mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-10 03:44:54 +00:00
Fix rebase.
This commit is contained in:
parent
7fa79f02ca
commit
2a1ecf3863
@ -21,12 +21,6 @@ from text_generation_server.utils import (
|
|||||||
Weights,
|
Weights,
|
||||||
)
|
)
|
||||||
|
|
||||||
HAS_BITS_AND_BYTES = True
|
|
||||||
try:
|
|
||||||
pass
|
|
||||||
except Exception:
|
|
||||||
HAS_BITS_AND_BYTES = False
|
|
||||||
|
|
||||||
|
|
||||||
class BloomCausalLMBatch(CausalLMBatch):
|
class BloomCausalLMBatch(CausalLMBatch):
|
||||||
@classmethod
|
@classmethod
|
||||||
@ -95,138 +89,9 @@ class BLOOMSharded(CausalLM):
|
|||||||
world_size=world_size,
|
world_size=world_size,
|
||||||
)
|
)
|
||||||
|
|
||||||
<<<<<<< HEAD
|
|
||||||
@staticmethod
|
|
||||||
def load_weights(
|
|
||||||
model,
|
|
||||||
filenames: List[str],
|
|
||||||
quantize: Optional[str],
|
|
||||||
device: torch.device,
|
|
||||||
dtype: torch.dtype,
|
|
||||||
rank: int,
|
|
||||||
world_size: int,
|
|
||||||
):
|
|
||||||
parameters = dict(model.named_parameters())
|
|
||||||
for file in filenames:
|
|
||||||
with safe_open(
|
|
||||||
file, framework="pt", device=str(device) if quantize is None else "cpu"
|
|
||||||
) as f:
|
|
||||||
for name in f.keys():
|
|
||||||
if name.startswith("transformer.") or name.startswith("lm_head."):
|
|
||||||
full_name = name
|
|
||||||
else:
|
|
||||||
full_name = f"transformer.{name}"
|
|
||||||
|
|
||||||
module_name, param_name = full_name.rsplit(".", 1)
|
|
||||||
module = model.get_submodule(module_name)
|
|
||||||
current_tensor = parameters[full_name]
|
|
||||||
|
|
||||||
slice_ = f.get_slice(name)
|
|
||||||
|
|
||||||
if isinstance(module, TensorParallelColumnLinear):
|
|
||||||
size = slice_.get_shape()[0]
|
|
||||||
block_size = size // world_size
|
|
||||||
start = rank * block_size
|
|
||||||
stop = (rank + 1) * block_size
|
|
||||||
tensor = slice_[start:stop]
|
|
||||||
elif isinstance(module, TensorParallelRowLinear):
|
|
||||||
if param_name == "weight":
|
|
||||||
size = slice_.get_shape()[1]
|
|
||||||
block_size = size // world_size
|
|
||||||
start = rank * block_size
|
|
||||||
stop = (rank + 1) * block_size
|
|
||||||
tensor = slice_[:, start:stop]
|
|
||||||
else:
|
|
||||||
tensor = slice_[:]
|
|
||||||
# XXX: Hack for Rowlinear to add the bias only once.
|
|
||||||
if rank != 0:
|
|
||||||
tensor = torch.zeros_like(tensor)
|
|
||||||
elif (
|
|
||||||
isinstance(module, TensorParallelEmbedding)
|
|
||||||
or name == "lm_head.weight"
|
|
||||||
):
|
|
||||||
size = slice_.get_shape()[0]
|
|
||||||
block_size = size // world_size
|
|
||||||
start = rank * block_size
|
|
||||||
stop = (rank + 1) * block_size
|
|
||||||
tensor = slice_[start:stop]
|
|
||||||
else:
|
|
||||||
tensor = slice_[:]
|
|
||||||
|
|
||||||
if current_tensor.shape != tensor.shape:
|
|
||||||
raise ValueError(
|
|
||||||
f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
|
|
||||||
)
|
|
||||||
|
|
||||||
tensor = tensor.contiguous().to(dtype)
|
|
||||||
|
|
||||||
if quantize == "bitsandbytes":
|
|
||||||
if not HAS_BITS_AND_BYTES:
|
|
||||||
raise ImportError(
|
|
||||||
"bitsandbytes is not available on your machine either because it is not installed "
|
|
||||||
"or you don't have a GPU.\n"
|
|
||||||
"You can install it with `pip install bitsandbytes`."
|
|
||||||
)
|
|
||||||
|
|
||||||
if (
|
|
||||||
type(module)
|
|
||||||
in [TensorParallelRowLinear, TensorParallelColumnLinear]
|
|
||||||
and param_name == "weight"
|
|
||||||
):
|
|
||||||
tensor = Int8Params(
|
|
||||||
tensor,
|
|
||||||
has_fp16_weights=False,
|
|
||||||
requires_grad=False,
|
|
||||||
).to(device)
|
|
||||||
state = bnb.MatmulLtState()
|
|
||||||
state.threshold = 6.0
|
|
||||||
state.has_fp16_weights = False
|
|
||||||
state.memory_efficient_backward = False
|
|
||||||
state.use_pool = True
|
|
||||||
state.CB = tensor.CB
|
|
||||||
state.SCB = tensor.SCB
|
|
||||||
tensor.CB = None
|
|
||||||
tensor.SCB = None
|
|
||||||
|
|
||||||
def replace_linear(state):
|
|
||||||
def linear(input, weight, bias):
|
|
||||||
out = bnb.matmul(
|
|
||||||
input,
|
|
||||||
weight,
|
|
||||||
state=state,
|
|
||||||
threshold=state.threshold,
|
|
||||||
bias=bias,
|
|
||||||
)
|
|
||||||
|
|
||||||
if state.CB is not None:
|
|
||||||
# we converted 8-bit row major to turing/ampere format
|
|
||||||
# in the first inference pass
|
|
||||||
# we no longer need the row-major weight
|
|
||||||
del state.CB
|
|
||||||
weight.data = state.CxB
|
|
||||||
|
|
||||||
return out
|
|
||||||
|
|
||||||
return linear
|
|
||||||
|
|
||||||
module.linear = replace_linear(state)
|
|
||||||
else:
|
|
||||||
tensor = tensor.to(device)
|
|
||||||
elif quantize == "gptq":
|
|
||||||
raise NotImplementedError("`gptq` is not implemented for now")
|
|
||||||
elif quantize is None:
|
|
||||||
tensor = tensor.to(device)
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unexpected quantize `{quantize}`")
|
|
||||||
|
|
||||||
module._parameters[param_name] = tensor
|
|
||||||
if name == "word_embeddings.weight":
|
|
||||||
model.lm_head._parameters["weight"] = tensor
|
|
||||||
=======
|
|
||||||
@property
|
@property
|
||||||
def batch_type(self) -> Type[CausalLMBatch]:
|
def batch_type(self) -> Type[CausalLMBatch]:
|
||||||
return BloomCausalLMBatch
|
return BloomCausalLMBatch
|
||||||
>>>>>>> ba30033 (Fused all commits for saner rebase..)
|
|
||||||
|
|
||||||
def forward(
|
def forward(
|
||||||
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
|
||||||
|
Loading…
Reference in New Issue
Block a user