Merge branch 'main' into ci_amd3

This commit is contained in:
fxmarty 2024-07-02 15:32:53 +02:00
commit 29a416078c
36 changed files with 495 additions and 333 deletions

View File

@ -16,7 +16,6 @@ jobs:
build-and-push:
outputs:
docker_image: ${{ steps.final.outputs.docker_image }}
base_docker_image: ${{ steps.final.outputs.base_docker_image }}
docker_devices: ${{ steps.final.outputs.docker_devices }}
docker_volume: ${{ steps.final.outputs.docker_volume}}
runs_on: ${{ steps.final.outputs.runs_on }}
@ -73,17 +72,13 @@ jobs:
echo "DOCKER_DEVICES=${docker_devices}" >> $GITHUB_ENV
echo "RUNS_ON=${runs_on}" >> $GITHUB_ENV
- name: Tailscale
uses: huggingface/tailscale-action@main
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
slackChannel: ${{ secrets.SLACK_CIFEEDBACK_CHANNEL }}
slackToken: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
- name: Initialize Docker Buildx
uses: docker/setup-buildx-action@v3
with:
install: true
config-inline: |
[registry."docker.io"]
mirrors = ["registry.github-runners.huggingface.tech"]
- name: Login to GitHub Container Registry
if: github.event_name != 'pull_request'
@ -93,13 +88,6 @@ jobs:
username: ${{ github.actor }}
password: ${{ secrets.GITHUB_TOKEN }}
- name: Login to internal Container Registry
uses: docker/login-action@v3
with:
username: ${{ secrets.TAILSCALE_DOCKER_USERNAME }}
password: ${{ secrets.TAILSCALE_DOCKER_PASSWORD }}
registry: registry.internal.huggingface.tech
- name: Login to Azure Container Registry
if: github.event_name != 'pull_request'
uses: docker/login-action@v3
@ -115,10 +103,9 @@ jobs:
uses: docker/metadata-action@v5
with:
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference
tags: |
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
# If main, release or tag
- name: Extract metadata (tags, labels) for Docker
if: ${{ github.event_name != 'pull_request' }}
@ -128,7 +115,7 @@ jobs:
flavor: |
latest=auto
images: |
registry.internal.huggingface.tech/api-inference/community/text-generation-inference
registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference
ghcr.io/huggingface/text-generation-inference
db4c2190dd824d1f950f5d1555fbadf0.azurecr.io/text-generation-inference
tags: |
@ -136,7 +123,6 @@ jobs:
type=semver,pattern={{major}}.{{minor}}${{ env.LABEL }}
type=raw,value=latest${{ env.LABEL }},enable=${{ github.ref == format('refs/heads/{0}', github.event.repository.default_branch) }}
type=raw,value=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
- name: Build and push Docker image
id: build-and-push
uses: docker/build-push-action@v4
@ -150,30 +136,16 @@ jobs:
DOCKER_LABEL=sha-${{ env.GITHUB_SHA_SHORT }}${{ env.LABEL }}
tags: ${{ steps.meta.outputs.tags || steps.meta-pr.outputs.tags }}
labels: ${{ steps.meta.outputs.labels || steps.meta-pr.outputs.labels }}
cache-from: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
cache-to: type=registry,ref=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
cache-from: type=registry,ref=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
cache-to: type=registry,ref=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:cache${{ env.LABEL }},mode=min
- name: Final
id: final
run: |
echo "docker_image=registry.internal.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
echo "docker_image=registry-push.github-runners.huggingface.tech/api-inference/community/text-generation-inference:sha-${{ env.GITHUB_SHA_SHORT}}${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
echo "docker_devices=${{ env.DOCKER_DEVICES }}" >> "$GITHUB_OUTPUT"
echo "runs_on=${{ env.RUNS_ON }}" >> "$GITHUB_OUTPUT"
echo "label=${{ env.LABEL }}" >> "$GITHUB_OUTPUT"
if [[ ${{ inputs.hardware }} == "rocm" ]]
then
echo "base_docker_image=rocm/dev-ubuntu-22.04:6.1.1_hip_update" >> "$GITHUB_OUTPUT"
elif [[ ${{ inputs.hardware }} == "cuda" ]]
then
echo "base_docker_image=nvidia/cuda:12.1.0-base-ubuntu22.04" >> "$GITHUB_OUTPUT"
elif [[ ${{ inputs.hardware }} == "xpu" ]]
then
echo "base_docker_image=intel/intel-extension-for-pytorch:2.1.30-xpu" >> "$GITHUB_OUTPUT"
else
exit 1
fi
if [[ ${{ inputs.hardware }} == "rocm" ]]
then
echo "docker_volume=/data/cache/.cache/huggingface/hub" >> "$GITHUB_OUTPUT"
@ -191,7 +163,7 @@ jobs:
# Ideally, we would use the image from registry.internal.huggingface.tech but we can not login to the private registry outside of tailscale,
# and even adding a previous job with tailscale login still results in `Docker login for 'registry.internal.huggingface.tech' failed with exit code 1`.
container:
image: ${{ needs.build-and-push.outputs.base_docker_image }}
image: ${{ needs.build-and-push.outputs.docker_image }}
options: --shm-size "16gb" --ipc host -v ${{ needs.build-and-push.outputs.docker_volume }}:/data
steps:
- name: Checkout repository
@ -207,8 +179,6 @@ jobs:
echo "ls:"
ls
pip3 install -U huggingface_hub
python3 integration-tests/clean_cache_and_download.py --token ${{ secrets.HF_TOKEN }} --cache-dir /data
# Avoid permissions issues in the next step not run within docker (File was unable to be removed Error: EACCES).
@ -242,12 +212,6 @@ jobs:
run: |
make install-integration-tests
- name: Tailscale
uses: huggingface/tailscale-action@main
if: needs.build-and-push.outputs.runs_on != 'amd-gpu-tgi'
with:
authkey: ${{ secrets.TAILSCALE_AUTHKEY }}
- name: Run tests
run: |
export DOCKER_DEVICES=${{ needs.build-and-push.outputs.docker_devices }}

