mirror of
https://github.com/huggingface/text-generation-inference.git
synced 2025-09-09 11:24:53 +00:00
wip
This commit is contained in:
parent
b49dbf2d88
commit
24579c45de
@ -11,6 +11,7 @@ from text_generation_server.models.galactica import Galactica, GalacticaSharded
|
||||
from text_generation_server.models.santacoder import SantaCoder
|
||||
from text_generation_server.models.gpt_neox import GPTNeoxSharded
|
||||
from text_generation_server.models.t5 import T5Sharded
|
||||
from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
|
||||
|
||||
__all__ = [
|
||||
"Model",
|
||||
@ -59,9 +60,9 @@ def get_model(
|
||||
|
||||
if config.model_type == "gpt_neox":
|
||||
if sharded:
|
||||
return GPTNeoxSharded(model_id, revision, quantize=quantize)
|
||||
return FlashNeoXSharded(model_id, revision, quantize=quantize)
|
||||
else:
|
||||
return CausalLM(model_id, revision, quantize=quantize)
|
||||
return FlashNeoX(model_id, revision, quantize=quantize)
|
||||
|
||||
if config.model_type == "t5":
|
||||
if sharded:
|
||||
|
@ -64,7 +64,6 @@ class CausalLMBatch(Batch):
|
||||
inputs = []
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
input_lengths = []
|
||||
|
||||
# Parse batch
|
||||
padding_right_offset = 0
|
||||
|
516
server/text_generation_server/models/flash_neox.py
Normal file
516
server/text_generation_server/models/flash_neox.py
Normal file
@ -0,0 +1,516 @@
|
||||
import torch
|
||||
import torch.distributed
|
||||
|
||||
from accelerate import init_empty_weights
|
||||
from dataclasses import dataclass
|
||||
from flash_attn.ops.fused_dense import ColumnParallelLinear, RowParallelLinear
|
||||
from opentelemetry import trace
|
||||
from safetensors import safe_open
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizerBase, AutoConfig
|
||||
from typing import Optional, Tuple, List, Type, Union
|
||||
|
||||
from text_generation_server.models import Model
|
||||
from text_generation_server.models.flash_neox_modeling import (
|
||||
FlashGPTNeoXForCausalLM,
|
||||
TensorParallelEmbedding,
|
||||
)
|
||||
from text_generation_server.models.types import (
|
||||
Batch,
|
||||
PrefillTokens,
|
||||
Generation,
|
||||
GeneratedText,
|
||||
)
|
||||
from text_generation_server.pb import generate_pb2
|
||||
from text_generation_server.utils import (
|
||||
NextTokenChooser,
|
||||
StoppingCriteria,
|
||||
Sampling,
|
||||
initialize_torch_distributed,
|
||||
weight_files,
|
||||
)
|
||||
|
||||
tracer = trace.get_tracer(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashNeoXBatch(Batch):
|
||||
batch_id: int
|
||||
requests: List[generate_pb2.Request]
|
||||
|
||||
# Decoder values
|
||||
input_ids: torch.Tensor
|
||||
position_ids: torch.Tensor
|
||||
# cumulative sequence lengths
|
||||
cu_seqlens: torch.Tensor
|
||||
max_seqlen: torch.Tensor
|
||||
past_key_values: Optional[torch.Tensor]
|
||||
|
||||
# All tokens
|
||||
all_input_ids: List[torch.Tensor]
|
||||
|
||||
# Generation helpers
|
||||
next_token_choosers: List[NextTokenChooser]
|
||||
stopping_criterias: List[StoppingCriteria]
|
||||
|
||||
def to_pb(self) -> generate_pb2.Batch:
|
||||
return generate_pb2.Batch(
|
||||
id=self.batch_id, requests=self.requests, size=len(self)
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def from_pb(
|
||||
cls,
|
||||
pb: generate_pb2.Batch,
|
||||
tokenizer: PreTrainedTokenizerBase,
|
||||
device: torch.device,
|
||||
) -> "CausalLMBatch":
|
||||
input_ids = []
|
||||
position_ids = []
|
||||
cu_seqlens = [0]
|
||||
max_seqlen = 0
|
||||
|
||||
next_token_choosers = []
|
||||
stopping_criterias = []
|
||||
|
||||
# Parse batch
|
||||
for r in pb.requests:
|
||||
tokenized_input = (
|
||||
tokenizer(r.inputs, return_tensors="pt")["input_ids"]
|
||||
.to(device)
|
||||
.squeeze(0)
|
||||
)
|
||||
input_ids.append(tokenized_input)
|
||||
position_ids.append(
|
||||
torch.arange(0, len(tokenized_input), dtype=torch.int32, device=device)
|
||||
)
|
||||
cu_seqlens.append(len(tokenized_input))
|
||||
max_seqlen = max(max_seqlen, len(tokenized_input))
|
||||
|
||||
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
|
||||
stopping_criterias.append(
|
||||
StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
|
||||
)
|
||||
|
||||
all_input_ids = input_ids
|
||||
input_ids = torch.concat(input_ids).unsqueeze(1)
|
||||
position_ids = torch.concat(position_ids)
|
||||
