wip fix tunableop

This commit is contained in:
fxmarty 2024-05-02 08:15:52 +00:00
parent a509360619
commit 2677bf856a
3 changed files with 124 additions and 160 deletions

View File

@ -95,8 +95,8 @@ RUN pip uninstall -y triton && \
cd triton/python && \
pip install .
# RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && git checkout d05863883b7b61eb5875abcb6cb6b32fa678beeb && pip install -r requirements.txt --no-cache-dir
RUN git clone --depth 1 --recursive --single-branch --branch release/2.3 https://github.com/pytorch/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
RUN git clone --depth 1 --recursive --single-branch --branch 2.3-patched https://github.com/fxmarty/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
# RUN git clone --depth 1 --recursive --single-branch --branch release/2.3 https://github.com/pytorch/pytorch.git pytorch && cd pytorch && pip install -r requirements.txt --no-cache-dir
ARG _GLIBCXX_USE_CXX11_ABI="1"
ARG CMAKE_PREFIX_PATH="/opt/conda"
@ -113,98 +113,102 @@ ARG BUILD_CAFFE2="0" \
USE_FLASH_ATTENTION="0" \
USE_MEM_EFF_ATTENTION="0"
# RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install
RUN cd pytorch && python tools/amd_build/build_amd.py && python setup.py install
# FROM base AS kernel-builder
# Set as recommended: https://github.com/ROCm/triton/wiki/A-script-to-set-program-execution-environment-in-ROCm
# ENV HIP_FORCE_DEV_KERNARG=1
FROM base AS kernel-builder
# # Build vllm kernels
# FROM kernel-builder AS vllm-builder
# WORKDIR /usr/src
FROM kernel-builder AS vllm-builder
WORKDIR /usr/src
# COPY server/Makefile-vllm Makefile
COPY server/Makefile-vllm Makefile
# # Build specific version of vllm
# RUN make build-vllm-rocm
# Build specific version of vllm
RUN make build-vllm-rocm
# # Build Flash Attention v2 kernels
# FROM kernel-builder AS flash-att-v2-builder
# WORKDIR /usr/src
# Build Flash Attention v2 kernels
FROM kernel-builder AS flash-att-v2-builder
WORKDIR /usr/src
# COPY server/Makefile-flash-att-v2 Makefile
COPY server/Makefile-flash-att-v2 Makefile
# # Build specific version of flash attention v2
# RUN make build-flash-attention-v2-rocm
# Build specific version of flash attention v2
RUN make build-flash-attention-v2-rocm
# # Build Transformers CUDA kernels (gpt-neox and bloom)
# FROM kernel-builder as custom-kernels-builder
# WORKDIR /usr/src
# COPY server/custom_kernels/ .
# RUN python setup.py build
# Build Transformers CUDA kernels (gpt-neox and bloom)
FROM kernel-builder as custom-kernels-builder
WORKDIR /usr/src
COPY server/custom_kernels/ .
RUN python setup.py build
# # Build exllama kernels
# FROM kernel-builder as exllama-kernels-builder
# WORKDIR /usr/src
# COPY server/exllama_kernels/ .
# Build exllama kernels
FROM kernel-builder as exllama-kernels-builder
WORKDIR /usr/src
COPY server/exllama_kernels/ .
# RUN python setup.py build
RUN python setup.py build
# # Build exllama v2 kernels
# FROM kernel-builder as exllamav2-kernels-builder
# WORKDIR /usr/src
# COPY server/exllamav2_kernels/ .
# Build exllama v2 kernels
FROM kernel-builder as exllamav2-kernels-builder
WORKDIR /usr/src
COPY server/exllamav2_kernels/ .
# RUN python setup.py build
RUN python setup.py build
# FROM base as base-copy
FROM base as base-copy
# # Text Generation Inference base env
# ENV HUGGINGFACE_HUB_CACHE=/data \
# HF_HUB_ENABLE_HF_TRANSFER=1 \
# PORT=80 \
# HIP_FORCE_DEV_KERNARG=1
# Text Generation Inference base env
ENV HUGGINGFACE_HUB_CACHE=/data \
HF_HUB_ENABLE_HF_TRANSFER=1 \
PORT=80
# # Copy builds artifacts from vllm builder
# COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy builds artifacts from vllm builder
COPY --from=vllm-builder /usr/src/vllm/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# # Copy build artifacts from flash attention v2 builder
# COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from flash attention v2 builder
COPY --from=flash-att-v2-builder /usr/src/flash-attention-v2/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# # Copy build artifacts from custom kernels builder
# COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from custom kernels builder
COPY --from=custom-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# # Copy build artifacts from exllama kernels builder
# COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllama kernels builder
COPY --from=exllama-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# # Copy build artifacts from exllamav2 kernels builder
# COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# Copy build artifacts from exllamav2 kernels builder
COPY --from=exllamav2-kernels-builder /usr/src/build/lib.linux-x86_64-cpython-310 /opt/conda/lib/python3.10/site-packages
# # Install server
# COPY proto proto
# COPY server server
# COPY server/Makefile server/Makefile
# # pip install -r requirements_rocm.txt && \
# #pip install ".[accelerate, peft, outlines]" --no-cache-dir
# Install server
COPY proto proto
COPY server server
COPY server/Makefile server/Makefile
# pip install -r requirements_rocm.txt && \
#pip install ".[accelerate, peft, outlines]" --no-cache-dir
# # Install benchmarker
# COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# # Install router
# COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router
# # Install launcher
# COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# Install benchmarker
COPY --from=builder /usr/src/target/release/text-generation-benchmark /usr/local/bin/text-generation-benchmark
# Install router
COPY --from=builder /usr/src/target/release/text-generation-router /usr/local/bin/text-generation-router
# Install launcher
COPY --from=builder /usr/src/target/release/text-generation-launcher /usr/local/bin/text-generation-launcher
# RUN cd server && \
# make gen-server && \
# pip install -r requirements_rocm.txt
RUN cd server && \
make gen-server && \
pip install -r requirements_rocm.txt
# # AWS Sagemaker compatible image
# FROM base-copy as sagemaker
# COPY sagemaker-entrypoint.sh entrypoint.sh
# RUN chmod +x entrypoint.sh
# AWS Sagemaker compatible image
FROM base-copy as sagemaker
COPY sagemaker-entrypoint.sh entrypoint.sh
RUN chmod +x entrypoint.sh
# ENTRYPOINT ["./entrypoint.sh"]
ENTRYPOINT ["./entrypoint.sh"]
# # Final image
# FROM base-copy
# Final image
FROM base-copy
# # ENTRYPOINT ["text-generation-launcher"]
# # CMD ["--json-output"]
# ENTRYPOINT ["text-generation-launcher"]
# CMD ["--json-output"]
# NOTE: Temporarily, for TGI, please mount a volume and install locally the server with `cd /tgi/server && pip install ".[accelerate, peft, outlines]" --no-cache-dir`