View File

@ -62,6 +62,7 @@ ENV HUGGINGFACE_HUB_CACHE=/data \
WORKDIR /usr/src
RUN wget https://intel-extension-for-pytorch.s3.amazonaws.com/ipex_dev/xpu/torch-2.1.0.post1%2Bcxx11.abi-cp310-cp310-linux_x86_64.whl && pip install torch-2.1.0.post1+cxx11.abi-cp310-cp310-linux_x86_64.whl
RUN pip install https://github.com/intel/intel-xpu-backend-for-triton/releases/download/v2.1.0/triton-2.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
RUN git clone https://github.com/intel/intel-extension-for-pytorch && cd intel-extension-for-pytorch && git checkout -b distributed origin/dev/distributed
# Install server
@ -132,6 +133,7 @@ RUN conda install -c conda-forge gperftools mkl
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torch-2.4.0.dev20240612%2Bcpu-cp310-cp310-linux_x86_64.whl
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torchvision-0.19.0.dev20240612%2Bcpu-cp310-cp310-linux_x86_64.whl
RUN pip install https://download.pytorch.org/whl/nightly/cpu/torchaudio-2.4.0.dev20240612%2Bcpu-cp310-cp310-linux_x86_64.whl
RUN pip install triton
WORKDIR /usr/src

View File

@ -7,9 +7,11 @@ pub(crate) use health::HealthCheck;
use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
use crate::{
ChatTemplateInputs, ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig,
HubTokenizerConfig, Message, MessageChunk, PrefillToken, Text, TextMessage, Token,
HubTokenizerConfig, Message, MessageChunk, PrefillToken, TextMessage, Token,
};
use crate::{
FunctionRef, FunctionsMap, GrammarType, Properties, TokenizerConfigToken, Tool, ToolType, Tools,
};
use crate::{FunctionRef, FunctionsMap, GrammarType, Properties, Tool, ToolType, Tools};
use futures::future::try_join_all;
use minijinja::{Environment, ErrorKind, Template};
use minijinja_contrib::pycompat;
@ -270,7 +272,11 @@ struct ChatTemplate {
}
impl ChatTemplate {
fn new(template: String, bos_token: Option<String>, eos_token: Option<String>) -> Self {
fn new(
template: String,
bos_token: Option<TokenizerConfigToken>,
eos_token: Option<TokenizerConfigToken>,
) -> Self {
let mut env = Box::new(Environment::new());
// enable things like .strip() or .capitalize()
env.set_unknown_method_callback(pycompat::unknown_method_callback);
@ -287,8 +293,8 @@ impl ChatTemplate {
Self {
template,
bos_token,
eos_token,
bos_token: bos_token.map(|token| token.as_str().to_string()),
eos_token: eos_token.map(|token| token.as_str().to_string()),
use_default_tool_template,
}
}
@ -301,9 +307,9 @@ impl ChatTemplate {
if self.use_default_tool_template {
if let Some(last_message) = messages.last_mut() {
if let Some((GrammarType::Json(tools), tool_prompt)) = grammar_with_prompt {
last_message.content.push(MessageChunk::Text(Text {
last_message.content.push(MessageChunk::Text {
text: format!("\n---\n{}\n{}", tool_prompt, tools),
}));
});
}
}
}
@ -340,6 +346,14 @@ impl ToolGrammar {
.unwrap_or_else(|| panic!("Tool with name {} not found", name))
.clone()]
}
ToolType::Function { function } => {
let tool = req_tools
.iter()
.find(|tool| tool.function.name == function.name)
.unwrap_or_else(|| panic!("Tool with name {} not found", function.name))
.clone();
vec![tool]
}
ToolType::OneOf => req_tools.to_owned(),
};

View File

@ -39,7 +39,14 @@ impl SchedulerV2 {
speculate: u32,
generation_health: Arc<AtomicBool>,
) -> Self {
let queue = Queue::new(requires_padding, 16, window_size, speculate);
// Infer shared state
let flashdecoding = if let Ok(flashdecoding) = std::env::var("FLASH_DECODING") {
matches!(flashdecoding.to_lowercase().as_str(), "1" | "true")
} else {
false
};
let block_size = if flashdecoding { 256 } else { 16 };
let queue = Queue::new(requires_padding, block_size, window_size, speculate);
let batching_task_notifier = Arc::new(Notify::new());
// Spawn batching background task that contains all the inference logic

View File

@ -39,9 +39,15 @@ impl SchedulerV3 {
speculate: u32,
generation_health: Arc<AtomicBool>,
) -> Self {
let flashdecoding = if let Ok(flashdecoding) = std::env::var("FLASH_DECODING") {
matches!(flashdecoding.to_lowercase().as_str(), "1" | "true")
} else {
false
};
let block_size = if flashdecoding { 256 } else { 16 };
let queue = Queue::new(
requires_padding,
16,
block_size,
window_size,
speculate,
max_batch_total_tokens,