cu_seqlens = torch.tensor(cu_seqlens, dtype=torch.int32, device=device)
|
||||
max_seqlen = torch.tensor(max_seqlen, dtype=torch.int32, device=device)
|
||||
|
||||
return cls(
|
||||
batch_id=pb.id,
|
||||
requests=pb.requests,
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_seqlen=max_seqlen,
|
||||
past_key_values=None,
|
||||
all_input_ids=all_input_ids,
|
||||
next_token_choosers=next_token_choosers,
|
||||
stopping_criterias=stopping_criterias,
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@tracer.start_as_current_span("concatenate")
|
||||
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
|
||||
raise NotImplementedError
|
||||
|
||||
|
||||
def __len__(self):
|
||||
return len(self.requests)
|
||||
|
||||
|
||||
class FlashNeoX(Model):
|
||||
def __init__(self, model_id: str, revision: Optional[str] = None, quantize=False):
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashNeoX does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
self.model = (
|
||||
FlashGPTNeoXForCausalLM.from_pretrained(
|
||||
model_id,
|
||||
revision=revision,
|
||||
torch_dtype=dtype,
|
||||
)
|
||||
.eval()
|
||||
.cuda()
|
||||
)
|
||||
tokenizer.pad_token_id = (
|
||||
self.model.config.pad_token_id
|
||||
if self.model.config.pad_token_id is not None
|
||||
else self.model.config.eos_token_id
|
||||
)
|
||||
|
||||
super(FlashNeoX, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@property
|
||||
def batch_type(self) -> Type[FlashNeoXBatch]:
|
||||
return FlashNeoXBatch
|
||||
|
||||
def decode(self, generated_ids: Union[torch.Tensor, List[int]]) -> str:
|
||||
return self.tokenizer.decode(
|
||||
generated_ids, skip_special_tokens=True, cleanup_tokenization_spaces=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: torch.Tensor,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
# Model Forward
|
||||
return self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
@tracer.start_as_current_span("generate_token")
|
||||
def generate_token(
|
||||
self, batch: FlashNeoXBatch
|
||||
) -> Tuple[List[Generation], Optional[FlashNeoXBatch]]:
|
||||
print("pos", batch.position_ids)
|
||||
print("cu", batch.cu_seqlens)
|
||||
print("max", batch.max_seqlen)
|
||||
|
||||
out, present = self.forward(
|
||||
batch.input_ids.squeeze(1),
|
||||
batch.position_ids,
|
||||
batch.cu_seqlens,
|
||||
batch.max_seqlen,
|
||||
batch.past_key_values,
|
||||
)
|
||||
|
||||
# List of indices to cache
|
||||
next_batch_keep_indices = []
|
||||
|
||||
# New values for next forward
|
||||
next_batch_input_ids = []
|
||||
next_batch_position_ids = []
|
||||
next_batch_cu_seqlens = [0]
|
||||
next_batch_max_seqlen = 0
|
||||
next_batch_past_key_values = []
|
||||
next_batch_all_input_ids = []
|
||||
|
||||
# Results
|
||||
generations: List[Generation] = []
|
||||
|
||||
# Zipped iterator
|
||||
iterator = zip(
|
||||
batch.requests,
|
||||
batch.next_token_choosers,
|
||||
batch.stopping_criterias,
|
||||
batch.all_input_ids,
|
||||
)
|
||||
|
||||
# For each member of the batch
|
||||
for i, (
|
||||
request,
|
||||
next_token_chooser,
|
||||
stopping_criteria,
|
||||
all_input_ids,
|
||||
) in enumerate(iterator):
|
||||
# Indexing metadata
|
||||
start_index = batch.cu_seqlens[i]
|
||||
end_index = batch.cu_seqlens[i + 1]
|
||||
seq_length = end_index - start_index
|
||||
|
||||
if batch.past_key_values is None:
|
||||
# Prefill mode
|
||||
# out is of shape [cumulative_sequence_lengths, vocab_size]
|
||||
logits = out[start_index:end_index]
|
||||
else:
|
||||
# Decode mode
|
||||
# out is of shape [batch_size, vocab_size]
|
||||
logits = out[i].unsqueeze(0)
|
||||
|
||||
# Select next token
|
||||
next_token_id, logprobs = next_token_chooser(
|
||||
all_input_ids.view(1, -1), logits
|
||||
)
|
||||
|
||||
# Append next token to all tokens
|
||||
all_input_ids = torch.cat([all_input_ids, next_token_id.squeeze(1)])
|
||||
new_input_length = seq_length + 1
|
||||
|
||||
# Generated token
|
||||
next_token_logprob = logprobs[-1, next_token_id]
|
||||
next_token_id_squeezed = next_token_id.squeeze()
|
||||
next_token_text = self.decode_token(
|
||||
next_token_id_squeezed,
|
||||
)
|
||||
|
||||
# Evaluate stopping criteria
|
||||
stop, reason = stopping_criteria(
|
||||
next_token_id_squeezed,
|
||||
next_token_text,
|
||||
)
|
||||
|
||||
if stop:
|
||||
# Decode generated tokens
|
||||
