = batch.position_ids
cu_seqlen_prefill = batch.cu_seqlen_prefill
kv_cache = self.kv_cache
@ -485,13 +1018,17 @@ class VlmCausalLM(FlashCausalLM):
)
batch.position_ids = position_ids
attention_mask = None
attention_mask_forward = None
if self.model.config.model_type == "gemma3" and cu_seqlen_prefill is not None:
# Get the mask, needed for flashinfer.
attention_mask = self.model.get_attention_mask(
input_ids, cu_seqlen_prefill, self.dtype, bool_mask=True
).reshape(-1)
else:
attention_mask = None
)
min_dtype = torch.finfo(self.dtype).min
attention_mask_forward = torch.where(attention_mask, 0, min_dtype).to(
input_ids.device
)
attention_mask = attention_mask.reshape(-1)
# Try to find an associated cuda graph
bs = input_ids.shape[0]
@ -526,7 +1063,7 @@ class VlmCausalLM(FlashCausalLM):
max_k=batch.max_current_length,
)
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
inputs_embeds=inputs_embeds,
position_ids=position_ids,
cu_seqlen_prefill=cu_seqlen_prefill,
kv_cache=kv_cache,
@ -536,26 +1073,17 @@ class VlmCausalLM(FlashCausalLM):
max_s=max_s,
prefill_cache_indices=batch.prefill_cache_indices,
lm_head_indices=lm_head_indices,
pixel_values=batch.pixel_values,
pixel_attention_mask=batch.pixel_attention_mask,
image_sizes=batch.image_sizes,
image_grid_thw=batch.image_grid_thw,
attention_mask=attention_mask_forward,
)
if batch.prefill_cache_indices is not None:
batch.prefill_cache_indices = None
if batch.pixel_values is not None:
batch.pixel_values = None
if batch.pixel_attention_mask is not None:
batch.pixel_attention_mask = None
if batch.image_sizes is not None:
batch.image_sizes = None
if batch.image_grid_thw is not None:
batch.image_grid_thw = None
batch.image_grid_thw = None
batch.free_encoder_cache()
return logits, speculative_logits
# Copy inputs to the static inputs of the cuda graph
# Static inputs are potentially padded
cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
cuda_graph["inputs_embeds"][: inputs_embeds.shape[0]] = inputs_embeds
cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
if ATTENTION == "flashinfer":
block_tables = block_tables_to_ragged(
@ -600,4 +1128,6 @@ class VlmCausalLM(FlashCausalLM):
else None
)
logits = cuda_graph["logits"][:bs]
batch.free_encoder_cache()
return logits, speculative_logits

View File

@ -18,7 +18,6 @@ from text_generation_server.utils.adapter import AdapterInfo
from text_generation_server.utils.prefill_chunking import set_max_prefill_tokens
try:
from text_generation_server.models.pali_gemma import PaliGemmaBatch
from text_generation_server.models.vlm_causal_lm import (
VlmCausalLMBatch,
)
@ -26,7 +25,6 @@ try:
from text_generation_server.models.mllama_causal_lm import MllamaCausalLMBatch
VLM_BATCH_TYPES = {
PaliGemmaBatch,
VlmCausalLMBatch,
IdeficsCausalLMBatch,
MllamaCausalLMBatch,