View File

@ -53,23 +53,40 @@ pub enum ChatTemplateVersions {
Multiple(Vec<ChatTemplate>),
}
use std::path::Path;
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubTokenizerConfig {
pub chat_template: Option<ChatTemplateVersions>,
pub completion_template: Option<String>,
#[serde(deserialize_with = "token_serde::deserialize")]
pub bos_token: Option<String>,
#[serde(deserialize_with = "token_serde::deserialize")]
pub eos_token: Option<String>,
pub bos_token: Option<TokenizerConfigToken>,
pub eos_token: Option<TokenizerConfigToken>,
pub tokenizer_class: Option<String>,
pub add_bos_token: Option<bool>,
pub add_eos_token: Option<bool>,
}
impl HubTokenizerConfig {
pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
let content = std::fs::read_to_string(filename).ok()?;
serde_json::from_str(&content).ok()
pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
std::fs::read_to_string(filename)
.ok()
.and_then(|content| serde_json::from_str(&content).ok())
}
}
#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
String(String),
Object { content: String },
}
impl TokenizerConfigToken {
pub fn as_str(&self) -> &str {
match self {
TokenizerConfigToken::String(s) => s,
TokenizerConfigToken::Object { content } => content,
}
}
}
@ -100,9 +117,10 @@ pub struct HubProcessorConfig {
}
impl HubProcessorConfig {
pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
let content = std::fs::read_to_string(filename).ok()?;
serde_json::from_str(&content).ok()
pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
std::fs::read_to_string(filename)
.ok()
.and_then(|content| serde_json::from_str(&content).ok())
}
}
@ -121,35 +139,6 @@ pub(crate) enum GrammarType {
Regex(String),
}
mod token_serde {
use super::*;
use serde::de;
use serde::Deserializer;
use serde_json::Value;
pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
where
D: Deserializer<'de>,
{
let value = Value::deserialize(deserializer)?;
match value {
Value::String(s) => Ok(Some(s)),
Value::Object(map) => {
if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
Ok(Some(content.to_string()))
} else {
Err(de::Error::custom(
"content key not found in structured token",
))
}
}
Value::Null => Ok(None),
_ => Err(de::Error::custom("invalid token format")),
}
}
}
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
/// Model info
@ -359,30 +348,33 @@ fn default_parameters() -> GenerateParameters {
}
}
mod prompt_serde {
use serde::{self, Deserialize, Deserializer};
use serde_json::Value;
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);
pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
where
D: Deserializer<'de>,
{
let value = Value::deserialize(deserializer)?;
#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
Single(String),
Multiple(Vec<String>),
}
impl TryFrom<PromptDeserializer> for Prompt {
type Error = String;
fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
match value {
Value::String(s) => Ok(vec![s]),
Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
"Empty array detected. Do not use an empty array for the prompt.",
)),
Value::Array(arr) => arr
.iter()
.map(|v| match v {
Value::String(s) => Ok(s.to_owned()),
_ => Err(serde::de::Error::custom("Expected a string")),
})
.collect(),
_ => Err(serde::de::Error::custom(
"Expected a string or an array of strings",
)),
PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
PromptDeserializer::Multiple(v) => {
if v.is_empty() {
Err(
"Empty array detected. Do not use an empty array for the prompt."
.to_string(),
)
} else {
Ok(Prompt(v))
}
}
}
}
}
@ -396,8 +388,7 @@ pub struct CompletionRequest {
/// The prompt to generate completions for.
#[schema(example = "What is Deep Learning?")]
#[serde(deserialize_with = "prompt_serde::deserialize")]
pub prompt: Vec<String>,
pub prompt: Prompt,
/// The maximum number of tokens that can be generated in the chat completion.
#[serde(default)]
@ -445,7 +436,6 @@ pub struct CompletionRequest {
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
pub id: String,
pub object: String,
#[schema(example = "1706270835")]
pub created: u64,
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
@ -466,7 +456,6 @@ pub(crate) struct CompletionComplete {
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletion {
pub id: String,
pub object: String,
#[schema(example = "1706270835")]
pub created: u64,
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
@ -562,6 +551,15 @@ pub(crate) struct Usage {
pub total_tokens: u32,
}
#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
#[serde(rename = "chat.completion.chunk")]
ChatCompletionChunk(ChatCompletionChunk),
#[serde(rename = "chat.completion")]
ChatCompletion(ChatCompletion),
}
impl ChatCompletion {
pub(crate) fn new(
model: String,
@ -598,7 +596,6 @@ impl ChatCompletion {
};
Self {
id: String::new(),
object: "chat.completion".into(),
created,
model,
system_fingerprint,
@ -620,7 +617,6 @@ impl ChatCompletion {
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
pub id: String,
pub object: String,
pub created: u64,
pub choices: Vec<CompletionComplete>,
pub model: String,
@ -630,7 +626,6 @@ pub(crate) struct CompletionCompleteChunk {
#[derive(Clone, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChunk {
pub id: String,
pub object: String,
#[schema(example = "1706270978")]
pub created: u64,
#[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
@ -710,7 +705,6 @@ impl ChatCompletionChunk {
};
Self {
id: String::new(),
object: "chat.completion.chunk".to_string(),
created,
model,
system_fingerprint,
@ -821,7 +815,6 @@ pub(crate) struct ChatRequest {
/// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
#[serde(default)]
#[schema(nullable = true, example = "null")]
#[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
pub tool_choice: Option<ToolType>,
/// Response format constraints for the generation.
@ -837,44 +830,41 @@ fn default_tool_prompt() -> Option<String> {
"\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
)
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