output_text = self.decode(all_input_ids)
|
||||
# Get seed
|
||||
if isinstance(next_token_chooser.choice, Sampling):
|
||||
seed = next_token_chooser.choice.seed
|
||||
else:
|
||||
seed = None
|
||||
|
||||
generated_text = GeneratedText(
|
||||
output_text, stopping_criteria.current_tokens, reason, seed
|
||||
)
|
||||
else:
|
||||
# Keep request in the batch
|
||||
seq_present = present[:, start_index:end_index]
|
||||
past = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
next_batch_past_key_values.append(past)
|
||||
|
||||
generated_text = None
|
||||
next_batch_keep_indices.append(i)
|
||||
next_batch_input_ids.append(next_token_id)
|
||||
next_batch_position_ids.append(new_input_length)
|
||||
next_batch_cu_seqlens.append(
|
||||
next_batch_cu_seqlens[i] + new_input_length
|
||||
)
|
||||
next_batch_all_input_ids.append(all_input_ids)
|
||||
next_batch_max_seqlen = max(next_batch_max_seqlen, new_input_length)
|
||||
|
||||
# Prefill
|
||||
if stopping_criteria.current_tokens == 1:
|
||||
# Remove generated token to only have prefill and add nan for first prompt token
|
||||
prefill_logprobs = [float("nan")] + logprobs.gather(
|
||||
1, all_input_ids[1:].unsqueeze(1)
|
||||
).squeeze(1)[:-1].tolist()
|
||||
prefill_token_ids = all_input_ids[:-1]
|
||||
prefill_texts = self.tokenizer.batch_decode(
|
||||
prefill_token_ids,
|
||||
clean_up_tokenization_spaces=False,
|
||||
skip_special_tokens=False,
|
||||
)
|
||||
prefill_tokens = PrefillTokens(
|
||||
prefill_token_ids, prefill_logprobs, prefill_texts
|
||||
)
|
||||
else:
|
||||
prefill_tokens = None
|
||||
|
||||
generation = Generation(
|
||||
request.id,
|
||||
prefill_tokens,
|
||||
next_token_id_squeezed,
|
||||
next_token_logprob,
|
||||
next_token_text,
|
||||
next_token_id_squeezed.item() in self.all_special_ids,
|
||||
generated_text,
|
||||
)
|
||||
|
||||
generations.append(generation)
|
||||
|
||||
# We finished all generations in the batch; there is no next batch
|
||||
if not next_batch_keep_indices:
|
||||
return generations, None
|
||||
|
||||
# If we finished at least one generation, we need to evict the indices of the generations that finished
|
||||
# from the values of the next batch
|
||||
if len(next_batch_keep_indices) != len(batch):
|
||||
# Apply indices to requests, token_choosers and stopping_criterias that need to be cached
|
||||
next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
|
||||
next_batch_next_token_choosers = [
|
||||
batch.next_token_choosers[i] for i in next_batch_keep_indices
|
||||
]
|
||||
next_batch_stopping_criterias = [
|
||||
batch.stopping_criterias[i] for i in next_batch_keep_indices
|
||||
]
|
||||
else:
|
||||
next_batch_requests = batch.requests
|
||||
next_batch_next_token_choosers = batch.next_token_choosers
|
||||
next_batch_stopping_criterias = batch.stopping_criterias
|
||||
|
||||
# Create final next batch tensors
|
||||
device = out.device
|
||||
next_batch_input_ids = torch.concat(next_batch_input_ids, dim=0)
|
||||
next_batch_position_ids = torch.tensor(
|
||||
next_batch_position_ids, dtype=torch.int32, device=device
|
||||
)
|
||||
next_batch_cu_seqlens = torch.tensor(
|
||||
next_batch_cu_seqlens, dtype=torch.int32, device=device
|
||||
)
|
||||
if len(next_batch_keep_indices) > 1:
|
||||
next_batch_past_key_values = torch.concat(next_batch_past_key_values)
|
||||
else:
|
||||
next_batch_past_key_values = next_batch_past_key_values[0]
|
||||
|
||||
next_batch = FlashNeoXBatch(
|
||||
batch_id=batch.batch_id,
|
||||
requests=next_batch_requests,
|
||||
input_ids=next_batch_input_ids,
|
||||
position_ids=next_batch_position_ids,
|
||||
cu_seqlens=next_batch_cu_seqlens,
|
||||
max_seqlen=next_batch_max_seqlen,
|
||||
past_key_values=next_batch_past_key_values,
|
||||
all_input_ids=next_batch_all_input_ids,
|
||||
next_token_choosers=next_batch_next_token_choosers,
|
||||
stopping_criterias=next_batch_stopping_criterias,
|
||||
)
|
||||
return generations, next_batch
|
||||
|
||||
|
||||
class FlashNeoXSharded(FlashNeoX):
|
||||
def __init__(
|
||||
self, model_id: str, revision: Optional[str] = None, quantize: bool = False
|
||||
):
|
||||
self.process_group, self.rank, self.world_size = initialize_torch_distributed()
|
||||
self.master = self.rank == 0
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device(f"cuda:{self.rank}")
|
||||
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16
