This commit is contained in:
Wang, Yi 2025-04-15 10:27:10 +08:00 committed by GitHub
commit 3142c4ac6f
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 83 additions and 17 deletions

View File

@ -87,7 +87,7 @@ RUN echo "deb [signed-by=/usr/share/keyrings/oneapi-archive-keyring.gpg] https:/
RUN mv /tmp/intel-for-pytorch-gpu-dev.list /etc/apt/sources.list.d
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc
RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt install -y xpu-smi cmake ninja-build pciutils intel-ocloc libnl-genl-3-200
# Text Generation Inference base env
ENV HF_HOME=/data \
@ -100,8 +100,6 @@ ENV HF_HOME=/data \
WORKDIR /usr/src
RUN pip install torch==2.6.0 --index-url https://download.pytorch.org/whl/test/xpu
RUN pip install triton-xpu==3.2.0b1 --no-cache-dir
# Install server
COPY proto proto
COPY server server
@ -119,7 +117,9 @@ ENV CCL_TOPO_FABRIC_VERTEX_CONNECTION_CHECK=0
ENV TORCH_DEVICE_BACKEND_AUTOLOAD=0
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/oneccl_bind_pt-2.6.0%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN pip install https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_stable/xpu/intel_extension_for_pytorch-2.6.10%2Bxpu-cp311-cp311-linux_x86_64.whl
RUN git clone https://github.com/intel/intel-extension-for-pytorch && cd intel-extension-for-pytorch && git checkout d5a7036316a01ea8220eb4da78a2207c423a1166
RUN sed -i 's/VERSION_MINOR 7/VERSION_MINOR 6/' intel-extension-for-pytorch/version.txt
RUN cd intel-extension-for-pytorch && git submodule update --init --recursive && USE_AOT_DEVLIST='pvc,ats-m150' BUILD_SEPARATE_OPS=OFF BUILD_WITH_CPU=OFF USE_XETLA=ON python setup.py install && rm -rf /usr/src/intel-extension-for-pytorch
# Install benchmarker
COPY --from=builder /usr/src/target/release-opt/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router

View File

@ -8,6 +8,9 @@ from text_generation_server.models.globals import (
BLOCK_SIZE,
)
if ATTENTION == "flashdecoding-ipex":
SUPPORTS_WINDOWING = True
else:
SUPPORTS_WINDOWING = False
@ -25,13 +28,19 @@ def attention(
causal: bool = True,
softcap: Optional[float] = None,
):
if softcap is not None:
raise NotImplementedError("softcap is not available in IPEX")
out = torch.empty_like(query)
kv_cache_dtype = "auto"
if kv_cache.key.dtype == torch.float8_e5m2:
kv_cache_dtype = "fp8_e5m2"
if kv_cache.key.dtype == torch.float8_e4m3fn:
kv_cache_dtype = "fp8_e4m3"
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
if ATTENTION == "flashdecoding-ipex":
window_size_right = -1 if window_size_left == -1 else 0
if softcap is None:
softcap = -1.0
ipex.llm.modules.PagedAttention.flash_attn_varlen_func(
out,
query.contiguous() if query.device.type == "xpu" else query,
@ -45,8 +54,18 @@ def attention(
causal,
block_tables,
None,
window_size_left=window_size_left,
window_size_right=window_size_right,
kv_cache_dtype=kv_cache_dtype,
k_scale=kv_scales.key_scale_cpu,
v_scale=kv_scales.value_scale_cpu,
softcap=softcap,
)
else:
if softcap is not None:
raise NotImplementedError(
"softcap is not available in IPEX paged attention"
)
ipex.llm.functional.varlen_attention(
query.contiguous() if query.device.type == "xpu" else query,
key.contiguous() if key.device.type == "xpu" else key,
@ -80,12 +99,16 @@ def paged_attention(
softcap: Optional[float] = None,
window_size_left: Optional[int] = -1,
):
if softcap is not None:
raise NotImplementedError("softcap is not available in IPEX")
out = torch.empty_like(query)
kv_cache_dtype = "auto"
if kv_cache.key.dtype == torch.float8_e5m2:
kv_cache_dtype = "fp8_e5m2"
if kv_cache.key.dtype == torch.float8_e4m3fn:
kv_cache_dtype = "fp8_e4m3"
if ATTENTION == "flashdecoding-ipex":
window_size_right = -1 if window_size_left == -1 else 0
if softcap is None:
softcap = -1.0
ipex.llm.modules.PagedAttention.flash_attn_varlen_func(
out,
query.contiguous() if query.device.type == "xpu" else query,
@ -99,9 +122,19 @@ def paged_attention(
True,
block_tables,
None,
window_size_left=window_size_left,
window_size_right=window_size_right,
kv_cache_dtype=kv_cache_dtype,
k_scale=kv_scales.key_scale_cpu,
v_scale=kv_scales.value_scale_cpu,
softcap=softcap,
)
else:
input_lengths = seqlen.input_lengths + seqlen.cache_lengths
if softcap is not None:
raise NotImplementedError(
"softcap is not available in IPEX paged attention"
)
ipex.llm.modules.PagedAttention.single_query_cached_kv_attention(
out,
query,
@ -114,6 +147,8 @@ def paged_attention(
BLOCK_SIZE,
max_s,
None,
k_scale=kv_scales.key_scale_cpu,
v_scale=kv_scales.value_scale_cpu,
)
return out