FunctionName(String),
#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
#[serde(untagged)]
pub enum ToolType {
OneOf,
FunctionName(String),
Function { function: FunctionName },
}
/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
use super::*;
use serde::de;
use serde::Deserializer;
use serde_json::Value;
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
pub struct FunctionName {
pub name: String,
}
pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
where
D: Deserializer<'de>,
{
let value = Value::deserialize(deserializer)?;
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize)]
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);
#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
None(Option<String>),
Some(ToolType),
}
impl From<ToolTypeDeserializer> for ToolChoice {
fn from(value: ToolTypeDeserializer) -> Self {
match value {
Value::String(s) => match s.as_str() {
"none" => Ok(None),
"auto" => Ok(Some(ToolType::OneOf)),
_ => Ok(Some(ToolType::FunctionName(s))),
ToolTypeDeserializer::None(opt) => match opt.as_deref() {
Some("none") => ToolChoice(None),
Some("auto") => ToolChoice(Some(ToolType::OneOf)),
Some(s) => ToolChoice(Some(ToolType::FunctionName(s.to_string()))),
None => ToolChoice(Some(ToolType::OneOf)),
},
Value::Object(map) => {
if let Some(content) = map
.get("function")
.and_then(|v| v.get("name"))
.and_then(|v| v.as_str())
{
Ok(Some(ToolType::FunctionName(content.to_string())))
} else {
Err(de::Error::custom("function key not found in tool choice"))
}
}
Value::Null => Ok(Some(ToolType::OneOf)),
_ => Err(de::Error::custom("invalid token format")),
ToolTypeDeserializer::Some(tool_type) => ToolChoice(Some(tool_type)),
}
}
}
@ -950,26 +940,16 @@ pub(crate) struct ToolCall {
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
pub struct Url {
url: String,
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
image_url: Url,
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
text: String,
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
Text(Text),
ImageUrl(ImageUrl),
pub enum MessageChunk {
Text { text: String },
ImageUrl { image_url: Url },
}
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
@ -977,35 +957,31 @@ pub struct Message {
#[schema(example = "user")]
role: String,
#[schema(example = "My name is David and I")]
#[serde(deserialize_with = "message_content_serde::deserialize")]
content: Vec<MessageChunk>,
pub content: MessageContent,
#[serde(default, skip_serializing_if = "Option::is_none")]
#[schema(example = "\"David\"")]
name: Option<String>,
}
mod message_content_serde {
use super::*;
use serde::{Deserialize, Deserializer};
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
SingleText(String),
MultipleChunks(Vec<MessageChunk>),
}
pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
where
D: Deserializer<'de>,
{
#[derive(Deserialize)]
#[serde(untagged)]
enum Message {
Text(String),
Chunks(Vec<MessageChunk>),
}
let message: Message = Deserialize::deserialize(deserializer)?;
let chunks = match message {
Message::Text(text) => {
vec![MessageChunk::Text(Text { text })]
// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
pub fn push(&mut self, chunk: MessageChunk) {
match self {
MessageContent::SingleText(text) => {
*self =
MessageContent::MultipleChunks(vec![MessageChunk::Text { text: text.clone() }]);
}
Message::Chunks(s) => s,
};
Ok(chunks)
MessageContent::MultipleChunks(chunks) => {
chunks.push(chunk);
}
}
}
}
@ -1021,18 +997,17 @@ impl From<Message> for TextMessage {
fn from(value: Message) -> Self {
TextMessage {
role: value.role,
content: value
.content
.into_iter()
.map(|c| match c {
MessageChunk::Text(Text { text }) => text,
MessageChunk::ImageUrl(image) => {
let url = image.image_url.url;
format!("![]({url})")
}
})
.collect::<Vec<_>>()
.join(""),
content: match value.content {
MessageContent::SingleText(text) => text,
MessageContent::MultipleChunks(chunks) => chunks
.into_iter()
.map(|chunk| match chunk {
MessageChunk::Text { text } => text,
MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
})
.collect::<Vec<_>>()
.join(""),
},
}
}
}
@ -1240,9 +1215,16 @@ mod tests {
);
assert_eq!(
config.bos_token,
Some("<begin▁of▁sentence>".to_string())
Some(TokenizerConfigToken::String(
"<begin▁of▁sentence>".to_string()
))
);
assert_eq!(
config.eos_token,
Some(TokenizerConfigToken::String(
"<end▁of▁sentence>".to_string()
))
);
assert_eq!(config.eos_token, Some("<end▁of▁sentence>".to_string()));
// in this case we expect the tokens to be encoded as structured tokens
// we want the content of the structured token
@ -1275,9 +1257,16 @@ mod tests {
);
assert_eq!(
config.bos_token,
Some("<begin▁of▁sentence>".to_string())
Some(TokenizerConfigToken::Object {
content: "<begin▁of▁sentence>".to_string()
})
);
assert_eq!(
config.eos_token,
Some(TokenizerConfigToken::Object {
content: "<end▁of▁sentence>".to_string()
})
);
assert_eq!(config.eos_token, Some("<end▁of▁sentence>".to_string()));
}
#[test]
@ -1295,9 +1284,7 @@ mod tests {
request.messages[0],
Message {
role: "user".to_string(),
content: vec![MessageChunk::Text(Text {
text: "What is Deep Learning?".to_string()
}),],
content: MessageContent::SingleText("What is Deep Learning?".to_string()),
name: None
}
);
@ -1321,10 +1308,10 @@ mod tests {
request.messages[0],
Message{
role: "user".to_string(),
content: vec![
MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
],
content: MessageContent::MultipleChunks(vec![
MessageChunk::Text { text: "Whats in this image?".to_string() },
MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
]),
name: None
}
);
@ -1334,10 +1321,10 @@ mod tests {
fn text_message_convert() {
let message = Message{
role: "user".to_string(),
content: vec![
MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
],
content: MessageContent::MultipleChunks(vec![
MessageChunk::Text { text: "Whats in this image?".to_string() },
MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
]),
name: None
};
let textmsg: TextMessage = message.into();