|
||||
else:
|
||||
raise NotImplementedError("FlashNeoX is only available on GPU")
|
||||
|
||||
if quantize:
|
||||
raise NotImplementedError("FlashNeoX does not support quantization")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
model_id, revision=revision, padding_side="left"
|
||||
)
|
||||
|
||||
config = AutoConfig.from_pretrained(
|
||||
model_id, revision=revision, tp_parallel=True
|
||||
)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
filenames = weight_files(model_id, revision=revision, extension=".safetensors")
|
||||
|
||||
with init_empty_weights():
|
||||
model = FlashGPTNeoXForCausalLM(config)
|
||||
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
self.load_weights(
|
||||
model,
|
||||
filenames,
|
||||
quantize=quantize,
|
||||
device=device,
|
||||
rank=self.rank,
|
||||
world_size=self.world_size,
|
||||
)
|
||||
self.model = model.eval().to(dtype)
|
||||
torch.distributed.barrier(group=self.process_group)
|
||||
super(FlashNeoX, self).__init__(
|
||||
tokenizer=tokenizer,
|
||||
device=device,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def load_weights(
|
||||
model,
|
||||
filenames: List[str],
|
||||
quantize: bool,
|
||||
device: torch.device,
|
||||
rank: int,
|
||||
world_size: int,
|
||||
):
|
||||
parameters = dict(model.named_parameters())
|
||||
for file in filenames:
|
||||
with safe_open(
|
||||
file, framework="pt", device=str(device) if not quantize else "cpu"
|
||||
) as f:
|
||||
for name in f.keys():
|
||||
module_name, param_name = name.rsplit(".", 1)
|
||||
module = model.get_submodule(module_name)
|
||||
|
||||
current_parameter_tensor = parameters.get(name, None)
|
||||
|
||||
slice_ = f.get_slice(name)
|
||||
|
||||
if isinstance(module, ColumnParallelLinear):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif isinstance(module, RowParallelLinear):
|
||||
if param_name == "weight":
|
||||
size = slice_.get_shape()[1]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[:, start:stop]
|
||||
else:
|
||||
tensor = slice_[:]
|
||||
# XXX: Hack for Rowlinear to add the bias only once.
|
||||
if rank != 0:
|
||||
tensor = torch.zeros_like(tensor)
|
||||
elif isinstance(module, TensorParallelEmbedding):
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
elif name == "embed_out.weight" and model.gpt_neox.tp_embeddings:
|
||||
size = slice_.get_shape()[0]
|
||||
block_size = size // world_size
|
||||
start = rank * block_size
|
||||
stop = (rank + 1) * block_size
|
||||
tensor = slice_[start:stop]
|
||||
else:
|
||||
try:
|
||||
tensor = slice_[:]
|
||||
except:
|
||||
tensor = f.get_tensor(name)
|
||||
|
||||
if (
|
||||
current_parameter_tensor is not None
|
||||
and current_parameter_tensor.shape != tensor.shape
|
||||
):
|
||||
raise ValueError(
|
||||
f"Name {name} -- Current {current_parameter_tensor.shape} and got {tensor.shape}"
|
||||
)
|
||||
|
||||
tensor = tensor.contiguous()
|
||||
|
||||
if current_parameter_tensor is not None:
|
||||
module._parameters[param_name] = tensor
|
||||
else:
|
||||
module._buffers[param_name] = tensor
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.Tensor,
|
||||
position_ids: torch.Tensor,
|
||||
cu_seqlens: torch.Tensor,
|
||||
max_s: torch.Tensor,
|
||||
past_key_values: Optional = None,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
if self.model.gpt_neox.tp_embeddings:
|
||||
logits, present = self.model.forward(
|
||||
input_ids=input_ids,
|
||||
position_ids=position_ids,
|
||||
cu_seqlens=cu_seqlens,
|
||||
max_s=max_s,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
# Logits are sharded, so we need to gather them
|
||||
world_logits = [torch.empty_like(logits) for _ in range(self.world_size)]
|
||||
torch.distributed.all_gather(world_logits, logits, group=self.process_group)
|
||||
world_logits = torch.cat(world_logits, dim=1)
|
||||
|
||||
return world_logits, present
|
||||
# While the model itself is sharded, the embeddings might not as they might not be dividable by num-shard
|
||||
else:
|
||||
return super(FlashNeoXSharded, self).forward(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
589
server/text_generation_server/models/flash_neox_modeling.py
Normal file
589
server/text_generation_server/models/flash_neox_modeling.py
Normal file
@ -0,0 +1,589 @@
|
||||
import torch
|
||||
|
||||
from torch import nn
|
||||
|
||||
