fix: prefer parallel attn load and small refactors

This commit is contained in:
drbh 2024-01-23 00:14:22 +00:00
parent 8204f23650
commit 2b43c5b0dd

View File

@ -125,7 +125,6 @@ class FlashPhiAttention(torch.nn.Module):
super().__init__()
self.num_heads = config.num_attention_heads
self.hidden_size = config.hidden_size
# should be 80 = 2560 / 32
self.head_size = self.hidden_size // self.num_heads
self.rotary_emb = PositionRotaryEmbedding.static(
@ -149,6 +148,8 @@ class FlashPhiAttention(torch.nn.Module):
config.num_key_value_heads // weights.process_group.size()
)
self.query_key_value = load_attention(config, prefix, weights)
self.dense = TensorParallelRowLinear.load(
config,
prefix=f"{prefix}.dense",
@ -161,25 +162,6 @@ class FlashPhiAttention(torch.nn.Module):
).repeat_interleave(self.num_groups)
self.rotary_emb_dim = 32
# load attention directly from weights
weight = weights.get_tensor(f"{prefix}.q_proj.weight")
bias = weights.get_tensor(f"{prefix}.q_proj.bias")
self.q_proj = nn.Linear(2560, 2560)
self.q_proj.weight = torch.nn.Parameter(weight.contiguous())
self.q_proj.bias = torch.nn.Parameter(bias.contiguous())
self.k_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.k_proj",
weights=weights,
bias=True,
)
self.v_proj = TensorParallelColumnLinear.load(
config,
prefix=f"{prefix}.v_proj",
weights=weights,
bias=True,
)
def forward(
@ -194,15 +176,19 @@ class FlashPhiAttention(torch.nn.Module):
input_lengths,
max_s,
):
q_len, _ = hidden_states.size()
# Compute query, key, value and split
qkv = self.query_key_value(hidden_states)
query, kv = qkv.split(
[
self.head_size * self.num_heads,
2 * self.head_size * self.num_key_value_heads,
],
dim=1,
)
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = query.view(q_len, 32, self.head_size)
# Pack key and value together
kv = torch.stack([key.view(q_len, 32, self.head_size), value.view(q_len, 32, self.head_size)], dim=1)
# Reshape query and key for rotary embeddings
query = query.view(-1, self.num_heads, self.head_size)
kv = kv.view(-1, 2, self.num_key_value_heads, self.head_size)
# Apply partial rotary embedding and store the end of the embedding
query_pass = query[:, :, self.rotary_emb_dim:]
@ -248,7 +234,7 @@ class FlashPhiAttention(torch.nn.Module):
max_s,
)
return self.dense(attn_output.view(q_len, 32*self.head_size))
return self.dense(attn_output.view(-1, self.num_heads*self.head_size))
class PhiMLP(nn.Module):
def __init__(self, prefix, config, weights):