View File

@ -553,11 +553,11 @@ pub fn create_post_processor(
if add_bos_token {
if let Some(bos) = bos_token {
let bos_token_id = tokenizer
.token_to_id(bos)
.token_to_id(bos.as_str())
.expect("Should have found the bos token id");
special_tokens.push((bos.clone(), bos_token_id));
single.push(format!("{}:0", bos));
pair.push(format!("{}:0", bos));
special_tokens.push((bos.as_str(), bos_token_id));
single.push(format!("{}:0", bos.as_str()));
pair.push(format!("{}:0", bos.as_str()));
}
}
@ -567,17 +567,17 @@ pub fn create_post_processor(
if add_eos_token {
if let Some(eos) = eos_token {
let eos_token_id = tokenizer
.token_to_id(eos)
.token_to_id(eos.as_str())
.expect("Should have found the eos token id");
special_tokens.push((eos.clone(), eos_token_id));
single.push(format!("{}:0", eos));
pair.push(format!("{}:0", eos));
special_tokens.push((eos.as_str(), eos_token_id));
single.push(format!("{}:0", eos.as_str()));
pair.push(format!("{}:0", eos.as_str()));
}
}
if add_bos_token {
if let Some(bos) = bos_token {
pair.push(format!("{}:1", bos));
pair.push(format!("{}:1", bos.as_str()));
}
}
@ -585,7 +585,7 @@ pub fn create_post_processor(
if add_eos_token {
if let Some(eos) = eos_token {
pair.push(format!("{}:1", eos));
pair.push(format!("{}:1", eos.as_str()));
}
}
@ -611,14 +611,15 @@ enum RouterError {
#[cfg(test)]
mod tests {
use super::*;
use text_generation_router::TokenizerConfigToken;
#[test]
fn test_create_post_processor() {
let tokenizer_config = HubTokenizerConfig {
add_bos_token: None,
add_eos_token: None,
bos_token: Some("<s>".to_string()),
eos_token: Some("</s>".to_string()),
bos_token: Some(TokenizerConfigToken::String("<s>".to_string())),
eos_token: Some(TokenizerConfigToken::String("</s>".to_string())),
chat_template: None,
tokenizer_class: None,
completion_template: None,
@ -629,9 +630,9 @@ mod tests {
let post_processor = create_post_processor(&tokenizer, &tokenizer_config).unwrap();
let expected = TemplateProcessing::builder()
.try_single("<s>:0 $A:0 <s>:1")
.try_single("<s>:0 $A:0")
.unwrap()
.try_pair("<s>:0 $A:0 $B:1")
.try_pair("<s>:0 $A:0 <s>:1 $B:1")
.unwrap()
.special_tokens(vec![("<s>".to_string(), 1)])
.build()

View File

@ -12,17 +12,18 @@ use crate::kserve::{
use crate::validation::ValidationError;
use crate::{
BestOfSequence, Details, ErrorResponse, FinishReason, GenerateParameters, GenerateRequest,
GenerateResponse, GrammarType, HubModelInfo, HubPreprocessorConfig, HubProcessorConfig,
HubTokenizerConfig, Info, Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse,
Token, TokenizeResponse, Usage, Validation,
GenerateResponse, GrammarType, HubModelInfo, HubProcessorConfig, HubTokenizerConfig, Info,
Message, PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse,
Usage, Validation,
};
use crate::{
ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
ChatRequest, CompatGenerateRequest, Completion, CompletionComplete, CompletionCompleteChunk,
CompletionRequest, DeltaToolCall, Function, Tool, VertexRequest, VertexResponse,
CompletionRequest, CompletionType, DeltaToolCall, Function, Tool, VertexRequest,
VertexResponse,
};
use crate::{FunctionDefinition, ToolCall, ToolType};
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolType};
use async_stream::__private::AsyncStream;
use axum::extract::Extension;
use axum::http::{HeaderMap, Method, StatusCode};
@ -635,7 +636,7 @@ async fn completions(
));
}
if req.prompt.len() > info.max_client_batch_size {
if req.prompt.0.len() > info.max_client_batch_size {
metrics::increment_counter!("tgi_request_failure", "err" => "validation");
return Err((
StatusCode::UNPROCESSABLE_ENTITY,
@ -651,6 +652,7 @@ async fn completions(
let generate_requests: Vec<GenerateRequest> = req
.prompt
.0
.iter()
.map(|prompt| GenerateRequest {
inputs: prompt.to_string(),
@ -705,7 +707,6 @@ async fn completions(
event
.json_data(CompletionCompleteChunk {
id: "".to_string(),
object: "text_completion".to_string(),
created: current_time,
choices: vec![CompletionComplete {
@ -932,7 +933,6 @@ async fn completions(
let response = Completion {
id: "".to_string(),
object: "text_completion".to_string(),
created: current_time,
model: info.model_id.clone(),
system_fingerprint: format!(
@ -1153,14 +1153,16 @@ async fn chat_completions(
};
event
.json_data(ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
content,
tool_calls,
current_time,
logprobs,
stream_token.details.map(|d| d.finish_reason.to_string()),
.json_data(CompletionType::ChatCompletionChunk(
ChatCompletionChunk::new(
model_id.clone(),
system_fingerprint.clone(),
content,
tool_calls,
current_time,
logprobs,
stream_token.details.map(|d| d.finish_reason.to_string()),
),
))
.unwrap_or_else(|e| {
println!("Failed to serialize ChatCompletionChunk: {:?}", e);
@ -1228,7 +1230,7 @@ async fn chat_completions(
(None, Some(generation.generated_text))
};
// build the complete response object with the full text
let response = ChatCompletion::new(
let response = CompletionType::ChatCompletion(ChatCompletion::new(
model_id,
system_fingerprint,
output,
@ -1236,7 +1238,7 @@ async fn chat_completions(
generation.details.unwrap(),
logprobs,
tool_calls,
);
));
// wrap generation inside a Vec to match api-inference
Ok((headers, Json(response)).into_response())

View File

@ -1,6 +1,8 @@
from text_generation_server.utils.import_utils import SYSTEM
import os
from .common import Seqlen
if os.getenv("USE_FLASH_ATTENTION", "").lower() == "false":
raise ImportError("`USE_FLASH_ATTENTION` is false.")
if SYSTEM == "cuda":