from transformers.modeling_utils import PreTrainedModel
|
||||
from transformers.models.gpt_neox import GPTNeoXConfig
|
||||
from einops import rearrange
|
||||
from flash_attn.flash_attn_interface import (
|
||||
flash_attn_unpadded_qkvpacked_func,
|
||||
flash_attn_unpadded_kvpacked_func,
|
||||
)
|
||||
from flash_attn.ops.fused_dense import (
|
||||
FusedDense,
|
||||
ColumnParallelLinear,
|
||||
RowParallelLinear,
|
||||
fused_mlp_func,
|
||||
)
|
||||
from flash_attn.layers.rotary import RotaryEmbedding, apply_rotary_emb_qkv_
|
||||
from flash_attn.ops.layer_norm import dropout_add_layer_norm
|
||||
|
||||
|
||||
class TensorParallelEmbedding(nn.Embedding):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings,
|
||||
embedding_dim,
|
||||
process_group: torch.distributed.ProcessGroup,
|
||||
padding_idx=None,
|
||||
max_norm=None,
|
||||
norm_type=2.0,
|
||||
scale_grad_by_freq=False,
|
||||
sparse=False,
|
||||
_weight=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
self.process_group = process_group
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
|
||||
self.original_num_embeddings = num_embeddings
|
||||
|
||||
assert num_embeddings % self.tp_world_size == 0
|
||||
block_size = num_embeddings // self.tp_world_size
|
||||
# inputs in `[min_id, max_id[` are handled by `self` to get embeddings
|
||||
self.min_id = self.tp_rank * block_size
|
||||
self.max_id = (self.tp_rank + 1) * block_size
|
||||
|
||||
super().__init__(
|
||||
block_size,
|
||||
embedding_dim,
|
||||
padding_idx=padding_idx,
|
||||
max_norm=max_norm,
|
||||
norm_type=norm_type,
|
||||
scale_grad_by_freq=scale_grad_by_freq,
|
||||
sparse=sparse,
|
||||
_weight=_weight,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# Sanity check
|
||||
if torch.any(
|
||||
torch.logical_or(0 > input, input >= self.original_num_embeddings)
|
||||
):
|
||||
raise IndexError(
|
||||
f"Input is required to be in [0, {self.original_num_embeddings}[, got min: {torch.min(input)} and max: {torch.max(input)}"
|
||||
)
|
||||
|
||||
# `0` if input is in the correct interval, else `1`
|
||||
input_mask = torch.logical_or(self.min_id > input, input >= self.max_id)
|
||||
# translate for [0, self.max_id - self.min_id[
|
||||
input = input - self.min_id
|
||||
# default all out of bounds values to `0`
|
||||
input[input_mask] = 0
|
||||
out = super().forward(input)
|
||||
out[input_mask] = 0.0
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class PositionRotaryEmbedding(RotaryEmbedding):
|
||||
def forward(self, qkv: torch.Tensor, position_ids: torch.Tensor):
|
||||
assert self.scale is None
|
||||
|
||||
self._update_cos_sin_cache(qkv, position_ids.max() + 1)
|
||||
|
||||
cos = self._cos_cached[position_ids]
|
||||
sin = self._sin_cached[position_ids]
|
||||
|
||||
return apply_rotary_emb_qkv_(qkv, cos, sin, None, None)
|
||||
|
||||
|
||||
class FlashNeoxAttention(torch.nn.Module):
|
||||
def __init__(
|
||||
self, num_heads, hidden_size, rotary_pct, rotary_emb_base, process_group=None
|
||||
):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.head_size = hidden_size // num_heads
|
||||
|
||||
rotary_ndims = int(self.head_size * rotary_pct)
|
||||
self.rotary_emb = PositionRotaryEmbedding(rotary_ndims, base=rotary_emb_base)
|
||||
self.softmax_scale = self.head_size ** (-0.5)
|
||||
|
||||
if process_group is None:
|
||||
self.query_key_value = FusedDense(hidden_size, 3 * hidden_size)
|
||||
self.dense = FusedDense(hidden_size, hidden_size)
|
||||
else:
|
||||
self.num_heads = self.num_heads // process_group.size()
|
||||
self.query_key_value = ColumnParallelLinear(
|
||||
hidden_size,
|
||||
3 * hidden_size,
|
||||
process_group=process_group,
|
||||
sequence_parallel=False,
|
||||
)
|
||||
self.dense = RowParallelLinear(
|
||||
hidden_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
sequence_parallel=False,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self, hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
):
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
qkv = rearrange(
|
||||
qkv, "... (h three d) -> ... h three d", three=3, d=self.head_size
|
||||
).permute(0, 2, 1, 3)
|
||||
qkv_rot = self.rotary_emb(qkv.unsqueeze(0), position_ids).squeeze(0)
|
||||
|
||||
if prefill:
|
||||
layer_past[...] = qkv_rot[:, 1:]
|
||||
|
||||
# test flash_attn_unpadded_qkvpacked_split_func
|
||||
