mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-08 19:04:52 +00:00
Merge 5d44bdd210
into 5739b5b088
This commit is contained in:
commit
2e2ed9bc39
@ -152,6 +152,9 @@ try:
|
||||
from text_generation_server.models.custom_modeling.flash_qwen2_modeling import (
|
||||
Qwen2ForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_qwen3_modeling import (
|
||||
Qwen3ForCausalLM,
|
||||
)
|
||||
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
|
||||
FlashMistralForCausalLM,
|
||||
)
|
||||
@ -348,6 +351,11 @@ class ModelType(enum.Enum):
|
||||
"name": "Qwen 2",
|
||||
"url": "https://huggingface.co/collections/Qwen/qwen2-6659360b33528ced941e557f",
|
||||
}
|
||||
QWEN3 = {
|
||||
"type": "qwen3",
|
||||
"name": "Qwen 3",
|
||||
"url": "https://huggingface.co/collections/Qwen/qwen3-67dd247413f0e2e4f653967f",
|
||||
}
|
||||
QWEN2_VL = {
|
||||
"type": "qwen2_vl",
|
||||
"name": "Qwen 2 VL",
|
||||
@ -1470,6 +1478,40 @@ def get_model(
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type == QWEN3:
|
||||
if FLASH_ATTENTION:
|
||||
return FlashCausalLM(
|
||||
model_id=model_id,
|
||||
model_class=Qwen3ForCausalLM,
|
||||
revision=revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
kv_cache_dtype=kv_cache_dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
lora_adapter_ids=lora_adapter_ids,
|
||||
)
|
||||
elif FLASH_TRANSFORMERS_BACKEND:
|
||||
return TransformersFlashCausalLM.fallback(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
elif sharded:
|
||||
raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen3"))
|
||||
else:
|
||||
return CausalLM.fallback(
|
||||
model_id,
|
||||
revision,
|
||||
quantize=quantize,
|
||||
speculator=speculator,
|
||||
dtype=dtype,
|
||||
trust_remote_code=trust_remote_code,
|
||||
)
|
||||
|
||||
if model_type == OPT:
|
||||
return CausalLM(
|
||||
model_id=model_id,
|
||||
|
@ -0,0 +1,464 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from torch import nn
|
||||
from transformers.activations import ACT2FN
|
||||
from typing import Optional, List, Tuple
|
||||
|
||||
from text_generation_server.layers.attention import (
|
||||
paged_attention,
|
||||
attention,
|
||||
Seqlen,
|
||||
)
|
||||
from text_generation_server.layers import (
|
||||
TensorParallelMultiAdapterLinear,
|
||||
TensorParallelAdapterRowLinear,
|
||||
TensorParallelRowLinear,
|
||||
TensorParallelColumnLinear,
|
||||
TensorParallelEmbedding,
|
||||
SpeculativeHead,
|
||||
)
|
||||
from text_generation_server.layers.attention.kv_cache import get_kv_scales
|
||||
from text_generation_server.layers.rotary import PositionRotaryEmbedding
|
||||
from text_generation_server.layers.layernorm import (
|
||||
FastRMSNorm,
|
||||
)
|
||||
|
||||
|
||||
def load_attention(config, prefix, weights, layer_id):
|
||||
prefixes = [f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"]
|
||||
head_size = getattr(
|
||||
config, "head_dim", config.hidden_size // config.num_attention_heads
|
||||
)
|
||||
sizes = [
|
||||
head_size * config.num_attention_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
head_size * config.num_key_value_heads,
|
||||
]
|
||||
if config.num_attention_heads != config.num_key_value_heads:
|
||||
base_layer = _load_gqa(config, prefix, weights)
|
||||
else:
|
||||
base_layer = TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=prefixes,
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=getattr(config, 'attention_bias', False), # Use config value like vLLM
|
||||
)
|
||||
return TensorParallelMultiAdapterLinear.load(
|
||||
base_layer=base_layer,
|
||||
layer_id=layer_id,
|
||||
layer_names=prefixes,
|
||||
sizes=sizes,
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
|
||||
|
||||
def _load_gqa(config, prefix: str, weights):
|
||||
assert config.hidden_size % config.num_attention_heads == 0
