mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-06-14 05:12:08 +00:00
Clippy.
This commit is contained in:
parent
e1dc168188
commit
29a8d5a3a1
@ -19,12 +19,13 @@ pub struct Validation {
|
|||||||
max_top_n_tokens: u32,
|
max_top_n_tokens: u32,
|
||||||
max_input_length: usize,
|
max_input_length: usize,
|
||||||
max_total_tokens: usize,
|
max_total_tokens: usize,
|
||||||
batched_dimension: bool,
|
batch_dimension: bool,
|
||||||
/// Channel to communicate with the background tokenization task
|
/// Channel to communicate with the background tokenization task
|
||||||
sender: Option<mpsc::UnboundedSender<TokenizerRequest>>,
|
sender: Option<mpsc::UnboundedSender<TokenizerRequest>>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl Validation {
|
impl Validation {
|
||||||
|
#[allow(clippy::too_many_arguments)]
|
||||||
pub(crate) fn new(
|
pub(crate) fn new(
|
||||||
workers: usize,
|
workers: usize,
|
||||||
tokenizer: Option<Tokenizer>,
|
tokenizer: Option<Tokenizer>,
|
||||||
@ -33,7 +34,7 @@ impl Validation {
|
|||||||
max_top_n_tokens: u32,
|
max_top_n_tokens: u32,
|
||||||
max_input_length: usize,
|
max_input_length: usize,
|
||||||
max_total_tokens: usize,
|
max_total_tokens: usize,
|
||||||
batched_dimension: bool,
|
batch_dimension: bool,
|
||||||
) -> Self {
|
) -> Self {
|
||||||
// If we have a fast tokenizer
|
// If we have a fast tokenizer
|
||||||
let sender = if let Some(tokenizer) = tokenizer {
|
let sender = if let Some(tokenizer) = tokenizer {
|
||||||
@ -68,7 +69,7 @@ impl Validation {
|
|||||||
max_top_n_tokens,
|
max_top_n_tokens,
|
||||||
max_input_length,
|
max_input_length,
|
||||||
max_total_tokens,
|
max_total_tokens,
|
||||||
batched_dimension
|
batch_dimension
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -106,7 +107,7 @@ impl Validation {
|
|||||||
) -> Result<(String, usize, u32), ValidationError> {
|
) -> Result<(String, usize, u32), ValidationError> {
|
||||||
// If we have a fast tokenizer
|
// If we have a fast tokenizer
|
||||||
if let Some((encoding, inputs)) = self.tokenize(inputs.clone(), truncate).await? {
|
if let Some((encoding, inputs)) = self.tokenize(inputs.clone(), truncate).await? {
|
||||||
if self.batched_dimension{
|
if self.batch_dimension{
|
||||||
let input_length = encoding.len();
|
let input_length = encoding.len();
|
||||||
|
|
||||||
// Get total tokens
|
// Get total tokens
|
||||||
@ -139,7 +140,7 @@ impl Validation {
|
|||||||
return Ok((inputs, input_length, max_new_tokens));
|
return Ok((inputs, input_length, max_new_tokens));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
// Either we don't have a tokenizer or batched_dimension purposefully
|
// Either we don't have a tokenizer or batch_dimension purposefully
|
||||||
// will ignore the actual length in order to schedule the job correctly.
|
// will ignore the actual length in order to schedule the job correctly.
|
||||||
// In this case, we don't know the real length in tokens of the inputs
|
// In this case, we don't know the real length in tokens of the inputs
|
||||||
// However, the inputs will be truncated by the python servers
|
// However, the inputs will be truncated by the python servers
|
||||||
|
Loading…
Reference in New Issue
Block a user