attn_output = flash_attn_unpadded_qkvpacked_func(
|
||||
qkv_rot, cu_seqlens, max_s, 0.0, self.softmax_scale, causal=True
|
||||
)
|
||||
else:
|
||||
query = qkv_rot[:, 0]
|
||||
layer_past[cu_seqlens[1:] - 1] = qkv_rot[:, 1:]
|
||||
|
||||
attn_output = flash_attn_unpadded_kvpacked_func(
|
||||
query,
|
||||
layer_past,
|
||||
cu_seqlens_q=torch.arange(len(cu_seqlens), dtype=torch.int32).to(
|
||||
query.device
|
||||
),
|
||||
max_seqlen_q=torch.tensor(1, dtype=torch.int32).to(query.device),
|
||||
cu_seqlens_k=cu_seqlens,
|
||||
max_seqlen_k=max_s,
|
||||
dropout_p=0.0,
|
||||
softmax_scale=self.softmax_scale,
|
||||
causal=False,
|
||||
)
|
||||
|
||||
return self.dense(rearrange(attn_output, "... h d -> ... (h d)"))
|
||||
|
||||
|
||||
class FlashMLP(nn.Module):
|
||||
def __init__(self, act, hidden_size, intermediate_size, process_group=None):
|
||||
super().__init__()
|
||||
if "gelu" in act:
|
||||
act = "gelu_approx"
|
||||
assert act in ["gelu_approx", "relu"]
|
||||
self.act = act
|
||||
|
||||
if process_group is None:
|
||||
self.dense_h_to_4h = FusedDense(hidden_size, intermediate_size)
|
||||
self.dense_4h_to_h = FusedDense(intermediate_size, hidden_size)
|
||||
else:
|
||||
self.dense_h_to_4h = ColumnParallelLinear(
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
process_group=process_group,
|
||||
sequence_parallel=False,
|
||||
)
|
||||
self.dense_4h_to_h = RowParallelLinear(
|
||||
intermediate_size,
|
||||
hidden_size,
|
||||
process_group=process_group,
|
||||
sequence_parallel=False,
|
||||
)
|
||||
self.heuristic = "auto"
|
||||
self.process_group = process_group
|
||||
|
||||
def forward(self, x):
|
||||
if self.heuristic == "auto":
|
||||
if self.act == "gelu_approx":
|
||||
cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
|
||||
self.heuristic = (
|
||||
0
|
||||
if cuda_ver >= (11, 8)
|
||||
else (1 if x.dtype == torch.float16 else -1)
|
||||
)
|
||||
else:
|
||||
self.heuristic = 0
|
||||
|
||||
out = fused_mlp_func(
|
||||
x,
|
||||
self.dense_h_to_4h.weight,
|
||||
self.dense_4h_to_h.weight,
|
||||
self.dense_h_to_4h.bias,
|
||||
self.dense_4h_to_h.bias,
|
||||
activation=self.act,
|
||||
save_pre_act=self.training,
|
||||
checkpoint_lvl=0,
|
||||
heuristic=self.heuristic,
|
||||
process_group=self.process_group,
|
||||
sequence_parallel=False,
|
||||
)
|
||||
if self.process_group is not None:
|
||||
torch.distributed.all_reduce(out, group=self.process_group)
|
||||
return out
|
||||
|
||||
|
||||
class FlashNeoXLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
act,
|
||||
hidden_size,
|
||||
intermediate_size,
|
||||
rotary_pct,
|
||||
rotary_emb_base,
|
||||
layer_norm_eps,
|
||||
use_parallel_residual,
|
||||
process_group=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.use_parallel_residual = use_parallel_residual
|
||||
self.input_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.post_attention_layernorm = nn.LayerNorm(hidden_size, eps=layer_norm_eps)
|
||||
self.attention = FlashNeoxAttention(
|
||||
num_heads, hidden_size, rotary_pct, rotary_emb_base, process_group
|
||||
)
|
||||
self.mlp = FlashMLP(act, hidden_size, intermediate_size, process_group)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states,
|
||||
residual,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
layer_past,
|
||||
prefill,
|
||||
):
|
||||
if self.use_parallel_residual:
|
||||
ln1_hidden_states = dropout_add_layer_norm(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.input_layernorm.weight,
|
||||
self.input_layernorm.bias,
|
||||
0.0,
|
||||
self.input_layernorm.eps,
|
||||
rowscale=None,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
)
|
||||
attn_output = self.attention(
|
||||
ln1_hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
)
|
||||
|
||||
ln2_hidden_states = dropout_add_layer_norm(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.post_attention_layernorm.weight,
|
||||
self.post_attention_layernorm.bias,
|
||||
0.0,
|
||||
self.post_attention_layernorm.eps,
|
||||
rowscale=None,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
)
|
||||
mlp_output = self.mlp(ln2_hidden_states)
|
||||
return mlp_output + attn_output + hidden_states, None
|
||||
|
||||
else:
|
||||
hidden_states, residual = dropout_add_layer_norm(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.input_layernorm.weight,
|
||||
self.input_layernorm.bias,