|
||||
assert config.num_attention_heads % weights.process_group.size() == 0
|
||||
|
||||
return TensorParallelColumnLinear.load_multi(
|
||||
config,
|
||||
prefixes=[f"{prefix}.q_proj", f"{prefix}.k_proj", f"{prefix}.v_proj"],
|
||||
dim=0,
|
||||
weights=weights,
|
||||
bias=getattr(config, 'attention_bias', False), # Use config value like vLLM
|
||||
)
|
||||
|
||||
|
||||
class Qwen3Attention(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
index: int,
|
||||
prefix: str,
|
||||
config,
|
||||
weights,
|
||||
):
|
||||
super().__init__()
|
||||
self.layer_idx = index
|
||||
self.config = config
|
||||
self.head_dim = getattr(
|
||||
config, "head_dim", config.hidden_size // config.num_attention_heads
|
||||
)
|
||||
self.num_key_value_groups = (
|
||||
config.num_attention_heads // config.num_key_value_heads
|
||||
)
|
||||
self.num_heads = config.num_attention_heads
|
||||
self.attention_dropout = config.attention_dropout
|
||||
self.softmax_scale = self.head_dim**-0.5
|
||||
|
||||
self.window_size = (
|
||||
config.sliding_window if config.sliding_window is not None else -1
|
||||
)
|
||||
# Handle sliding window configuration similar to Intel Gaudi version
|
||||
self.sliding_window = config.sliding_window
|
||||
if hasattr(config, 'use_sliding_window') and hasattr(config, 'max_window_layers'):
|
||||
if not (
|
||||
config.use_sliding_window
|
||||
and getattr(config, "sliding_window", None) is not None
|
||||
and self.layer_idx >= config.max_window_layers
|
||||
):
|
||||
self.sliding_window = None
|
||||
|
||||
self.rotary_emb = PositionRotaryEmbedding.static(
|
||||
config=config,
|
||||
dim=self.head_dim,
|
||||
base=config.rope_theta,
|
||||
device=weights.device,
|
||||
)
|
||||
|
||||
if self.num_heads % weights.process_group.size() != 0:
|
||||
raise ValueError(
|
||||
f"`num_heads` must be divisible by `num_shards` (got `num_heads`: {self.num_heads} "
|
||||
f"and `num_shards`: {weights.process_group.size()}"
|
||||
)
|
||||
self.num_heads = self.num_heads // weights.process_group.size()
|
||||
self.num_key_value_heads = (
|
||||
config.num_key_value_heads // weights.process_group.size()
|
||||
)
|
||||
|
||||
self.query_key_value = load_attention(config, prefix, weights, index)
|
||||
|
||||
self.kv_scales = get_kv_scales(weights, f"{prefix}")
|
||||
|
||||
# Q and K normalization layers
|
||||
self.q_norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.q_norm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
self.k_norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.k_norm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
o_proj = TensorParallelRowLinear.load(
|
||||
config,
|
||||
prefix=f"{prefix}.o_proj",
|
||||
weights=weights,
|
||||
bias=False,
|
||||
)
|
||||
self.o_proj = TensorParallelAdapterRowLinear.load(
|
||||
o_proj,
|
||||
index,
|
||||
"o_proj",
|
||||
process_group=weights.process_group,
|
||||
)
|
||||
self.num_groups = self.num_heads // self.num_key_value_heads
|
||||
self.kv_head_mapping = torch.arange(
|
||||
0, self.num_key_value_heads, dtype=torch.int32, device=weights.device
|
||||
).repeat_interleave(self.num_groups)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
adapter_data,
|
||||
):
|
||||
input_shape = hidden_states.shape[:-1]
|
||||
hidden_shape = (*input_shape, -1, self.head_dim)
|
||||
|
||||
qkv = self.query_key_value(hidden_states, adapter_data)
|
||||
query_states, key_states, value_states = qkv.split(
|
||||
[
|
||||
self.head_dim * self.num_heads,
|
||||
self.head_dim * self.num_key_value_heads,
|
||||
self.head_dim * self.num_key_value_heads,
|
||||
],
|
||||
dim=1,
|
||||
)
|
||||
|
||||
# First reshape to head dimensions
|
||||
query_states = query_states.reshape(hidden_shape)
|
||||
key_states = key_states.reshape(hidden_shape)
|
||||