View File

@ -770,7 +770,9 @@ class FlashCausalLM(Model):
if IS_ROCM_SYSTEM and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
torch.cuda.tunable.tuning_enable(False)
logger.info("calling self.generate_token(batch)")
_, batch, _ = self.generate_token(batch)
logger.info("end it")
except torch.cuda.OutOfMemoryError as e:
raise RuntimeError(
f"Not enough memory to handle {len(batch.input_ids)} prefill tokens. "
@ -824,18 +826,20 @@ class FlashCausalLM(Model):
else:
logger.info(f"Cuda Graphs are disabled (CUDA_GRAPHS={CUDA_GRAPHS}).")
if IS_ROCM_SYSTEM and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
if os.environ.get("PYTORCH_TUNABLEOP_TUNING", "1"):
torch.cuda.tunable.tuning_enable(True)
# if IS_ROCM_SYSTEM and os.environ.get("PYTORCH_TUNABLEOP_ENABLED", False):
# if os.environ.get("PYTORCH_TUNABLEOP_TUNING", "1"):
# torch.cuda.tunable.tuning_enable(True)
# logger.info("enable tuning here")
logger.info("PyTorch TunableOp (https://github.com/pytorch/pytorch/tree/v2.3.0/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes.")
total_seqlens = list(range(2))
for seqlen in total_seqlens:
logger.info("PyTorch TunableOp (https://github.com/fxmarty/pytorch/tree/2.3-patched/aten/src/ATen/cuda/tunable) is enabled. The warmup may take several minutes.")
for seqlen in range(1, 3):
logger.info(f"Warming up TunableOp for seqlen={seqlen}")
self.tunableop_warmup(seqlen, max_s, max_bt)
logger.info("call write file")
torch.cuda.tunable.write_file()
torch.cuda.tunable.tuning_enable(False)
logger.info("finished tunable op")
return int(num_blocks * BLOCK_SIZE)
def tunableop_warmup(self, seqlen: int, max_s: int, max_bt: int):
@ -843,10 +847,10 @@ class FlashCausalLM(Model):
position_ids = torch.zeros(seqlen, dtype=torch.int32, device=self.device)
slots = torch.arange(seqlen, dtype=torch.int64, device=self.device)
# TODO: is this correct?
input_lengths = (
torch.ones(seqlen, dtype=torch.int32, device=self.device) * max_s
)
bs = 1
block_tables = (
torch.arange(max_bt, dtype=torch.int32, device=self.device)
.repeat(bs)
@ -854,6 +858,7 @@ class FlashCausalLM(Model):
)
kv_cache = get_cache_manager().kv_cache
logger.info("call self.model.forward")
self.model.forward(
input_ids=input_ids,
position_ids=position_ids,

View File

@ -6,6 +6,7 @@ _PARTITION_SIZE = 512
try:
from vllm._C import cache_ops
from vllm._C import ops
except Exception as e:
raise ImportError(f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}")
@ -61,9 +62,6 @@ def attention(
# to parallelize.
use_v1 = max_s <= 8192 and (max_num_partitions == 1 or num_seqs * num_heads > 512)
if use_v1:
if IS_CUDA_SYSTEM:
from vllm._C import ops
ops.paged_attention_v1(
out,
query,
@ -79,25 +77,6 @@ def attention(
"auto",
1.0,
)
elif IS_ROCM_SYSTEM:
from vllm import attention_ops
attention_ops.paged_attention_v1(
out,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
)
else:
raise ValueError("vllm is not supported on your system")
else:
# Run PagedAttention V2.
assert _PARTITION_SIZE % block_size == 0
@ -113,9 +92,6 @@ def attention(
)
max_logits = torch.empty_like(exp_sums)
if IS_CUDA_SYSTEM:
from vllm._C import ops
ops.paged_attention_v2(
out,
exp_sums,
@ -134,24 +110,3 @@ def attention(
"auto",
1.0,
)
elif IS_ROCM_SYSTEM:
from vllm import attention_ops
attention_ops.paged_attention_v2(
out,
exp_sums,
max_logits,
tmp_output,
query,
key_cache,
value_cache,
kv_head_mapping,
softmax_scale,
block_tables,
input_lengths,
block_size,
max_s,
None,
)
else:
raise ValueError("vllm is not supported on your system")