|
||||
0.0,
|
||||
self.input_layernorm.eps,
|
||||
rowscale=None,
|
||||
prenorm=True,
|
||||
residual_in_fp32=True,
|
||||
)
|
||||
|
||||
hidden_states = self.attention(
|
||||
hidden_states, position_ids, cu_seqlens, max_s, layer_past, prefill
|
||||
)
|
||||
|
||||
hidden_states, residual = dropout_add_layer_norm(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.post_attention_layernorm.weight,
|
||||
self.post_attention_layernorm.bias,
|
||||
0.0,
|
||||
self.post_attention_layernorm.eps,
|
||||
rowscale=None,
|
||||
prenorm=True,
|
||||
residual_in_fp32=True,
|
||||
)
|
||||
|
||||
mlp_output = self.mlp(hidden_states)
|
||||
|
||||
return mlp_output, residual
|
||||
|
||||
|
||||
class FlashGPTNeoXPreTrainedModel(PreTrainedModel):
|
||||
config_class = GPTNeoXConfig
|
||||
base_model_prefix = "gpt_neox"
|
||||
supports_gradient_checkpointing = False
|
||||
_no_split_modules = None
|
||||
|
||||
|
||||
class FlashGPTNeoXModel(FlashGPTNeoXPreTrainedModel):
|
||||
def __init__(self, config, process_group=None):
|
||||
super().__init__(config)
|
||||
self.config = config
|
||||
|
||||
self.tp_embeddings = False
|
||||
if process_group is not None:
|
||||
self.tp_rank = process_group.rank()
|
||||
self.tp_world_size = process_group.size()
|
||||
if config.vocab_size % self.tp_world_size == 0:
|
||||
self.tp_embeddings = True
|
||||
|
||||
if self.tp_embeddings:
|
||||
self.embed_in = TensorParallelEmbedding(
|
||||
config.vocab_size, config.hidden_size, process_group=process_group
|
||||
)
|
||||
else:
|
||||
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size)
|
||||
|
||||
self.layers = nn.ModuleList(
|
||||
[
|
||||
FlashNeoXLayer(
|
||||
config.num_attention_heads,
|
||||
config.hidden_act,
|
||||
config.hidden_size,
|
||||
config.intermediate_size,
|
||||
config.rotary_pct,
|
||||
config.rotary_emb_base,
|
||||
config.layer_norm_eps,
|
||||
config.use_parallel_residual,
|
||||
process_group,
|
||||
)
|
||||
for _ in range(config.num_hidden_layers)
|
||||
]
|
||||
)
|
||||
self.final_layer_norm = nn.LayerNorm(
|
||||
config.hidden_size, eps=config.layer_norm_eps
|
||||
)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
self.head_size = self.layers[0].attention.head_size
|
||||
self.num_heads = self.layers[0].attention.num_heads
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states = self.embed_in(input_ids)
|
||||
|
||||
prefill = False
|
||||
if past_key_values is None:
|
||||
past_key_values = hidden_states.new_empty(
|
||||
(
|
||||
len(self.layers),
|
||||
len(hidden_states),
|
||||
2,
|
||||
self.num_heads,
|
||||
self.head_size,
|
||||
)
|
||||
)
|
||||
prefill = True
|
||||
|
||||
residual = None
|
||||
for i, layer in enumerate(self.layers):
|
||||
hidden_states, residual = layer(
|
||||
hidden_states,
|
||||
residual,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values[i],
|
||||
prefill,
|
||||
)
|
||||
|
||||
hidden_states = dropout_add_layer_norm(
|
||||
hidden_states,
|
||||
residual,
|
||||
self.final_layer_norm.weight,
|
||||
self.final_layer_norm.bias,
|
||||
0.0,
|
||||
self.final_layer_norm.eps,
|
||||
rowscale=None,
|
||||
prenorm=False,
|
||||
residual_in_fp32=False,
|
||||
)
|
||||
|
||||
return hidden_states, past_key_values
|
||||
|
||||
|
||||
class FlashGPTNeoXForCausalLM(FlashGPTNeoXPreTrainedModel):
|
||||
def __init__(self, config):
|
||||
super().__init__(config)
|
||||
|
||||
if config.tp_parallel:
|
||||
process_group = torch.distributed.distributed_c10d._get_default_group()
|
||||
else:
|
||||
process_group = None
|
||||
|
||||
self.gpt_neox = FlashGPTNeoXModel(config, process_group)
|
||||
|
||||
if self.gpt_neox.tp_embeddings:
|
||||
self.embed_out = FusedDense(
|
||||
config.hidden_size,
|
||||
config.vocab_size // process_group.size(),
|
||||
bias=False,
|
||||
)
|
||||
else:
|
||||
self.embed_out = FusedDense(
|
||||
config.hidden_size, config.vocab_size, bias=False
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids,
|
||||
position_ids,
|
||||
cu_seqlens,
|
||||
max_s,
|
||||
past_key_values=None,
|
||||
):
|
||||
hidden_states, present = self.gpt_neox(
|
||||
input_ids, position_ids, cu_seqlens, max_s, past_key_values
|
||||
)
|
||||
return self.embed_out(hidden_states), present
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from transformers import AutoTokenizer
|
||||
from flash_attn.bert_padding import unpad_input