View File

@ -0,0 +1,44 @@
from dataclasses import dataclass
from text_generation_server.models.globals import FLASH_DECODING
import torch
from typing import Optional
if FLASH_DECODING:
@dataclass
class Seqlen:
input_lengths: torch.Tensor
cu_seqlen_q: Optional[torch.Tensor]
cu_seqlen_k: Optional[torch.Tensor]
def __init__(self, input_lengths):
self.input_lengths = input_lengths
device = self.input_lengths.device
shape = self.input_lengths.shape
cu_seqlen_q = torch.arange(
shape[0] + 1,
device=device,
dtype=torch.int32,
)
cu_seqlen_k = torch.zeros(shape[-1] + 1, device=device, dtype=torch.int32)
# cuda graphs don't like this and this is necessary to clamp within mistral
# Although FA2 might not want the clamping
# cu_seqlen_k[0] = 0
torch.cumsum(self.input_lengths, -1, out=cu_seqlen_k[1:])
self.cu_seqlen_q = cu_seqlen_q
self.cu_seqlen_k = cu_seqlen_k
def clamp(self, max):
# Flash decoding doesn't need to clamp
return self
else:
@dataclass
class Seqlen:
input_lengths: torch.Tensor
def clamp(self, max):
return Seqlen(torch.clamp(self.input_lengths, max=max))

View File

@ -1,5 +1,7 @@
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import FLASH_DECODING, BLOCK_SIZE
from text_generation_server.layers.attention import Seqlen
major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
@ -21,7 +23,14 @@ def reshape_and_cache(
value_cache: torch.Tensor,
slots: torch.Tensor,
):
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
if FLASH_DECODING:
shape = key_cache.shape
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
else:
cache_ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, "auto", 1.0
)
def paged_attention(
@ -32,7 +41,7 @@ def paged_attention(
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
input_lengths: torch.Tensor,
seqlen: Seqlen,
max_s: int,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
@ -53,7 +62,8 @@ def paged_attention(
#
# value_cache => [num_blocks, num_heads, head_size, block_size]
block_size = value_cache.shape[3]
# block_size = value_cache.shape[3]
block_size = BLOCK_SIZE
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
@ -62,58 +72,95 @@ def paged_attention(
# V1 to avoid the overhead of reduction. Also, if the number of
# sequences or heads is large, we use V1 since there is enough work
# to parallelize.
from vllm._C import ops
if FLASH_DECODING:
max_q = 1
max_k = max_s
import flash_attn_2_cuda
use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
if use_v1:
ops.paged_attention_v1(
out,
# TODO fixme when flash contains the fix.
# Number of splits is not correctly handled
# by the current path
# https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
# This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
out2 = flash_attn_2_cuda.varlen_fwd(
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
seqlen.cu_seqlen_q,
seqlen.cu_seqlen_k,
None,
block_tables,
None,
max_q,
max_k,
0.0, # dropout
softmax_scale,
False, # zero_tensors
True, # causal
-1, # Window_left
-1, # Window right
False, # return softmax
None, # generator
)
return out2[0]
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=out.dtype,
device=out.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=out.device,
)
max_logits = torch.empty_like(exp_sums)
input_lengths = seqlen.input_lengths
from vllm._C import ops
ops.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
use_v1 = max_s <= 8192 and (
max_num_partitions == 1 or num_seqs * num_heads > 512
)
if use_v1:
ops.paged_attention_v1(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
tmp_output = torch.empty(
size=(num_seqs, num_heads, max_num_partitions, head_size),
dtype=out.dtype,
device=out.device,
)
exp_sums = torch.empty(
size=(num_seqs, num_heads, max_num_partitions),
dtype=torch.float32,
device=out.device,
)
max_logits = torch.empty_like(exp_sums)
ops.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
"auto",
1.0,
)
return out
try:

View File

@ -1,6 +1,7 @@
import intel_extension_for_pytorch as ipex
import torch
from text_generation_server.models.flash_causal_lm import BLOCK_SIZE
from text_generation_server.layers.attention import Seqlen
SUPPORTS_WINDOWING = False
@ -14,6 +15,7 @@ def attention(
max_s,
softmax_scale,
window_size_left=-1,
causal=True,
):
# We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
return ipex.llm.functional.varlen_attention(
@ -28,7 +30,7 @@ def attention(
0.0,
softmax_scale,
False,
True,
causal,
False,
None,
)
@ -54,10 +56,10 @@ def paged_attention(
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
input_lengths: torch.Tensor,
seqlen: Seqlen,
max_s: int,
):
return ipex.llm.modules.PagedAttention.single_query_cached_kv_attention(
ipex.llm.modules.PagedAttention.single_query_cached_kv_attention(
out,
query,
key_cache,
@ -65,8 +67,9 @@ def paged_attention(
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
seqlen.input_lengths,
BLOCK_SIZE,
max_s,
None,
)
return out

View File

@ -1,6 +1,8 @@
import os
import torch
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.models.globals import FLASH_DECODING
from text_generation_server.layers.attention import Seqlen
from loguru import logger
major, minor = torch.cuda.get_device_capability()
@ -26,7 +28,14 @@ def reshape_and_cache(
value_cache: torch.Tensor,
slots: torch.Tensor,
):
cache_ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
if FLASH_DECODING:
shape = key_cache.shape
key_cache.view(-1, shape[-2], shape[-1])[slots] = key
value_cache.view(-1, shape[-2], shape[-1])[slots] = value
else:
cache_ops.reshape_and_cache(
key, value, key_cache, value_cache, slots, "auto", 1.0
)
def paged_attention(
@ -37,7 +46,7 @@ def paged_attention(
kv_head_mapping: torch.Tensor,
softmax_scale: float,
block_tables: torch.Tensor,
input_lengths: torch.Tensor,
input_lengths: Seqlen,
max_s: int,
):
# Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
@ -61,6 +70,7 @@ def paged_attention(
block_size = value_cache.shape[3]
num_seqs, num_heads, head_size = query.shape
max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
input_lengths = input_lengths.input_lengths
# NOTE(woosuk): We use a simple heuristic to decide whether to use
# PagedAttention V1 or V2. If the number of partitions is 1, we use
@ -119,6 +129,7 @@ def paged_attention(
"auto",
1.0,
)
return out
if ENGINE != "triton":