value_states = value_states.reshape(hidden_shape)
|
||||
|
||||
# Apply Q and K normalization on head_dim - following vLLM/SGLang correct pattern
|
||||
# This matches the reference implementations and is the correct approach
|
||||
q_by_head = query_states.reshape(-1, self.head_dim)
|
||||
q_by_head, _ = self.q_norm(q_by_head)
|
||||
query_states = q_by_head.view(query_states.shape)
|
||||
|
||||
k_by_head = key_states.reshape(-1, self.head_dim)
|
||||
k_by_head, _ = self.k_norm(k_by_head)
|
||||
key_states = k_by_head.view(key_states.shape)
|
||||
|
||||
self.rotary_emb(query_states, key_states, cos, sin)
|
||||
|
||||
if prefill_cache_indices is not None:
|
||||
key_to_cache = key_states[prefill_cache_indices]
|
||||
value_to_cache = value_states[prefill_cache_indices]
|
||||
else:
|
||||
key_to_cache = key_states
|
||||
value_to_cache = value_states
|
||||
|
||||
kv_cache.store(
|
||||
key=key_to_cache,
|
||||
value=value_to_cache,
|
||||
slots=slots,
|
||||
kv_scales=self.kv_scales,
|
||||
)
|
||||
|
||||
# Prefill
|
||||
if cu_seqlen_prefill is not None:
|
||||
# flash attention
|
||||
attn_output = attention(
|
||||
query=query_states,
|
||||
key=key_to_cache,
|
||||
value=value_to_cache,
|
||||
kv_cache=kv_cache,
|
||||
kv_scales=self.kv_scales,
|
||||
seqlen=seqlen,
|
||||
block_tables=block_tables,
|
||||
softmax_scale=self.softmax_scale,
|
||||
window_size_left=self.window_size,
|
||||
)
|
||||
# Decode
|
||||
else:
|
||||
attn_output = paged_attention(
|
||||
query_states,
|
||||
kv_cache,
|
||||
self.kv_head_mapping,
|
||||
self.softmax_scale,
|
||||
block_tables,
|
||||
seqlen,
|
||||
max_s,
|
||||
kv_scales=self.kv_scales,
|
||||
window_size_left=self.window_size,
|
||||
)
|
||||
|
||||
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
||||
return self.o_proj(attn_output, adapter_data)
|
||||
|
||||
|
||||
# Import Qwen2MLP from the existing module to reuse the implementation
|
||||
from .flash_qwen2_modeling import Qwen2MLP as Qwen3MLP
|
||||
|
||||
|
||||
class Qwen3DecoderLayer(nn.Module):
|
||||
def __init__(self, prefix, layer_id, config, weights):
|
||||
super().__init__()
|
||||
prefix = f"{prefix}.layers.{layer_id}"
|
||||
self.hidden_size = config.hidden_size
|
||||
self.self_attn = Qwen3Attention(
|
||||
index=layer_id, prefix=f"{prefix}.self_attn", config=config, weights=weights
|
||||
)
|
||||
self.mlp = Qwen3MLP(
|
||||
prefix=f"{prefix}.mlp", config=config, weights=weights, index=layer_id
|
||||
)
|
||||
self.input_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.input_layernorm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
self.post_attention_layernorm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.post_attention_layernorm",
|
||||
weights=weights,
|
||||
eps=config.rms_norm_eps,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
adapter_data,
|
||||
):
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.input_layernorm(hidden_states)
|
||||
|
||||
# Self Attention
|
||||
hidden_states = self.self_attn(
|
||||
hidden_states,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
adapter_data,
|
||||
)
|
||||
|
||||
hidden_states = residual + hidden_states
|
||||
|
||||
# Fully Connected
|
||||
residual = hidden_states
|
||||
hidden_states, _ = self.post_attention_layernorm(hidden_states)
|
||||
hidden_states = self.mlp(hidden_states, adapter_data)
|
||||
hidden_states = residual + hidden_states
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Qwen3Model(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
|
||||
prefix = f"{prefix}.model" if prefix else "model"
|
||||
self.config = config
|
||||
self.padding_idx = config.pad_token_id
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
process_group = weights.process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
Qwen3DecoderLayer(
|
||||