|
||||
|
||||
model = (
|
||||
FlashGPTNeoXForCausalLM.from_pretrained("EleutherAI/pythia-160m")
|
||||
.cuda()
|
||||
.to(torch.half)
|
||||
)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(
|
||||
"EleutherAI/pythia-160m", padding_side="left"
|
||||
)
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
tokenized_inputs = tokenizer(
|
||||
["What is this?\n\nA:\n\nThe answer to the problem?", "hello!"],
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
).to("cuda")
|
||||
|
||||
input_ids, indices, cu_seqlens, max_seqlen = unpad_input(
|
||||
tokenized_inputs["input_ids"].unsqueeze(-1), tokenized_inputs["attention_mask"]
|
||||
)
|
||||
|
||||
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 0)
|
||||
|
||||
unpad_position_ids = torch.gather(position_ids.view(-1).cuda(), 0, indices)
|
||||
|
||||
gen_input_ids = input_ids.squeeze(1).cuda().clone()
|
||||
gen_position_ids = unpad_position_ids.clone()
|
||||
gen_indices = indices.clone()
|
||||
gen_cu_seqlens = cu_seqlens.clone()
|
||||
gen_max_seqlen = max_seqlen
|
||||
|
||||
past_key_values = None
|
||||
|
||||
results = []
|
||||
with torch.no_grad():
|
||||
out, present, _ = model(
|
||||
gen_input_ids,
|
||||
gen_position_ids,
|
||||
gen_cu_seqlens,
|
||||
gen_max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
futures = []
|
||||
new_gen_cu_seqlens = [0]
|
||||
new_position_ids = []
|
||||
next_token_ids = []
|
||||
|
||||
for i in range(len(gen_cu_seqlens) - 1):
|
||||
start_index = gen_cu_seqlens[i]
|
||||
end_index = gen_cu_seqlens[i + 1]
|
||||
|
||||
seq_logits = out[start_index:end_index]
|
||||
next_token_id = torch.argmax(seq_logits[-1:], dim=1)
|
||||
next_token_ids.append(next_token_id)
|
||||
|
||||
sequence_length = end_index - start_index
|
||||
new_gen_cu_seqlens.append(new_gen_cu_seqlens[i] + sequence_length + 1)
|
||||
|
||||
seq_position_ids = gen_position_ids[start_index:end_index]
|
||||
new_position_ids.append(
|
||||
torch.concat([seq_position_ids, seq_position_ids[-1:] + 1])
|
||||
)
|
||||
|
||||
seq_present = present[:, start_index:end_index]
|
||||
future = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
|
||||
futures.append(future)
|
||||
|
||||
past_key_values = torch.concat(futures, dim=1)
|
||||
new_position_ids = torch.concat(new_position_ids)
|
||||
new_gen_cu_seqlens = torch.tensor(
|
||||
new_gen_cu_seqlens, device=past_key_values.device, dtype=torch.int32
|
||||
)
|
||||
next_token_ids = torch.concat(next_token_ids)
|
||||
|
||||
gen_max_seqlen += 1
|
||||
|
||||
gen_input_ids = next_token_ids
|
||||
gen_position_ids = new_position_ids
|
||||
gen_cu_seqlens = new_gen_cu_seqlens
|
||||
|
||||
print(tokenizer.batch_decode(gen_input_ids))
|
||||
|
||||
for _ in range(40):
|
||||
out, present, _ = model(
|
||||
gen_input_ids,
|
||||
gen_position_ids,
|
||||
gen_cu_seqlens,
|
||||
gen_max_seqlen,
|
||||
past_key_values=past_key_values,
|
||||
)
|
||||
|
||||
futures = []
|
||||
new_gen_cu_seqlens = [0]
|
||||
new_position_ids = []
|
||||
next_token_ids = []
|
||||
for i in range(len(gen_cu_seqlens) - 1):
|
||||
start_index = gen_cu_seqlens[i]
|
||||
end_index = gen_cu_seqlens[i + 1]
|
||||
|
||||
seq_logits = out[i]
|
||||
next_token_id = torch.argmax(seq_logits.view(1, -1)[-1:], dim=1)
|
||||
next_token_ids.append(next_token_id)
|
||||
|
||||
sequence_length = end_index - start_index
|
||||
new_gen_cu_seqlens.append(new_gen_cu_seqlens[i] + sequence_length + 1)
|
||||
|
||||
seq_position_ids = gen_position_ids[start_index:end_index]
|
||||
new_position_ids.append(
|
||||
torch.concat([seq_position_ids, seq_position_ids[-1:] + 1])
|
||||
)
|
||||
|
||||
seq_present = present[:, start_index:end_index]
|
||||
future = torch.nn.functional.pad(seq_present, (0, 0, 0, 0, 0, 0, 0, 1))
|
||||
|
||||
futures.append(future)
|
||||
|
||||
past_key_values = torch.concat(futures, dim=1)
|
||||
new_position_ids = torch.concat(new_position_ids)
|
||||
new_gen_cu_seqlens = torch.tensor(
|
||||
new_gen_cu_seqlens, device=past_key_values.device, dtype=torch.int32
|
||||
)
|
||||
next_token_ids = torch.concat(next_token_ids)
|
||||
|
||||
gen_max_seqlen += 1
|
||||
|
||||
gen_input_ids = next_token_ids
|
||||
gen_position_ids = new_position_ids
|
||||
gen_cu_seqlens = new_gen_cu_seqlens
|
||||
|
||||
print(tokenizer.batch_decode(gen_input_ids))
|
Loading…
Reference in New Issue
Block a user