View File

@ -12,7 +12,6 @@ from pathlib import Path
from text_generation_server.utils.speculate import get_speculate, set_speculate
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
from text_generation_server.models.flash_causal_lm import FlashCausalLM
from text_generation_server.models.bloom import BLOOMSharded
from text_generation_server.models.mpt import MPTSharded
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
@ -53,6 +52,7 @@ FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
FLASH_ATTENTION = True
try:
from text_generation_server.models.flash_causal_lm import FlashCausalLM
from text_generation_server.models.flash_rw import FlashRWSharded
from text_generation_server.models.flash_gpt2 import FlashGPT2
from text_generation_server.models.flash_neox import FlashNeoXSharded
@ -92,6 +92,7 @@ except ImportError as e:
FLASH_ATTENTION = False
if FLASH_ATTENTION:
__all__.append(FlashCausalLM)
__all__.append(FlashGPT2)
__all__.append(FlashNeoXSharded)
__all__.append(FlashRWSharded)

View File

@ -30,6 +30,7 @@ from text_generation_server.layers.attention import (
attention,
reshape_and_cache,
)
from text_generation_server.models.globals import FLASH_DECODING
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers import (
TensorParallelRowLinear,
@ -259,8 +260,8 @@ class FlashCohereAttention(torch.nn.Module):
cu_seqlen_prefill,
kv_cache,
block_tables,
slots,
input_lengths,
slots,
max_s,
):
qkv = self.query_key_value(hidden_states)
@ -304,7 +305,7 @@ class FlashCohereAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -464,6 +465,7 @@ class FlashCohereModel(torch.nn.Module):
)
residual = None
for i, layer in enumerate(self.layers):
hidden_states, residual = layer(
hidden_states,

View File

@ -336,7 +336,7 @@ class DbrxAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -251,7 +251,7 @@ class FlashGemma2Attention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -245,7 +245,7 @@ class FlashGemmaAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -245,7 +245,7 @@ class FlashGPT2Attention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -33,6 +33,7 @@ from text_generation_server.layers.attention import (
attention,
reshape_and_cache,
)
from text_generation_server.models.globals import FLASH_DECODING
from text_generation_server.layers import (
TensorParallelRowLinear,
TensorParallelColumnLinear,
@ -117,6 +118,11 @@ class FlashLlamaAttention(torch.nn.Module):
self.hidden_size = config.hidden_size
self.head_size = self.hidden_size // self.num_heads
# Setting defaults for baichuan custom config which doesn't apply them.
config.rope_theta = getattr(config, "rope_theta", 10000)
config.num_key_value_heads = getattr(
config, "num_key_value_heads", config.num_attention_heads
)
self.rotary_emb = PositionRotaryEmbedding.static(
config=config,
dim=self.head_size,
@ -208,7 +214,7 @@ class FlashLlamaAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -28,6 +28,7 @@ from typing import Optional, List, Tuple
from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.layers.attention import (
Seqlen,
paged_attention,
attention,
reshape_and_cache,
@ -229,7 +230,7 @@ class MistralAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -514,7 +515,7 @@ class FlashMistralForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
input_lengths = input_lengths.clamp(max=self.max_past_tensor)
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = self.model(

View File

@ -291,7 +291,7 @@ class MixtralAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -647,7 +647,7 @@ class FlashMixtralForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
input_lengths = input_lengths.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,

View File

@ -168,7 +168,7 @@ class FlashNeoxAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
qkv[:, 0],
kv_cache[0],

View File

@ -207,7 +207,7 @@ class FlashPhiAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -149,7 +149,7 @@ class Qwen2Attention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -368,7 +368,7 @@ class Qwen2ForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
input_lengths = input_lengths.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,

View File

@ -217,7 +217,7 @@ class FlashRWAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -340,7 +340,7 @@ class FlashRWLargeAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -301,7 +301,7 @@ class FlashMQAttention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],

View File

@ -255,7 +255,7 @@ class Starcoder2Attention(torch.nn.Module):
)
# Decode
else:
paged_attention(
attn_output = paged_attention(
attn_output,
query,
kv_cache[0],
@ -534,7 +534,7 @@ class FlashStarcoder2ForCausalLM(torch.nn.Module):
elif self.max_past is not None:
# Clamp in decode mode as paged attention requires clamped values whereas the flash attention
# kernel requires the true values
input_lengths = torch.clamp(input_lengths, max=self.max_past_tensor)
input_lengths = input_lengths.clamp(max=self.max_past_tensor)
hidden_states = self.model(
input_ids,