prefix,
|
||||
layer_id,
|
||||
config,
|
||||
weights,
|
||||
)
|
||||
for layer_id in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.norm = FastRMSNorm.load(
|
||||
prefix=f"{prefix}.norm", weights=weights, eps=config.rms_norm_eps
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.head_size = self.layers[0].self_attn.head_dim
|
||||
self.num_heads = self.layers[0].self_attn.num_heads
|
||||
self.num_key_value_heads = self.layers[0].self_attn.num_key_value_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
inputs_embeds: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
true_max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor],
|
||||
adapter_data,
|
||||
) -> torch.Tensor:
|
||||
hidden_states = inputs_embeds
|
||||
|
||||
# create position embeddings to be shared across the decoder layers
|
||||
cos, sin = self.layers[0].self_attn.rotary_emb.get_cos_sin(
|
||||
position_ids,
|
||||
true_max_s,
|
||||
hidden_states.dtype,
|
||||
)
|
||||
|
||||
residual = None
|
||||
for i, decoder_layer in enumerate(self.layers):
|
||||
hidden_states = decoder_layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
cos,
|
||||
sin,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache[i],
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
prefill_cache_indices,
|
||||
adapter_data,
|
||||
)
|
||||
|
||||
hidden_states, _ = self.norm(hidden_states)
|
||||
|
||||
# add hidden states from the last decoder layer
|
||||
return hidden_states
|
||||
|
||||
|
||||
class Qwen3ForCausalLM(torch.nn.Module):
|
||||
def __init__(self, prefix: str, config, weights):
|
||||
super().__init__()
|
||||
|
||||
self.model = Qwen3Model(prefix, config, weights)
|
||||
self.vocab_size = config.vocab_size
|
||||
|
||||
if config.tie_word_embeddings:
|
||||
suffix = "model.embed_tokens"
|
||||
else:
|
||||
suffix = "lm_head"
|
||||
|
||||
self.lm_head = SpeculativeHead.load(
|
||||
config,
|
||||
prefix=f"{prefix}.{suffix}" if prefix else suffix,
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.embed_tokens = TensorParallelEmbedding(
|
||||
prefix=f"{prefix}.embed_tokens" if prefix else "model.embed_tokens",
|
||||
weights=weights,
|
||||
)
|
||||
|
||||
self.window_size = config.sliding_window
|
||||
self.window_size_tensor = (
|
||||
torch.tensor(config.sliding_window, device=weights.device)
|
||||
if self.window_size is not None
|
||||
else None
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlen_prefill: Optional[torch.Tensor],
|
||||
kv_cache: List[Tuple[torch.Tensor, torch.Tensor]],
|
||||
block_tables: torch.Tensor,
|
||||
slots: torch.Tensor,
|
||||
seqlen: Seqlen,
|
||||
max_s: int,
|
||||
prefill_cache_indices: Optional[torch.Tensor] = None,
|
||||
lm_head_indices: Optional[torch.Tensor] = None,
|
||||
adapter_data: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
true_max_s = max_s
|
||||
if prefill_cache_indices is not None:
|
||||
# Slots also need to be sliced as it has the same size as the whole kv tensor
|
||||
slots = slots[prefill_cache_indices]
|
||||
elif self.window_size is not None:
|
||||
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
|
||||
# kernel requires the true values
|
||||
seqlen = seqlen.clamp(max=self.window_size_tensor)
|
||||
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
hidden_states = self.model(
|
||||
inputs_embeds,
|
||||
position_ids,
|
||||
cu_seqlen_prefill,
|
||||
kv_cache,
|
||||
block_tables,
|
||||
slots,
|
||||
seqlen,
|
||||
max_s,
|
||||
true_max_s,
|
||||
prefill_cache_indices,
|
||||
adapter_data,
|
||||
)
|
||||
|
||||
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
||||
if lm_head_indices is not None:
|
||||
hidden_states = hidden_states[lm_head_indices]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
return logits
|
Loading…
Reference in New Issue
Block a user