View File

@ -68,15 +68,20 @@ class KVCache:
if dtype in {torch.float8_e5m2, torch.float8_e4m3fn}:
if not (
(ATTENTION == "flashinfer" and SYSTEM == "cuda")
or (ATTENTION == "paged" and SYSTEM in ("cuda", "rocm"))
or (ATTENTION == "paged" and SYSTEM in ("cuda", "rocm", "ipex"))
or (ATTENTION == "flashdecoding-ipex")
):
raise ValueError(
"FP8 KV cache is currently only supported for flashinfer on CUDA and paged attention on CUDA and ROCm. "
"FP8 KV cache is currently only supported for flashinfer on CUDA and paged attention on CUDA, ROCm and INTEL IPEX and flashdecoding in Intel IPEX "
)
if SYSTEM == "rocm" and dtype == torch.float8_e5m2:
raise ValueError(
"float8_e5m2 FP8 KV cache is not supported on AMD ROCm"
)
if device.type == "cpu" and dtype == torch.float8_e4m3fn:
raise ValueError(
"float8_e4m3fn FP8 KV cache is not supported on Intel IPEX CPU"
)
element_size = torch.tensor([], dtype=dtype).element_size()
if SYSTEM == "ipex" and device.type == "xpu":
@ -133,7 +138,8 @@ class KVCache:
return False
elif self.dtype == torch.float8_e4m3fn and (
(ATTENTION in ("paged", "flashinfer") and SYSTEM == "cuda")
or (ATTENTION == "paged" and SYSTEM == "rocm")
or (ATTENTION == "paged" and SYSTEM in ["rocm", "ipex"])
or (ATTENTION == "flashdecoding-ipex")
):
log_once(logger.info, "Using FP8 KV cache scales")
return True
@ -141,7 +147,7 @@ class KVCache:
# We have scales, but not the correct FP8 cache type, so warn once.
log_once(
logger.info,
"Ignoring FP8 KV cache scales, supported only for float8_e4m3fn KV cache with flashinfer on CUDA and paged attention on ROCm",
"Ignoring FP8 KV cache scales, supported only for float8_e4m3fn KV cache with flashinfer on CUDA and paged attention on ROCm/IPEX and flashdecoding on IPEX",
)
return False
@ -207,8 +213,20 @@ class KVCache:
elif ATTENTION == "flashdecoding-ipex" and key.device.type == "xpu":
import intel_extension_for_pytorch as ipex
kv_cache_dtype = "auto"
if key_cache.dtype == torch.float8_e5m2:
kv_cache_dtype = "fp8_e5m2"
if key_cache.dtype == torch.float8_e4m3fn:
kv_cache_dtype = "fp8_e4m3"
ipex.llm.modules.PagedAttention.reshape_and_cache_flash(
key, value, key_cache, value_cache, slots
key,
value,
key_cache,
value_cache,
slots,
kv_cache_dtype=kv_cache_dtype,
k_scale=kv_scales.key_scale_cpu,
v_scale=kv_scales.value_scale_cpu,
)
else:
paged_reshape_and_cache(
@ -267,8 +285,21 @@ def paged_reshape_and_cache(
elif SYSTEM == "ipex":
import intel_extension_for_pytorch as ipex
kv_cache_dtype = "auto"
if key_cache.dtype == torch.float8_e5m2:
kv_cache_dtype = "fp8_e5m2"
if key_cache.dtype == torch.float8_e4m3fn:
kv_cache_dtype = "fp8_e4m3"
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slots
key,
value,
key_cache,
value_cache,
slots,
kv_cache_dtype=kv_cache_dtype,
k_scale=k_scale,
v_scale=v_scale,
)
else:
raise NotImplementedError(