View File

@ -30,9 +30,12 @@ from text_generation_server.models.types import (
from text_generation_server.pb import generate_pb2
from text_generation_server.models.globals import (
MEM_POOL,
FLASH_DECODING,
BLOCK_SIZE,
CUDA_GRAPHS,
get_adapter_to_index,
)
from text_generation_server.layers.attention import Seqlen
from text_generation_server.utils import StoppingCriteria, HeterogeneousNextTokenChooser
from text_generation_server.utils.dist import MEMORY_FRACTION
from text_generation_server.utils.segments import SegmentConcatBuilder, find_segments
@ -45,7 +48,6 @@ from text_generation_server.utils.import_utils import (
tracer = trace.get_tracer(__name__)
BLOCK_SIZE: int = 16
# Will be set in init
SLIDING_WINDOW: Optional[int] = None
@ -855,7 +857,23 @@ class FlashCausalLM(Model):
else:
x = BLOCK_SIZE // element_size
if SYSTEM == "ipex" and device == torch.device("cpu"):
if FLASH_DECODING:
self.kv_cache = [
(
torch.empty(
(num_blocks, BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
torch.empty(
(num_blocks, BLOCK_SIZE, num_heads, head_size),
dtype=dtype,
device=device,
),
)
for _ in range(num_layers)
]
elif SYSTEM == "ipex" and device == torch.device("cpu"):
self.kv_cache = [
(
torch.empty(
@ -907,6 +925,7 @@ class FlashCausalLM(Model):
"slots": slots,
"input_lengths": input_lengths,
}
input_lengths_ = Seqlen(input_lengths=input_lengths)
graph = torch.cuda.CUDAGraph()
self.cuda_graphs[bs]["graph"] = graph
@ -919,7 +938,7 @@ class FlashCausalLM(Model):
kv_cache=self.kv_cache,
block_tables=block_tables,
slots=slots,
input_lengths=input_lengths,
input_lengths=input_lengths_,
max_s=max_s,
prefill_cache_indices=None,
lm_head_indices=None,
@ -927,6 +946,7 @@ class FlashCausalLM(Model):
torch.cuda.synchronize()
with torch.cuda.graph(graph, pool=MEM_POOL):
input_lengths = Seqlen(input_lengths=input_lengths)
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,
@ -1066,6 +1086,7 @@ class FlashCausalLM(Model):
# Dummy value, some models (starcoder2) don't accept `None`.
input_lengths = torch.ones(seqlen, dtype=torch.int32, device=self.device)
input_lengths = Seqlen(input_lengths=input_lengths)
# We pass a `cu_seqlen_prefill` in order not to have to deal with paged attention cache allocation/deallocation.
self.model.forward(
@ -1152,6 +1173,7 @@ class FlashCausalLM(Model):
cuda_graph = None
if cu_seqlen_prefill is not None or cuda_graph is None:
input_lengths = Seqlen(input_lengths=input_lengths)
logits, speculative_logits = self.model.forward(
input_ids=input_ids,
position_ids=position_ids,

View File

@ -14,6 +14,7 @@ from text_generation_server.utils import (
weight_files,
Weights,
)
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
@ -32,6 +33,13 @@ class FlashGemma(FlashCausalLM):
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.bfloat16 if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashGemma is only available on GPU")

View File

@ -14,6 +14,7 @@ from text_generation_server.utils import (
weight_files,
Weights,
)
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
@ -32,6 +33,13 @@ class FlashGemma2(FlashCausalLM):
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.bfloat16 if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashGemma2 is only available on GPU")

View File

@ -153,7 +153,7 @@ class BaseFlashMistral(FlashCausalLM):
# TODO: this is a hack to avoid the gate_proj for
# FlashStarcoder2 that doesnt have these layers
if hasattr(layer.mlp, "gate_up_proj"):
if hasattr(layer, "mlp") and hasattr(layer.mlp, "gate_up_proj"):
layer_weights[(i, "gate_proj")] = (
f"{prefix}.{i}.mlp.gate_proj",
layer.mlp.gate_up_proj,

View File

@ -14,6 +14,7 @@ from text_generation_server.utils import (
weight_files,
Weights,
)
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
@ -32,6 +33,13 @@ class FlashPhi(FlashCausalLM):
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashPhi is only available on GPU")

View File

@ -19,6 +19,7 @@ from text_generation_server.utils import (
weight_files,
Weights,
)
from text_generation_server.utils.import_utils import SYSTEM
tracer = trace.get_tracer(__name__)
@ -37,6 +38,13 @@ class FlashQwen2(BaseFlashMistral):
if torch.cuda.is_available():
device = torch.device(f"cuda:{rank}")
dtype = torch.float16 if dtype is None else dtype
elif SYSTEM == "ipex":
if hasattr(torch, "xpu") and torch.xpu.is_available():
device = torch.device(f"xpu:{rank}")
dtype = torch.float16 if dtype is None else dtype
else:
device = torch.device("cpu")
dtype = torch.bfloat16 if dtype is None else dtype
else:
raise NotImplementedError("FlashQwen2 is only available on GPU")

View File

@ -5,6 +5,12 @@ from typing import Dict
MEM_POOL = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None
# This is overridden by the cli
FLASH_DECODING = os.getenv("FLASH_DECODING") in {"1", "true", "True"}
BLOCK_SIZE: int = 256 if FLASH_DECODING else 16
if FLASH_DECODING:
logger.info("Using FLASH_DECODING")
cuda_graphs = os.getenv("CUDA_GRAPHS")
if cuda_graphs is not None:
try:
@ -15,8 +21,6 @@ if cuda_graphs is not None:
)
else:
cuda_graphs = None
# sorting the cuda graphs in descending order helps reduce the
# memory impact and results in less memory usage
if cuda_graphs is not None:

View File

@ -1,6 +1,7 @@
import torch
from loguru import logger
import subprocess
import os
def is_ipex_available():
@ -21,10 +22,13 @@ def get_cuda_free_memory(device, memory_fraction):
def get_xpu_free_memory(device, memory_fraction):
total_memory = torch.xpu.get_device_properties(device).total_memory
device_id = device.index
query = f"xpu-smi dump -d {device_id} -m 18 -n 1"
output = subprocess.check_output(query.split()).decode("utf-8").split("\n")
used_memory = float(output[1].split(",")[-1]) * 1024 * 1024
free_memory = int(total_memory * 0.95 - used_memory)
memory_fraction = float(os.getenv("XPU_MEMORY_FRACTION", "1.0"))
free_memory = max(
0,
int(
total_memory * 0.9 * memory_fraction - torch.xpu.memory_reserved(device_id)
),
)
return free_memory